New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Cytotoxicity Testing
3.5. Anti-Inflammatory Assay
3.6. PPAR-γ Transcription Factor Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, W.C.; Sung, P.J.; Duh, C.Y.; Chen, B.W.; Sheu, J.H.; Yang, N.S. Anti-inflammatory activities of nature products isolated from soft corals of Taiwan between 2008 and 2012. Mar. Drugs 2013, 11, 4083–4126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, J.; Shmeuli, U.; Zadock, E.; Kashman, Y.; Néeman, I. Sarcophine, a new epoxy cembranolide from marine origin. Tetrahedron 1974, 30, 2817–2824. [Google Scholar] [CrossRef]
- Katsuyama, I.; Fahmy, H.; Zjawiony, J.K.; Khalifa, S.I.; Kilada, R.W.; Konoshima, T.; Takasaki, M.; Tokuda, H. Semisynthesis of new sarcophine derivatives with chemopreventive activity. J. Nat. Prod. 2002, 65, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.E.F.; Elshamy, A.I.; Mohamed, T.A.; Hamed, A.R.; Ibrahim, M.A.A.; Ohta, S.; Paré, P.W. Cembrene diterpenoids with ether linkages from Sarcophyton ehrenbergi: An anti-proliferation and molecular-docking assessment. Mar. Drugs 2017, 15, 192. [Google Scholar] [CrossRef]
- Elkhateeb, A.; El-Beih, A.A.; Gamal-Eldeen, A.M.; Alhammady, M.A.; Ohta, S.; Paré, P.W.; Hegazy, M.E.F. New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Mar. Drugs 2014, 12, 1977–1986. [Google Scholar] [CrossRef]
- Abou El-Ezz, R.F.; Ahmed, S.A.; Radwan, M.M.; Ayoub, N.A.; Afifi, M.S.; Ross, S.A.; Szymanski, P.T.; Fahmy, H.; Khalifa, S.I. Bioactive cembranoids from the Red Sea soft coral Sarcophyton glacucum. Tetrahedron Lett. 2013, 54, 989–992. [Google Scholar] [CrossRef]
- Wang, S.K.; Hsieh, M.K.; Duh, C.Y. Three new cembranoids from the Taiwanese soft coral Sarcophyton ehrenbergi. Mar. Drugs 2012, 10, 1433–1444. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, M.E.F.; Eldeen, A.M.G.; Shahat, A.A.; Abdel-Latif, F.F.; Mohamed, T.A.; Whittlesey, B.R.; Paré, P.W. Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum. Mar. Drugs 2012, 10, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Ahmed, A.F.; Su, J.H.; Chao, C.H.; Wu, Y.C.; Chiang, M.Y.; Sheu, J.H. Crassocolides A−F, cembranoids with a trans-fused lactone from the soft coral Sarcophyton crassocaule. J. Nat. Prod. 2006, 69, 1554–1559. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Su, J.; Liang, Y.; Yang, X.; Zheng, K.; Zeng, L. Cytotoxic diterpenoids from the soft coral Sarcophyton crassocaule. J. Nat. Prod. 2006, 69, 1476–1480. [Google Scholar] [CrossRef]
- Peng, C.C.; Huang, C.Y.; Ahmed, A.F.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. New cembranoids and a biscembranoid peroxide from the soft coral Sarcophyton cherbonnieri. Mar. Drugs 2018, 16, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, A.F.; Chen, Y.W.; Huang, C.Y.; Tseng, Y.J.; Lin, C.C.