Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-ActivityAnalysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Synthesis of the O-Glucosides of Substituted Naphthazarins
2.2. Design and Synthesis of Simplified O-Glucoside Analogues of (U-133)
2.3. Design and Synthesis of Thiomethylglycoside Derivatives of 6,7-Substituted 2-Hydroxynaphthazarines
2.4. Cytotoxic Activity of 5,8-Dihydroxy-1,4-naphthoquinone Derivatives
2.4.1. Data Set Preparation and Descriptor Calculation
2.4.2. QSAR Models Generation and Validation
3. Discussion
4. MaterialsandMethods
4.1. Chemistry
4.1.1. General Chemistry (Reagents, Solvents and Equipment)
4.1.2. General Procedure for Synthesis of the Acetylated O-Glucosides 18–21, 23 by Autocatalytic Condensation of Hydroxynaphthoquinones 3, 4, 6, 7 and 22 with 3,4,6-Tri-O-acetyl-α-d-glucopyranose 1,2-(tert-butoxy orthoacetate) 11 in Chlorobenzene (Figure 2)
4.1.3. General Procedure for the Synthesis of Acetylated Thiomethylglucosides 28–32 by Acid-Catalytic Condensation of Hydroxynaphthoquinones 2, 22, 24–26 with Tetra-O-acetyl-1-thio-d-glucose 27 and Paraformaldehyde in Acetone (Scheme 1)
4.1.4. General Procedure for Synthesis of Thiomethylglucosides 38–42 and 48–52 by Acid-Catalytic Deacetylation Acetylthiomethylglucosides 28–32 and 43–47 in Methanol (Scheme 2)
4.1.5. General Procedure of Methylation of 2-Hydroxy 3-(Tetra-O-acetyl-β-d-glucopyranosyl-1-thiomethyl)-1,4-naphthoquinone 28–32 to 2-Methoxy Derivatives 43–47 Using Diazomethane (Scheme 2)
4.1.6. General Procedure for Synthesis of Spinochrome D Acetylated Thiomethylglycosides 56–59 by Acid-Catalytic Condensation of Spinochrome D 8 with per-O-acetyl-1-thiomercaptho Derivatives of d-Glucopyranose 27, d-Galactopyranose 53, d-Mannopyranose 54, d-Xylopyranose 55 and Paraformaldehyde in Dioxane (Figure 4)
4.1.7. General Procedure for Base-Catalytic Deacetylation of Acetylated Thiomethylglycosides Spinochrome D 56–59 in MeONa/Methanol Solution (Figure 4)
4.2. Cell Culture
4.3. Cytotoxic Activity Assay
4.4. Computer Modeling and Quantitative Structure-Activity Relationship (QSAR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gould, J. Breaking down the epidemiology of brain cancer. Nat. Cell Biol. 2018, 561, S40–S41. [Google Scholar] [CrossRef]
- Vargo, M. Brain Tumors and Metastases. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 115–141. [Google Scholar] [CrossRef]
- El-Habashy, S.E.; Nazief, A.M.; Adkins, C.E.; Wen, M.M.; El-Kamel, A.H.; Hamdan, A.M.; Hanafy, A.S.; Terrell, T.O.; Mohammad, A.S.; Lockman, P.R.; et al. Novel treatment strategies for brain tumors and metastases. Pharm. Pat. Anal. 2014, 3, 279–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V. Brain Cancer: Implication to Disease, Therapeutic Strategies and Tumor Targeted Drug Delivery Approaches. Recent Patents Anti-Cancer Drug Discov. 2018, 13, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.H. Naturally Occurring Quinones IV; Blackie Chapman and Hall: London, UK, 1997. [Google Scholar]
- Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G.; Durán, A.G.; Macías, M.; Rodríguez-Iglesias, M.; Molinillo, J.M.G.; Macías, F.A. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: A structure–activity relationship study. Med. Chem. Res. 2016, 25, 1274–1285. [Google Scholar] [CrossRef]
- Wellington, K.W. Understanding cancer and the anticancer activities of naphthoquinones—A review. RSC Adv. 2015, 5, 20309–20338. [Google Scholar] [CrossRef]
- Aminin, D.; Polonik, S. 1,4-Naphthoquinones: Some Biological Properties and Application. Chem. Pharm. Bull. 2020, 68, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L. Neuroblastoma. Lancet 2007, 369, 2106–2120. [Google Scholar] [CrossRef]
- Kobayashi, T.; Haruta, M.; Sasagawa, K.; Matsumata, M.; Eizumi, K.; Kitsumoto, C.; Motoyama, M.; Maezawa, Y.; Ohta, Y.; Noda, T.; et al. Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Hou, Y.; Vasileva, E.A.; Carne, A.; McConnell, M.; Bekhit, A.E.-D.A.; Hou, Y. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications. RSC Adv. 2018, 8, 32637–32650. [Google Scholar] [CrossRef] [Green Version]
- Sime, A.A.T. Biocidal Compositions Comprising Polyhydroxynaphthoquinones. GB Patent 2159056, 27 November 1985. [Google Scholar]
- Mishchenko, N.P.; Fedoreev, S.A.; Bagirova, V.L. Histochrome: A New Original Domestic Drug. Pharm. Chem. J. 2003, 37, 48–52. [Google Scholar] [CrossRef]
- Anufriev, V.P.; Novikov, V.L.; Maximov, O.B.; Elyakov, G.B.; Levitsky, D.O.; Lebedev, A.V.; Sadretdinov, S.M.; Shvilkin, A.; Afonskaya, N.I.; Ruda, M.Y.; et al. Synthesis of some hydroxynaphthazarins and their cardioprotective effects under ischemia-reperfusion in vivo. Bioorg. Med. Chem. Lett. 1998, 8, 587–592. [Google Scholar] [CrossRef]
- Boguslavskaya, L.V.; Khrapova, N.G.; Maksimov, O.B. Polyhydroxynaphthoquinones? A new class of natural antioxidants. Russ. Chem. Bull. 1985, 34, 1345–1350. [Google Scholar] [CrossRef]
- Acharya, B.R.; Bhattacharyya, S.; Choudhury, D.; Chakrabarti, G. The microtubule depolymerizing agent naphthazarin induces both apoptosis and autophagy in A549 lung cancer cells. Apoptosis 2011, 16, 924–939. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Funayama, S.; Komiyama, K.; Umezawa, I.; Ito, K. Constituents of Tritonia crocosmaeflora, II. Tricrozarin B, an Antitumor Naphthazarin Derivative. J. Nat. Prod. 1987, 50, 958–960. [Google Scholar] [CrossRef]
- Lennikov, A.; Kitaichi, N.; Noda, K.; Mizuuchi, K.; Ando, R.; Dong, Z.; Fukuhara, J.; Kinoshita, S.; Namba, K.; Ohno, S.; et al. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vis. 2014, 20, 171–177. [Google Scholar]
- Huot, R.; Brassard, P. Friedel—Crafts condensation with maleic anhydrides. III. The synthesis of polyhydroxylated naphthoquinones. Can. J. Chem. 1974, 54, 838–842. [Google Scholar] [CrossRef]
