MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents
Abstract
:1. Introduction
2. Results
2.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Scavenging
2.2. Pigment Cytotoxicity on B16-F0 and HaCaT Cells and Protective Effect on B16-F0 Cells from UV Radiations
2.3. Intracellular Reactive Oxygen Species (ROS) Concentration
2.4. NO Concentration
2.5. Interleukin-1β (IL-1β) Concentration
2.6. Matrix Metalloproteinase 9 Protein (MMP-9) Production
3. Discussion
4. Materials and Methods
4.1. Investigation Strategy and Experimental Pipeline
4.2. Microalgal Pigments
4.3. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay
4.4. The Human HaCaT Keratinocytes Cell Line
4.5. The Murine B16-F0 Melanoma Cell Line
4.6. UV Radiations and Pigment Effect Assessment
4.7. Cell Viability Assessment
4.8. Intracellular Reactive Oxygen Species (ROS) Measurement
4.9. Extracellular Nitric Oxide (NO) Measurement
4.10. Interleukin 1 β (IL-1β) Measurement
4.11. Matrix Metalloproteinase 9 Protein (MMP-9) Measurement
4.12. Data Treatment and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [Green Version]
- Auh, J.H.; Madhavan, J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed. Pharmacother. 2021, 135, 111178. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Lyga, J. Inflammaging in skin and other tissues—The roles of complement system and macrophage. Inflamm. Allergy Drug Targets. 2014, 13, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta. 2010, 1803, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Quan, T.; Qin, Z.; Xia, W.; Shao, Y.; Voorhees, J.J.; Fisher, G.J. Matrix-degrading metalloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Sil, H.; Sen, T.; Chatterjee, A. Fibronectin-integrin (alpha5beta1) modulates migration and invasion of murine melanoma cell line B16F10 by involving MMP-9. Oncol. Res. 2011, 19, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Rao, P.; Bradshaw, J.; Weller, R. Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin. Eur. J. Pharm. Biopharm. 2016, 107, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Stanley, L.; Yuan, Y.W. Transcriptional Regulation of Carotenoids Biosynthesis in Plants: So Many Regulators, So Little Consensus. Front. Plant Sci. 2019, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Puzorjov, A.; McCormick, A.J. Phycobiliproteins from extreme environments and their potential applications. J. Exp. Bot. 2020, 71, 3827–3842. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.F.; de Morais, A.M.M.B.; de Morais, R.M.S.C. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar. Drugs. 2015, 13, 5128–5155. [Google Scholar] [CrossRef]
- Niranjana, R.; Gayathri, R.; Mol, S.N.; Sugawara, T.; Hirata, T.; Miyashita, K.; Ganesan, P. Carotenoids modulate the hallmarks of cancer cells. J. Funct. Foods 2015, 18, 968–985. [Google Scholar] [CrossRef]
- Varzakas, T.H.; Zakynthinos, G. Carotenoids: From Plants to Food Industry. Curr. Res. Nutr. Food Sci. J. 2016, 4, 38–51. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Fernández-Lledó, V.; Angosto, J.M. New insights into red plant pigments: More than just natural colorants. R. Soc. Chem. 2020, 10, 24669–24862. [Google Scholar] [CrossRef]
- de Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef] [PubMed]