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Isolation and structure elucidation of cembranoids from a Dongsha Atoll soft coral Sarcophyton stellatum. Mar. Drugs 2018, 16, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.Y.; Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Sung, P.J.; Su, J.H.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids, sarcocrassocolides P–R, from the Dongsha Atoll soft coral Sarcophyton crassocaule. Mar. Drugs 2014, 12, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Su, J.H.; Lu, Y.; Wen, Z.H.; Dai, C.F.; Kuo, Y.H.; Sheu, J.H. Cytotoxic and anti-inflammatory cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule. Bioorg. Med. Chem. 2010, 18, 1936–1941. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Wang, S.K.; Hsieh, M.K.; Duh, C.Y. Polyoxygenated cembrane diterpenoids from the soft coral Sarcophyton ehrenbergi. Int. J. Mol. Sci. 2015, 16, 6140–6152. [Google Scholar] [CrossRef]
- Chen, S.P.; Chen, B.W.; Dai, C.F.; Sung, P.J.; Wu, Y.C.; Sheu, J.H. Sarcophytonins F and G, new dihydrofuranocembranoids from a Dongsha Atoll soft coral Sarcophyton sp. Bull. Chem. Soc. Jpn. 2012, 85, 920–922. [Google Scholar] [CrossRef]
- Nii, K.; Tagami, K.; Kijima, M.; Munakata, T.; Ooi, T.; Kusumi, T. Acid-catalyzed reactions of sarcophytoxide, a marine cembranoid: An apparently enantio-directive reaction, unusual products and stereochemical reconsideration of epoxide–ketone rearrangement. Bull. Chem. Soc. Jpn. 2008, 81, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Kobayashi, T.; Kitahara, Y. Cyclization of polyenes XVI. Biogenetic type synthesis of cembrane type compounds. Tetrahedron Lett. 1975, 38, 3299–3302. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Hamann, M.T.; Waddling, C.A.; Jensen, C.; Lee, S.K.; Dunstan, C.A.; Pezzuto, J.M. Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. J. Org. Chem. 1998, 63, 7449–7455. [Google Scholar] [CrossRef]
- Kobayashi, M. Marine terpenes and terpenoids. Part 12. Autoxidation of dihydrofuranocembranoids. J. Chem. Res. Synop. 1991, 11, 310–311. [Google Scholar]
- Frincke, J.M.; Mcintyre, D.E.; Faulkner, D.J. Deoxosarcophine from a soft coral Sarcophyton sp. Tetrahedron Lett. 1980, 21, 735–738. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Giaginis, C.; Theocharis, S. The role of peroxisome proliferator-activated receptor-γ in breast cancer. Anticancer Agents Med. Chem. 2012, 12, 1025–1044. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Moreau, F.; Chadee, K. PPAR-γ is an E3 ligase that induces the degradation of NF-κB/p65. Nat. Commun. 2012, 3, 1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myokai, F.; Takashiba, S.; Lebo, R.; Amar, S. A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor α gene expression: Molecular cloning, sequencing, characterization, and chromosomal assignment. Proc. Natl. Acad. Sci. USA 1999, 96, 4518–4523. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [Green Version]
- Dayer, J.M.; Oliviero, F.; Punzi, L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 2017, 8, 293. [Google Scholar] [CrossRef]