- Moore, R.E.; Singh, H.; Chang, C.W.J.; Scheuer, P.J. Polyhydroxynaphthoquinones: Preparation and hydrolysis of methoxyl derivatives. Tetrahedron 1967, 23, 3271–3305. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, H.K.; Song, I.-S.; Noh, S.J.; Marquez, J.; Ko, K.S.; Rhee, B.D.; Kim, N.; Mishchenko, N.; Fedoreyev, S.; et al. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes. Mar. Drugs 2014, 12, 4602–4615. [Google Scholar] [CrossRef]
- Seo, D.Y.; McGregor, R.A.; Noh, S.J.; Choi, S.-J.; Mishchenko, N.; Fedoreyev, S.; Stonik, V.A.; Han, J. Echinochrome A Improves Exercise Capacity during Short-Term Endurance Training in Rats. Mar. Drugs 2015, 13, 5722–5731. [Google Scholar] [CrossRef] [Green Version]
- Soliman, A.M.; Mohamed, A.S.; Marie, M.-A.S. Echinochrome pigment attenuates diabetic nephropathy in the models of type 1 and type 2 diabetes. Diabetes Mellit. 2016, 19, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.V.; Ivanova, M.V.; Levitsky, D.O. Echinochrome, a naturally occurring iron chelator and free radical scavenger in artificial and natural membrane systems. Life Sci. 2005, 76, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, A.V.; Ivanova, M.V.; Levitsky, D.O. Iron Chelators and Free Radical Scavengers in Naturally Occurring Polyhydroxylated 1,4-Naphthoquinones. Hemoglobin 2008, 32, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Polonik, S.G.; Prokof’eva, N.G.; Agafonova, I.G.; Uvarova, N.I. Antitumor and immunostimulating activity of 5-hydroxy-1,4-naphthoquinone (juglone) O- and S-acetylglycosides. Pharm. Chem. J. 2003, 37, 397–398. [Google Scholar] [CrossRef]
- Pelageev, D.N.; Dyshlovoy, S.A.; Pokhilo, N.D.; Denisenko, V.A.; Borisova, K.L.; Amsberg, G.K.-V.; Bokemeyer, C.; Fedorov, S.N.; Honecker, F.; Anufriev, V.P. Quinone–carbohydrate nonglucoside conjugates as a new type of cytotoxic agents: Synthesis and determination of in vitro activity. Eur. J. Med. Chem. 2014, 77, 139–144. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Pelageev, D.N.; Hauschild, J.; Sabutski, Y.E.; Khmelevskaya, E.A.; Krisp, C.; Kaune, M.; Venz, S.; Borisova, K.L.; Busenbender, T.; et al. Inspired by Sea Urchins: Warburg Effect Mediated Selectivity of Novel Synthetic Non-Glycoside 1,4-Naphthoquinone-6S-Glucose Conjugates in Prostate Cancer. Mar. Drugs 2020, 18, 251. [Google Scholar] [CrossRef]
- Sabutski, Y.E.; Menchinskaya, E.S.; Shevchenko, L.S.; Chingizova, E.; Chingizov, A.R.; Popov, R.; Denisenko, V.A.; Mikhailov, V.V.; Aminin, D.L.; Polonik, S.G. Synthesis and Evaluation of Antimicrobial and Cytotoxic Activity of Oxathiine-Fused Quinone-Thioglucoside Conjugates of Substituted 1,4-Naphthoquinones. Molecules 2020, 25, 3577. [Google Scholar] [CrossRef]
- Verma, R.P. Anti-Cancer Activities of 1,4-Naphthoquinones: A QSAR Study. Anti-Cancer Agent. Med. Chem. 2006, 6, 489–499. [Google Scholar] [CrossRef]
- Pérez-Sacau, E.; Díaz-Peñate, R.G.; Estévez-Braun, A.; Ravelo, A.G.; García-Castellano, J.M.; Pardo, A.L.; Campillo, M. Synthesis and Pharmacophore Modeling of Naphthoquinone Derivatives with Cytotoxic Activity in Human Promyelocytic Leukemia HL-60 Cell Line. J. Med. Chem. 2007, 50, 696–706. [Google Scholar] [CrossRef]