- Brunet, C.; Chandrasekaran, R.; Barra, L.; Giovagnetti, V.; Corato, F.; Ruban, A.V. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. PLoS ONE 2014, 9, e87015. [Google Scholar] [CrossRef] [PubMed]
- Hopes, A.; Mock, T. Evolution of Microalgae and Their Adaptations in Different Marine Ecosystems. eLS 2015. [Google Scholar] [CrossRef]
- Mc Gee, D.; Gillespie, E. The Bioactivity & Chemotaxonomy of Microalgal Carotenoids in Biodiversity and Chemotaxonomy; Ramawat, K.G., Ed.; Springer Nature Switzerland AG: Cham, Germany, 2019; Volume 24, pp. 215–237. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Wright, S.W.; Zapata, M. Microalgal classes and their signature pigments. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography; Roy, S., Llewellyn, C.A., Egeland, E.S., Johnsen, G., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 3–77. [Google Scholar] [CrossRef]
- Brunet, C.; Johnsen, G.; Lavaud, J.; Roy, S. Pigments and photoacclimation processes. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography; Roy, S., Llewellyn, C.A., Egeland, E.S., Johnsen, G., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 445–471. [Google Scholar] [CrossRef] [Green Version]
- Sansone, C.; Brunet, C. Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging microalgal vitamins for human health. Microb. Cell Fact. 2020, 19, 201. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Ambrosino, L.; Albini, A.; Noonan, D.M.; Sansone, C.; Brunet, C. Insights into phenolic compounds from microalgae: Structural variety and complex beneficial activities from health to nutraceutics. Crit. Rev. Biotechnol. 2021, 41, 155–171. [Google Scholar] [CrossRef]
- Brunet, C.; Casotti, R.; Aronne, B.; Vantrepotte, V. Measured photophysiological parameters used as tools to estimate vertical water movements in the coastal Mediterranean. J. Plankton Res. 2003, 25, 1413–1425. [Google Scholar] [CrossRef] [Green Version]
- Brunet, C.; Casotti, R.; Vantrepotte, V. Phytoplankton diel and vertical variability in photobiological responses at a coastal station in the Mediterranean Sea. J. Plankton Res. 2008, 30, 645–654. [Google Scholar] [CrossRef]
- Orefice, I.; Chandrasekaran, R.; Smerilli, A.; Corato, F.; Carillo, S.; Caruso, T.; Corsaro, M.M.; Dal Piaz, F.; Ruban, A.; Brunet, C. Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res. 2016, 17, 1–13. [Google Scholar] [CrossRef]
- Dimier, C.; Brunet, C.; Geider, R.J.; Raven, J. Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light. Limnol. Oceanogr. 2009, 54, 823–836. [Google Scholar] [CrossRef]
- Pavez Lorie, E.; Stricker, N.; Plitta-Michalak, B.; Chen, I.P.; Volkmer, B.; Greinert, R.; Jauch, A.; Boukamp, P.; Rapp, A. Characterisation of the novel spontaneously immortalized and invasively growing human skin keratinocyte line HaSKpw. Sci. Rep. 2020, 10, 15196. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxidative Med. Cell. Longev. 2012, 534934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Guo, Y.; Zhu, P.; Zhang, D.; Liu, S.; Tang, M.; Wang, Y.; Jin, Z.; Li, D.; Yan, D.; et al. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP-9 and Madcam1. Aging 2019, 11, 8623–8641. [Google Scholar] [CrossRef]
- Napagoda, M.T.; Malkanthi, B.M.A.S.; Abayawardana, S.A.K.; Qader, M.M.; Jayasinghe, L. Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complement. Altern. Med. 2016, 16, 479. [Google Scholar] [CrossRef] [Green Version]