- Kay, J.; Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 2004, 43, iii2–iii9. [Google Scholar] [CrossRef] [Green Version]
- Szekely, Y.; Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today? Cardiol. Ther. 2018, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 314–321. [Google Scholar] [CrossRef]
- Lin, Y.F.; Kuo, C.Y.; Wen, Z.H.; Lin, Y.Y.; Wang, W.H.; Su, J.H.; Sheu, J.H.; Sung, P.J. Flexibilisquinone, a new anti-inflammatory quinone from the cultured soft coral Sinularia flexibilis. Molecules 2013, 18, 8160–8167. [Google Scholar] [CrossRef]
- Cole, S.P.C. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 1986, 17, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.Y.; Huang, C.Y.; Chao, C.H.; Lin, C.C.; Dai, C.F.; Su, J.H.; Sung, P.J.; Wu, S.H.; Sheu, J.H. New biscembranoids sardigitolides A−D and known cembranoid-related compounds from Sarcophyton digitatum: Isolation, structure elucidation, and bioactivities. Mar. Drugs 2020, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, S.X.; Agha-Majzoub, R.; Overbergh, L.; Mathieu, C.; Chan, L.S. CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14 IL-4 transgenic mouse model. Int. Immunol. 2006, 18, 1233–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, J.R.; Bai, L.Y.; Chiu, C.F.; Hu, J.L.; Chiu, S.J.; Wu, C.Y. Cucurbitane triterpenoid from Momordica charantia induces apoptosis and autophagy in breast cancer cells, in part, through peroxisome proliferator-activated receptor γ activation. Evid. Based Complement. Alternat. Med. 2013, 2013, 935675. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; El-Wahed, A.A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [Green Version]
- Sang, V.T.; Dat, T.T.H.; Vinh, L.B.; Cuong, L.C.V.; Oanh, P.T.T.; Ha, H.; Kim, Y.H.; Anh, H.L.T.; Yang, S.Y. Coral and coral-associated microorganisms: A prolific source of potential bioactive natural products. Mar. Drugs 2019, 17, 468. [Google Scholar] [CrossRef] [Green Version]
Position | 1 | |||
---|---|---|---|---|
13Cα | 1H b | COSY | HMBC | |
1 | 177.3 (C) | |||
2 | 39.4 (CH)c | 2.46, sext (6.8)d | H2-3, H3-9 | C-1, C-3 |
3 | 34.2 (CH2) | 1.41, m; 1.65 m | H2-2, H2-4 | |
4 | 21.3 (CH2) | 1.42, m | H2-3, H2-5 | |
5 | 39.3 (CH2) | 1.49, m; 1.56, m | H2-4 | |
6 | 74.2 (C) | |||
7 | 31.5 (CH2) | 1.76, m | H2-8 | C-6, C-8, C-1′ |
8 | 20.7 (CH2) | 2.60, t (7.2) | H2-7 | C-6, C-7, C-1′, C-2′, C-6′ |
9 | 17.0 (CH3) | 1.14, d (7.2) | C-1, C-2, C-3 | |
10 | 23.7 (CH3) | 1.21, s | C-5, C-6, C-7 | |
1′ | 117.2 (C) | |||
2′ | 118.5 (C) | |||
3′ | 144.6 (C) | |||
4′ | 121.0 (C) | |||
5′ | 122.6 (C) | |||
6′ | 145.3 (C) | |||
7′ | 11.3 (CH3) | 2.11, s | C-1′, C-2′, C-3′ | |
8′ | 12.2 (CH3) | 2.16, s | C-3′, C-4′, C-5′ | |
9′ | 11.8 (CH3) | 2.10, s | C-4′, C-5′, C-6′ | |
OMe | 51.5 (CH3) | 3.66, s | C-1 |
Position | 2 α | 3 α | 4 b |
---|---|---|---|
1 | 153.8 (C) | 142.5 (C) | 151.9 (C) |
2 | 119.8 (CH) c | 82.6 (CH) | 148.1 (C) |
3 | 58.5 (CH) | 124.5 (CH) | 124.5 (CH) |