- Takano, A.; Hashimoto, K.; Ogawa, M.; Koyanagi, J.; Kurihara, T.; Wakabayashi, H.; Kikuchi, H.; Nakamura, Y.; Motohashi, N.; Sakagami, H.; et al. Tumor-specific cytotoxicity and type of cell death induced by naphtho[2,3-b]furan-4,9-diones and related compounds in human tumor cell lines: Relationship to electronic structure. Anticancer. Res. 2009, 29, 455–464. [Google Scholar]
- Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, anticancer activity and QSAR study of 1,4-naphthoquinone derivatives. Eur. J. Med. Chem. 2014, 84, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.C.A.; Ferreira, M.M.C. Two-dimensional quantitative structure–activity relationship study of 1,4-naphthoquinone derivatives tested against HL-60 human promyelocytic leukaemia cells. SAR QSAR Environ. Res. 2017, 28, 325–339. [Google Scholar] [CrossRef]
- Acuña, J.; Piermattey, J.; Caro, D.; Bannwitz, S.; Barrios, L.; López, J.; Ocampo, Y.; Vivas-Reyes, R.; Aristizábal, F.; Gaitán, R.; et al. Synthesis, Anti-Proliferative Activity Evaluation and 3D-QSAR Study of Naphthoquinone Derivatives as Potential Anti-Colorectal Cancer Agents. Molecules 2018, 23, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.C.A.; Carvalho, P.O.M.; Ferreira, M.M.C. Four-dimensional quantitative structure-activity analysis of 1,4-naphthoquinone derivatives tested against HL-60 human promyelocytic leukemia cells. J. Chemometr. 2019, 34, e3131. [Google Scholar] [CrossRef]
- Polonik, S.G.; Tolkach, A.M.; Denisenko, V.A.; Uvarova, N.I. Synthesis of glucosudes of 3-alk[en]yl-2-hydroxy-1,4-naphthoquinones. Chem. Nat. Compd. 1983, 19, 310–313. [Google Scholar] [CrossRef]
- Driguez, H. Thiooligosaccharides as Tools for Structural Biology. ChemBioChem 2001, 2, 311–318. [Google Scholar] [CrossRef]
- Polonik, S.G.; Tolkach, A.M.; Uvarova, N.I. Glycosidation of echinochrome and related hydroxynaphthazarins by orthoester method. Rus. J. Org. Chem. 1994, 30, 248–253. (In Russian) [Google Scholar]
- Yurchenko, E.A.; Menchinskaya, E.S.; Polonik, S.G.; Agafonova, I.G.; Guzhova, I.V.; Aminin, B.A.M.A.D.L. Hsp70 Induction and Anticancer Activity of U-133, the Acetylated Trisglucosydic Derivative of Echinochrome. Med. Chem. 2015, 5, 263–271. [Google Scholar] [CrossRef]
- Guzhova, I.V.; Plaksina, D.V.; Pastukhov, Y.F.; Lapshina, K.V.; Lazarev, V.F.; Mikhaylova, E.R.; Polonik, S.G.; Pani, B.; Margulis, B.A.; Guzhova, I.V.; et al. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson’s disease. Exp. Neurol. 2018, 306, 199–208. [Google Scholar] [CrossRef]
- Belan, D.V.; Polonik, S.G.; Ekimova, I.V. Efficiency of Preventive Therapy with Chaperon Inducer U133 in the Model of Preclinical Stage of Parkinson’s Disease in Elderly Rats. Rus. J. Physiol. 2020, 106, 1251–1265. (In Russian) [Google Scholar] [CrossRef]
- Cruciani, G.; Crivori, P.; Carrupt, P.-A.; Testa, B. Molecular fields in quantitative structure–permeation relationships: The VolSurf approach. J. Mol. Struct. THEOCHEM 2000, 503, 17–30. [Google Scholar] [CrossRef]