- Rojo de la Vega, M.; Krajisnik, A.; Zhang, D.D.; Wondrak, G.T. Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients 2017, 9, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina Martins, R.; de Assis Dias Alves, G.; de Siqueira Martins, S.; de Freitas, L.A.P.; Rochette, P.J.; Moulin, V.J.; Vieira Fonseca, M.J. Apple Extracts (Malus sp.) and Rutin as Photochemopreventive Agents: Evaluation of Ultraviolet B-Induced Alterations on Skin Biopsies and Tissue-Engineered Skin. Rejuvenation Res. 2020, 23, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Martens, M.C.; Seebode, C.; Lehmann, J.; Emmert, S. Photocarcinogenesis and Skin Cancer Prevention Strategies: An Update. Anticancer Res. 2018, 38, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- de la Coba, F.; Aguilera, J.; Korbee, N.; de Gálvez, M.V.; Herrera-Ceballos, E.; Álvarez-Gómez, F.; Figueroa, F.L. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (MAAs) through Different Biological Effective Protection Factors (BEPFs). Mar. Drugs 2019, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Kim, S.H.; Lee, H.; Kim, B.; Kim, Y.S.; Key, J. Visualization of MMP-2 Activity using Dual-Probe Nanoparticles to Detect Potential Metastatic Cancer Cells. Nanomaterials 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Barra, L.; Chandrasekaran, R.; Corato, F.; Brunet, C. The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Mar. Drugs. 2014, 12, 1641–1675. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Yan, X.; Wang, Y.; Ren, B.; Ren, H.; Ding, Y.; Zheng, Q.; Li, D.; Liu, Y. Chamaejasmin B Decreases Malignant Characteristics of Mouse Melanoma B16F0 and B16F10 Cells. Front Oncol. 2020, 10, 415. [Google Scholar] [CrossRef]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Sachindra, N.M.; Sato, E.; Maeda, H.; Hosokawa, M.; Niwano, Y.; Kohno, M.; Miyashita, K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 2007, 55, 8516–8522. [Google Scholar] [CrossRef] [PubMed]
- El-Agamey, A.; Lowe, G.M.; McGarvey, D.J.; Mortensen, A.; Phillip, D.M.; Truscott, T.G.; Young, A.J. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 2004, 4301, 37–48. [Google Scholar] [CrossRef]
- Zaragozá, M.C.; López, D.; Sáiz, M.P.; Poquet, M.; Pérez, J.; Puig-Parellada, P.; Màrmol, F.; Simonetti, P.; Gardana, C.; Lerat, Y.; et al. Toxicity and Antioxidant Activity in vitro and in vivo of Two Fucus vesiculosus Extracts. J. Agric. Food Chem. 2008, 56, 7773–7780. [Google Scholar] [CrossRef]
- Hiseh, H.J.; Liu, C.A.; Huang, B.; Tseng, A.H.; Wang, D.L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 2014, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Haguet, Q.; Bonnet, A.; Berard, J.B.; Goldberg, J.; Joguet, N.; Fleury, A.; Thiéry, V.; Picot, L. Antimelanoma activity of Heterocapsa triquetra pigments. Algal Res. 2017, 25, 207–215. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira-Júnior, R.G.; Nicolau, E.; Bonnet, A.; Prunier, G.; Beaugeard, L.; Joguet, N.; Thiéry, V.; Picot, L. Carotenoids from Rhodomonas salina Induce Apoptosis and Sensitize A2058 Melanoma Cells to Chemotherapy. Rev. Bras. Farmacogn. 2020, 30, 155–168. [Google Scholar] [CrossRef]