4 | 61.9 (C) | 141.2 (C) | 72.9 (C) |
5 | 36.8 (CH2) | 37.6 (CH2) | 42.5 (CH2) |
6 | 21.8 (CH2) | 25.2 (CH2) | 24.5 (CH2) |
7 | 125.4 (CH) | 61.8 (CH) | 124.5 (CH) |
8 | 134.5 (C) | 59.9 (C) | 133.9 (C) |
9 | 39.1 (CH2) | 39.7 (CH2) | 38.4 (CH2) |
10 | 24.2 (CH2) | 23.5 (CH2) | 23.0 (CH2) |
11 | 125.1 (CH) | 123.9 (CH) | 126.8 (CH) |
12 | 135.1 (C) | 136.4 (C) | 131.5 (C) |
13 | 40.8 (CH2) | 36.5 (CH2) | 36.7 (CH2) |
14 | 28.0 (CH2) | 26.3 (CH2) | 22.7 (CH2) |
15 | 73.7 (C) | 124.4 (C) | 123.2 (C) |
16 | 29.9 (CH3) | 114.3 (CH) | 170.1 (C) |
17 | 30.0 (CH3) | 10.2 (CH3) | 9.1 (CH3) |
18 | 18.9 (CH3) | 15.7 (CH3) | 30.3 (CH3) |
19 | 15.9 (CH3) | 16.9 (CH3) | 16.4 (CH3) |
20 | 16.0 (CH3) | 15.1 (CH3) | 16.5 (CH3) |
Position | 2 α | 3 α | 4 b |
---|---|---|---|
2 | 5.37, d (7.6) c | 5.67, d (10.0) | |
3 | 3.42, d (7.6) | 5.13, d (10.0) | 5.30, s |
5 | 1.68, m | 2.37, m | 1.96, m |
1.99, m | |||
6 | 1.98, m | 1.65, m | 2.10, m |
2.15, m | 1.94, m | ||
7 | 5.00, t (6.4) | 2.69, t (3.6) | 4.90, t (7.0) |
9 | 2.01, m | 1.01, t (12.8) | 1.97, m |
2.12, m | 2.12, dt (3.6, 12.8) | ||
10 | 2.12, m | 1.91, m | 2.12 m |
2.18, m | 2.27 m | 2.38 m | |
11 | 5.07, t (6.8) | 5.11, m | 4.92, t (7.0) |
13 | 2.20, m | 1.92, m | 2.31, m |
2.23, m | 2.00, m | ||
14 | 2.25, m | 1.72, m | 2.52 m |
2.50, m | 2.59, m | 2.57 m | |
16 | 1.37, s | 5.97, d (4.0) | |
17 | 1.37, s | 1.73, s | 1.94, s |
18 | 1.28, s | 1.85, s | 1.45, s |
19 | 1.57, s | 1.28, s | 1.57, s |
20 | 1.64, s | 1.60, s | 1.58, s |
OOH | 8.47, brs |
Compound | MCF-7 | MDA-MB-231 | HepG2 | HeLa |
---|---|---|---|---|
1 | 25.3 ± 2.8 | 36.4 ± 3.6 | – a | – |
2 | 34.3 ± 3.7 | – | – | – |
6 | 37.6 ± 4.2 | – | 35.2 ± 4.4 | – |
7 | 33.3 ± 3.5 | – | 28.6 ± 3.4 | – |
9 | 30.1 ± 3.1 | 38.6 ± 5.0 | – | – |
10 | 24.3 ± 3.0 | – | 34.5 ± 4.2 | – |
11 | 27.2 ± 4.0 | – | 36.4 ± 5.3 | – |
Doxorubicin | 6.8 ± 1.4 | 6.3 ± 1.2 | 9.6 ± 1.8 | 8.1 ± 2.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-Y.; Huang, C.-Y.; Chen, S.-R.; Weng, J.-R.; Tu, T.-H.; Cheng, Y.-B.; Wu, S.-H.; Sheu, J.-H. New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Mar. Drugs 2021, 19, 8. https://doi.org/10.3390/md19010008
Huang T-Y, Huang C-Y, Chen S-R, Weng J-R, Tu T-H, Cheng Y-B, Wu S-H, Sheu J-H. New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Marine Drugs. 2021; 19(1):8. https://doi.org/10.3390/md19010008
Chicago/Turabian StyleHuang, Tzu-Yin, Chiung-Yao Huang, Shu-Rong Chen, Jing-Ru Weng, Tzu-Hsuan Tu, Yuan-Bin Cheng, Shih-Hsiung Wu, and Jyh-Horng Sheu. 2021. "New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum" Marine Drugs 19, no. 1: 8. https://doi.org/10.3390/md19010008
APA StyleHuang, T. -Y., Huang, C. -Y., Chen, S. -R., Weng, J. -R., Tu, T. -H., Cheng, Y. -B., Wu, S. -H., & Sheu, J. -H. (2021). New Hydroquinone Monoterpenoid and Cembranoid-Related Metabolites from the Soft Coral Sarcophyton tenuispiculatum. Marine Drugs, 19(1), 8. https://doi.org/10.3390/md19010008