- McClendon, A.K.; Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2007, 623, 83–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-M.; Huangfu, W.-C.; Huang, H.-L.; Wu, W.-C.; Chen, Y.-L.; Yen, Y.; Huang, H.-L.; Nien, C.-Y.; Lai, M.-J.; Pan, S.-L.; et al. 1,4-Naphthoquinones as inhibitors of Itch, a HECT domain-E3 ligase, and tumor growth suppressors in multiple myeloma. Eur. J. Med. Chem. 2017, 140, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Prachayasittikul, V.; Pingaew, R.; Worachartcheewan, A.; Sitthimonchai, S.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Aromatase inhibitory activity of 1,4-naphthoquinone derivatives and QSAR study. EXCLI J. 2017, 16, 714–726. [Google Scholar]
- Wang, J.-R.; Shen, G.-N.; Luo, Y.-H.; Piao, X.-J.; Shen, M.; Liu, C.; Wang, Y.; Meng, L.-Q.; Zhang, Y.; Wang, H.; et al. The compound 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone induces apoptosis via reactive oxygen species-regulated mitogen-activated protein kinase, protein kinase B, and signal transducer and activator of transcription 3 signaling in human gast. Drug Dev. Res. 2018, 79, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Ravichandiran, P.; Masłyk, M.; Sheet, S.; Janeczko, M.; Premnath, D.; Kim, A.R.; Park, B.H.; Han, M.K.; Yoo, D.J. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. Chemistryopen 2019, 8, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Rozanov, D.V.; Cheltsov, A.; Nilsen, A.; Boniface, C.; Forquer, I.; Korkola, J.; Gray, J.; Tyner, J.; Tognon, C.E.; Mills, G.B.; et al. Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity. PLoS ONE 2019, 14, e0205623. [Google Scholar] [CrossRef] [Green Version]
- Wellington, K.W.; Kolesnikova, N.I.; Hlatshwayo, V.; Saha, S.T.; Kaur, M.; Motadi, L.R. Anticancer activity, apoptosis and a structure–activity analysis of a series of 1,4-naphthoquinone-2,3-bis-sulfides. Investig. New Drugs 2019, 38, 274–286. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Sheref, E.M.; Bakheet, M.E.M.; Mourad, M.A.E.; Brown, A.B.; Bräse, S.; Nieger, M.; Ibrahim, M.A.A. Synthesis of novel 1,2-bis-quinolinyl-1,4-naphthoquinones: ERK2 inhibition, cytotoxicity and molecular docking studies. Bioorg. Chem. 2018, 81, 700–712. [Google Scholar] [CrossRef]
- Badolato, M.; Carullo, G.; Caroleo, M.C.; Cione, E.; Aiello, F.; Manetti, F. Discovery of 1,4-Naphthoquinones as a New Class of Antiproliferative Agents Targeting GPR55. ACS Med. Chem. Lett. 2019, 10, 402–406. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Pelageev, D.N.; Hauschild, J.; Borisova, K.L.; Kaune, M.; Krisp, C.; Venz, S.; Sabutski, Y.E.; Khmelevskaya, E.A.; Busenbender, T.; et al. Successful Targeting of the Warburg Effect in Prostate Cancer by Glucose-Conjugated 1,4-Naphthoquinones. Cancers 2019, 11, 1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anufriev, V.P.; Malinovskaya, G.V.; Novikov, V.L.; Balanyova, N.N.; Polonik, S.G. The Reductive Dehalogenation of Halo-Substituted Naphthazarins and Quinizarins as a Simple Route to Parent Compounds. Synth. Commun. 1998, 28, 2149–2157. [Google Scholar] [CrossRef]