- Novoveská, L.; Ross, M.R.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs. 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Dembitsky, V.; Levitsky, D.; Gloriozova, T.; Poroikov, V. Acetylenic Aquatic Anticancer Agents and Related Compounds. Nat. Prod. Commun. 2006, 9, 773–811. [Google Scholar] [CrossRef] [Green Version]
- Brunet, C.; Brylinsky, J.M.; Lemoine, Y. In situ variations of the xanthophylls diatoxanthin and diadinoxanthin—Photoadptation and relationships with a hydrodynamical system in the eastern English Channel. Mar. Ecol. Prog. Ser. 1993, 102, 69–77. [Google Scholar] [CrossRef]
- Smerilli, A.; Orefice, I.; Corato, F.; Olea, A.G.; Ruban, A.V.; Brunet, C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environ. Microbiol. 2017, 19, 611–627. [Google Scholar] [CrossRef]
- Smerilli, A.; Balzano, S.; Maselli, M.; Blasio, M.; Orefice, I.; Galasso, G.; Sansone, C.; Brunet, C. Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants 2019, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Latsos, C.; van Houcke, J.; Blommaert, L.; Verbeeke, G.P.; Kromkamp, J.P.; Timmermans, K.R. Effect of light quality and quantity on productivity and phycoerythrin concentration in the cryptophyte Rhodomonas sp. J. App. Phycol. 2021, 33, 729–741. [Google Scholar] [CrossRef]
- Takaichi, S. Carotenoids in algae: Distributions, biosynthesis and functions. Mar. Drugs. 2011, 9, 1101–1118. [Google Scholar] [CrossRef]
- Durán-Riveroll, L.M.; Cembella, A.; Okolodkov, Y. A Review on the Biodiversity and Biogeography of Toxigenic Benthic Marine Dinoflagellates of the Coasts of Latin America. Front. Mar. Sci. 2019, 6, 1–25. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, Y.; Kim, M.; Kim, D.S.; Lee, S.C.; Chi, S.W.; Lee, D.H.; Park, S.G.; Park, B.G.; Bae, K.H.; et al. Comparative proteomic analysis of mouse melanoma cell line B16, a metastatic descendant B16F10, and B16 overexpressing the metastasis-associated tyrosine phosphatase PRL-3. Oncol. Res. 2009, 17, 601–612. [Google Scholar] [CrossRef] [PubMed]
ID | Pigment | Microalgal Group (s) | Aquatic Specific or Not? | Roles | Chemical STRUCTURE | H/C Ratio |
---|---|---|---|---|---|---|
Allo | Alloxanthin | Cryptophytes | Yes | Photosynthetic | C40H52O2 | 1.30 |
Anth | Antheraxanthin | Green algae | No | Photoprotective, XC | C40H56O3 | 1.40 |
Ast | Astaxanthin | Some chlorophytes | No | environmental stress response | C40H52O4 | 1.30 |
α-Car | α-carotene | Green algae | No | Photosynthetic | C40H56 | 1.40 |
β-Car | β-carotene | all | No | Photosynthetic | C40H56 | 1.40 |
Chl c3 | Chlorophyll c3 | Mainly haptophytes | Yes | Photosynthetic | C36H28MgN4O7 | 0.80 |
Dd | Diadinoxanthin | Mainly: diatoms, xanthophytes, haptophytes, dinophytes | Yes | Photosynthetic, XC | C40H54O3 | 1.35 |
Dt | Diatoxanthin | Mainly: diatoms, xanthophytes, haptophytes, dinophytes | Yes | Photoprotective, XC | C40H54O2 | 1.35 |
Echi | Echinenone | Some cyanophytes | No | Photosynthetic | C40H54O | 1.35 |
Fuco | Fucoxanthin | Mainly diatoms | Yes | Photosynthetic | C42H58O6 | 1.38 |
19′ BFuco | 19′-butanoyloxy-fucoxanthin | Pelagophytes/Crysophytes | Yes | Photosynthetic | C46H64O8 | 1.39 |
19′ HFuco | 19′-hexanoyloxy-fucoxanthin | Mainly haptophytes | Yes | Photosynthetic | C48H68O8 | 1.42 |
Lut | Lutein | Green algae | No | Photosynthetic, Photoprotective | C40H56O2 | 1.40 |
Lyco | Lycopene | All | No | Precursor of β-carotene | C40H56 | 1.40 |