- Polonik, N.S.; Polonik, S.G. DMSO-mediated transformation of 3-amino-2-hydroxynaphthazarins to natural 2,3-dihydroxy-naphthazarins and related compounds. Tetrahedron Lett. 2016, 57, 3303–3306. [Google Scholar] [CrossRef]
- Polonik, S.G.; Sabutskii, Y.E.; Denisenko, V.A. The Acid-Catalyzed 2-O-Alkylation of Substituted 2-Hydroxy-1,4-naphthoquinones by Alcohols: Versatile Preparative Synthesis of Spinochrome D and Its 6-Alkoxy Derivatives. Synthesis 2018, 50, 3738–3748. [Google Scholar] [CrossRef]
- Kochetkov, N.K.; Bochkov, A.F. The synthesis of oligosaccharides by orthoester method. In Methods in Carbohydrate Chemistry; Whistler, R.L., Bemiller, J.N., Eds.; Academic Press: New York, NY, USA, 1972; Volume 6, p. 239. [Google Scholar]
- Pelageev, D.N.; Panchenko, M.N.; Pokhilo, N.D.; Anufriev, V.F. Synthesis of 2,2’-(ethane-l,l-diyl)bis(3,5,6,7,8-pentahydroxy-l,4-naphthoquinone), a metabolite of the sea urchins Spatangus purpureus, Strongylocentrotus intermedius, and S. droebachiensis. Russ. Chem. Bull. 2010, 59, 1472–1476. [Google Scholar] [CrossRef]
- Fujihira, T.; Chida, M.; Kamijo, H.; Takido, T.; Seno, M. Novel synthesis of 1-thioglycopyranoses via thioiminium salts. J. Carbohyd. Chem. 2002, 21, 287–292. [Google Scholar] [CrossRef]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.; Yurchenko, E.A.; Dolmatov, I.Y.; Kalinin, V.I.; Stonik, V.A. Structure and biological action of cladolosides B1, B2, C, C1, C2 and D, six new triterpene glycosides from the sea cucumber Cladolabes schmeltzii. Nat. Prod. Commun. 2013, 8, 1527–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC, Canada, 2019.
Compound | Code PIBOC | R1 | R2 | R3 | R4 | EC50, μM |
---|---|---|---|---|---|---|
1 | U-193 | H | H | H | H | >100 |
2 | U-139 | HO | H | H | H | >100 |
3 | U-574 | HO | Me | H | H | >100 |
4 | U-575 | HO | Et | H | H | >100 |
5 | U-134 | HO | HO | H | H | >100 |
6 | U-572 | HO | HO | Me | H | >100 |
7 | U-573 | HO | HO | Et | H | >100 |
8 | U-504 | HO | HO | HO | H | >100 |
9 | U-138 | HO | HO | HO | Et | >100 |
12 | U-127 | Ac4GlcO | H | H | H | 16.43 ± 4.01 |
13 | U-136 | Ac4GlcO | Ac4GlcO | H | H | 10.60 ± 0.63 |
14 | U-133 | Ac4GlcO | Ac4GlcO | Ac4GlcO | Et | 8.45 ± 1.13 |
15 | U-132 | GlcO | H | H | H | 87.40 ± 2.37 |
18 | U-444 | Ac4GlcO | Me | H | H | 5.33 ± 0.73 |
19 | U-443 | Ac4GlcO | Et | H | H | 4.46 ± 0.23 |
20 | U-420 | Ac4GlcO | Ac4GlcO | Me | H | 4.46 ± 0.56 |
21 | U-421 | Ac4GlcO | Ac4GlcO | Et | H | 8.84 ± 0.98 |
22 | U-434 | HO | H | Me | Me | 82.75 ± 4.36 |
23 | U-330 | Ac4GlcO | H | Me | Me | 9.43 ± 0.25 |
24 | U-195 | HO | H | Cl | Cl | 23.10 ± 1.01 |
25 | U-622 | HO | H | H | MeO | >100 |
26 | U-623 | HO | H | MeO | MeO | >100 |
28 | U-633 | HO | Ac4GlcSCH2 | H | H | >100 |
29 | U-519 | HO | Ac4GlcSCH2 | Me | Me | 84.00 ± 0.48 |
30 | U-518 | HO | Ac4GlcSCH2 | Cl | Cl | 32.20 ± 4.05 |
31 | U-639 | HO | Ac4GlcSCH2 | H | MeO | >100 |
32 | U-637 | HO | Ac4GlcSCH2 | MeO | MeO | >100 |
38 | U-635 | HO | GlcSCH2 | H | H | >100 |
39 | U-520 | HO | GlcSCH2 | Me | Me | >100 |
40 | U-624 | HO | GlcSCH2 | Cl | Cl | >100 |
41 | U-644 | HO | GlcSCH2 | H | MeO | >100 |
42 | U-640 | HO | GlcSCH2 | MeO | MeO | >100 |
43 | U-634 | MeO | Ac4GlcSCH2 | H | H | 2.72 ± 0.21 |
44 | U-521 | MeO | Ac4GlcSCH2 | Me | Me | >100 |
45 | U-523 | MeO | Ac4GlcSCH2 | Cl | Cl | 3.14 ± 0.66 |
46 | U-645 | MeO | Ac4GlcSCH2 | H | MeO | 11.61 ± 2.34 |
47 | U-638 | MeO | Ac4GlcSCH2 | MeO | MeO | 11.05 ± 0.14 |
48 | U-636 | MeO | GlcSCH2 | H | H | 19.02 ± 0.11 |
49 | U-522 | MeO | GlcSCH2 | Me | Me | 11.47 ± 0.48 |
50 | U-625 | MeO | GlcSCH2 | Cl | Cl | 38.02 ± 1.14 |
51 | U-646 | MeO | GlcSCH2 | H | MeO | 80.76 ± 1.70 |
52 | U-641 | MeO | GlcSCH2 | MeO | MeO | 61.60 ± 2.90 |
Cladoloside C | 11.92 ± 0.45 |
Class | Code | Description |
---|---|---|
2D | SMR_VSA0 | Molecular refractivity (including implicit hydrogens). This property is an atomic contribution that assumes the correct protonation state (washed structures). Sum of vi such that Ri is in [0,0.11]. |
2D | SlogP_VSA2 | Log of the octanol/water partition coefficient (including implicit hydrogens). This property is an atomic contribution model that calculates logP from the given structure; i.e., the correct protonation state). Sum of vi such that Li is in (−0.2,0]. |
2D | vsa_acc | Approximation to the sum of VDW surface areas (Å2) of pure hydrogen bond acceptors (not counting atoms that are both hydrogen bond donors and acceptors such as −OH). |
2D | vsa_hyd | Approximation to the sum of VDW surface areas of hydrophobic atoms (Å2). |
2D | Q_VSA_HYD | Total hydrophobic van der Waals surface area. This is the sum of the vi such that |qi| is less than or equal to 0.2. The vi are calculated using a connection table approximation. |
2D | PEOE_VSA_HYD | Total hydrophobic van der Waals surface area. This is the sum of the vi such that |qi| is less than or equal to 0.2. The vi are calculated using a connection table approximation. |
2D | PEOE_VSA_PNEG | Total negative polar van der Waals surface area. This is the sum of the vi such that qi is less than −0.2. The vi are calculated using a connection table approximation. |
2D | PEOE_VSA_POL | Total polar van der Waals surface area. This is the sum of the vi such that |qi| is greater than 0.2. The vi are calculated using a connection table approximation. |
2D | PEOE_VSA_POS | Total positive van der Waals surface area. This is the sum of the vi such that qi is non-negative. The vi are calculated using a connection table approximation. |
i3D | ASA | Water accessible surface area calculated using a radius of 1.4 A for the water molecule. A polyhedral representation is used for each atom in calculating the surface area. |
i3D | ASA_H | Water accessible surface area of all hydrophobic (|qi| < 0.2) atoms. |
i3D | vsurf_S | Interaction field surface area |