Myxo | Myxoxanthophyll | Cyanophytes | Yes | Structural role | C46H66O7 | 1.43 |
Neo | Neoxanthin | Green algae | No | Photosynthetic, Photoprotective | C40H56O4 | 1.40 |
Per | Peridinin | Dinophytes | Yes | Photosynthetic | C39H50O7 | 1.28 |
Pras | Prasinoxanthin | Some prasinophytes | Yes | Photosynthetic | C40H56O4 | 1.40 |
Viol | Violaxanthin | Green algae | No | Photosynthetic, XC | C40H56O4 | 1.40 |
Zea | Zeaxanthin | Green algae; cyanophytes | No | Photoprotective XC; photosynthetic (cyano) | C40H56O2 | 1.40 |
25 ng mL−1 | 50 ng mL−1 | 125 ng mL−1 | 250 ng mL−1 | 500 ng mL−1 | |
---|---|---|---|---|---|
Lut | 48.80 (±0.85) | 46.39 (±0.85) | 47.59 (±0.85) | −15.06 (±4.26) | −12.65 (±0.85) |
Dt | 46.99 (±9.56) | 39.36 (±9.81) | 37.35 (±6.26) | 24.50 (±8.20) | 19.68 (±1.39) |
19′BFuco | 46.18 (±3.03) | 50.20 (±5.94) | 46.99 (±1.20) | 55.42 (±12.58) | 72.69 (±1.39) |
α-Car | 45.89 (±1.36) | 34.62 (±8.98) | 43.96 (±8.42) | 46.86 (±5.88) | 20.45 (±0.56) |
Ast | 43.64 (±3.90) | 18.20 (±1.12) | 31.08 (±5.82) | 32.69 (±4.02) | 19.16 (±5.66) |
β-Car | 42.35 (±3.11) | 45.57 (±7.50) | 37.20 (±6.69) | 43.32 (±17.29) | 39.13 (±7.55) |
Echi | 38.55 (±5.25) | 27.31 (±5.94) | 22.49 (±3.87) | 35.54 (±2.56) | 42.77 (±7.67) |
Fuco | 36.14 (±11.04) | 40.36 (±9.37) | 36.55 (±9.74) | 45.38 (±13.22) | 58.43 (±0.85) |
19′HFuco | 36.14 (±8.52) | 39.36 (±11.70) | 41.37 (±9.66) | 42.17 (±2.41) | 60.24 (±4.34) |
Anth | 25.60 (±2.73) | 35.91 (±18.97) | 49.76 (±8.20) | 58.94 (±7.52) | 62.80 (±0.68) |
Lyco | 21.69 (±8.52) | 33.73 (±8.52) | 36.55 (±12.07) | 54.22 (±8.35) | 62.01 (±17.84) |
Pras | 17.53 (±1.69) | 17.53 (±3.38) | 17.53 (±4.78) | 24.10 (±2.54) | 29.48 (±2.39) |
Chl c3 | 17.39 (±6.15) | 31.88 (±8.88) | 35.27 (±1.37) | 40.74 (±5.90) | 43.48 (±3.42) |
Zea | 17.13 (±0.69) | 19.40 (±0.61) | 23.21 (±1.27) | 26.49 (±0.85) | 45.62 (±4.23) |
Myxo | 17.13 (±3.01) | 16.93 (±0.85) | 15.14 (±1.69) | 15.14 (±17.69) | 22.91 (±0.85) |
Neo | 16.33 (±1.20) | 15.74 (±0.85) | 22.91 (±2.54) | 23.11 (±1.38) | 26.69 (±6.58) |
Viol | 14.54 (±4.23) | 16.33 (±6.76) | 19.32 (±17.75) | 19.74 (±0.25) | 21.51 (±3.65) |
Dd | 13.86 (±0.85) | 18.47 (±4.56) | 20.48 (±2.41) | 26.10 (±0.70) | 25.70 (±2.78) |
Per | 2.59 (±0.85) | 7.17 (±1.83) | 19.02 (±0.42) | 20.52 (±0.85) | 25.30 (±5.92) |
Allo | 0.97 (±0.68) | 10.14 (±1.37) | 28.50 (±12.30) | 42.03 (±6.83) | 61.35 (±4.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pistelli, L.; Sansone, C.; Smerilli, A.; Festa, M.; Noonan, D.M.; Albini, A.; Brunet, C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Mar. Drugs 2021, 19, 354. https://doi.org/10.3390/md19070354
Pistelli L, Sansone C, Smerilli A, Festa M, Noonan DM, Albini A, Brunet C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Marine Drugs. 2021; 19(7):354. https://doi.org/10.3390/md19070354
Chicago/Turabian StylePistelli, Luigi, Clementina Sansone, Arianna Smerilli, Marco Festa, Douglas M. Noonan, Adriana Albini, and Christophe Brunet. 2021. "MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents" Marine Drugs 19, no. 7: 354. https://doi.org/10.3390/md19070354
APA StylePistelli, L., Sansone, C., Smerilli, A., Festa, M., Noonan, D. M., Albini, A., & Brunet, C. (2021). MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Marine Drugs, 19(7), 354. https://doi.org/10.3390/md19070354