Compound | Code PIBOC | Data Set | pEC50 | PRED pEC50 | RES * |
---|---|---|---|---|---|
12 | U-127 | train | 4.78 | 4.98 | −0.20 |
15 | U-132 | train | 4.06 | 4.01 | 0.05 |
14 | U-133 | train | 5.07 | 4.98 | 0.09 |
13 | U-136 | train | 4.97 | 5.16 | −0.19 |
23 | U-330 | train | 5.03 | 5.02 | 0.01 |
20 | U-420 | train | 5.35 | 5.24 | 0.11 |
18 | U-444 | train | 5.27 | 5.14 | 0.13 |
24 | U-195 | train | 4.64 | 4.56 | 0.08 |
43 | U-634 | train | 5.57 | 5.47 | 0.10 |
48 | U-636 | train | 4.72 | 4.65 | 0.07 |
47 | U-638 | train | 4.96 | 4.95 | 0.01 |
52 | U-641 | train | 4.21 | 4.27 | −0.06 |
46 | U-645 | train | 4.94 | 4.90 | 0.04 |
51 | U-646 | train | 4.09 | 4.04 | 0.05 |
29 | U-519 | train | 4.07 | 4.04 | −0.03 |
49 | U-522 | train | 4.94 | 5.02 | −0.08 |
45 | U-523 | train | 5.50 | 5.54 | −0.06 |
21 | U-421 | test | 5.05 | 5.18 | −0.13 |
19 | U-443 | test | 5.35 | 5.37 | −0.02 |
22 | U-434 | test | 4.08 | 4.12 | −0.04 |
30 | U-518 | test | 4.49 | 4.59 | −0.10 |
28 | U-633 | - | <4.00 | 4.08 | - |
9 | U-138 | - | <4.00 | 2.30 | - |
38 | U-635 | - | <4.00 | 3.39 | - |
Descriptor | 43 (U-634) | 28 (U-633) | Alteration * |
---|---|---|---|
pEC50 | 5.57 | <4 | ↓ |
ASA | 846.8 | 805.7 | ↓ |
ASA_H | 589 | 504.2 | ↓ |
PEOE_VSA_HYD | 347.7 | 309 | ↓ |
PEOE_VSA_NEG | 156.2 | 161.1 | ↑ |
PEOE_VSA_POL | 199.9 | 215.2 | ↑ |
PEOE_VSA_POS | 391.4 | 363.4 | ↓ |
Q_VSA_HYD | 302 | 269 | ↓ |
SlogP_VSA2 | 192.2 | 181 | ↓ |
SMR_VSA0 | 209.2 | 198 | ↓ |
vsa_acc | 86.4 | 70 | ↓ |
vsa_hyd | 320.8 | 285 | ↓ |
vsurf_S | 776.5 | 745 | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polonik, S.; Likhatskaya, G.; Sabutski, Y.; Pelageev, D.; Denisenko, V.; Pislyagin, E.; Chingizova, E.; Menchinskaya, E.; Aminin, D. Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-ActivityAnalysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells. Mar. Drugs 2020, 18, 602. https://doi.org/10.3390/md18120602
Polonik S, Likhatskaya G, Sabutski Y, Pelageev D, Denisenko V, Pislyagin E, Chingizova E, Menchinskaya E, Aminin D. Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-ActivityAnalysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells. Marine Drugs. 2020; 18(12):602. https://doi.org/10.3390/md18120602
Chicago/Turabian StylePolonik, Sergey, Galina Likhatskaya, Yuri Sabutski, Dmitry Pelageev, Vladimir Denisenko, Evgeny Pislyagin, Ekaterina Chingizova, Ekaterina Menchinskaya, and Dmitry Aminin. 2020. "Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-ActivityAnalysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells" Marine Drugs 18, no. 12: 602. https://doi.org/10.3390/md18120602
APA StylePolonik, S., Likhatskaya, G., Sabutski, Y., Pelageev, D., Denisenko, V., Pislyagin, E., Chingizova, E., Menchinskaya, E., & Aminin, D. (2020). Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-ActivityAnalysis of Substituted 5,8-Dihydroxy-1,4-naphthoquinones and Their O- and S-Glycoside Derivatives Tested against Neuro-2a Cancer Cells. Marine Drugs, 18(12), 602. https://doi.org/10.3390/md18120602