Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea
Abstract
:1. Introduction
2. Results
2.1. Feeding Deterrent Assay
2.2. Antimicrobial Activity against Pathogenic and Non-Pathogenic Environmental Bacteria
2.3. Antimicrobial Assay against Pathogenic Clinical Microbes
2.4. Inhibitory Effects on HCV Infectivity
2.5. Structure Elucidation of Compounds 1d and 2b
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Extraction and Isolation
4.3. Feeding Deterrence
4.4. Agar Diffusion Assay (ADA) against Pathogenic and Non-Pathogenic Environmental Bacteria
4.5. Minimum Inhibition Concentration (MIC) Antimicrobial Assay
4.6. Inhibitory Effects on HCV Infectivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anjum, K.; Abbas, S.Q.; Shah, S.A.A.; Akhter, N.; Batool, S.; ul Hassan, S.S. Marine Sponges as a Drug Treasure. Biomol. Ther. 2016, 24, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Molinski, T.F. Cyclic Azole-homologated Peptides from Marine sponges. Org. Biomol. Chem. 2018, 16, 21–29. [Google Scholar] [CrossRef]
- Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Núñez Pons, L.; Ruocco, N.; di Prisco, G.; Ianora, A.; Verde, C. Chapter Five—Biotechnological Applications of Bioactive Peptides from Marine Sources. Adv. Microb. Physiol. 2018, 73, 171–220. [Google Scholar]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef]
- Sepčić, K. Bioactive Alkylpyridinium Compounds from Marine Sponges. J. Toxicol. Toxin Rev. 2000, 19, 139–160. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Thawabteh, A.; Lelario, F.; Bufo, S.A.; Scrano, L. Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids. Molecules 2021, 26, 4103. [Google Scholar] [CrossRef]
- Singh, K.S.; Majik, M.S. Pyrrole-Derived Alkaloids of Marine Sponges and Their Biological Properties. Stud. Nat. Prod. Chem. 2019, 62, 377–409. [Google Scholar]
- Gomes Filho, S.M.; Cardoso, J.D.; Anaya, K.; Silva do Nascimento, E.; De Lacerda, J.T.J.G.; Mioso, R.; Santi Gadelha, T.; de Almeida Gadelha, C.A. Marine Sponge Lectins: Actual Status on Properties and Biological Activities. Molecules 2015, 20, 348–357. [Google Scholar] [CrossRef]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello, A.; Fattorusso, E.; Menna, M. Steroids from Sponges: Recent Reports. Steroids 1999, 64, 687–714. [Google Scholar] [CrossRef]
- Ivanchina, N.V.; Kicha, A.A.; Stonik, V.A. Steroid Glycosides from Marine Organisms. Steroids 2011, 76, 425–454. [Google Scholar] [CrossRef]
- Kim, S.-K.; Van Ta, Q. Chapter 17—Bioactive Sterols from Marine Resources and Their Potential Benefits for Human Health. Adv. Food Nutr. Res. 2012, 65, 261–268. [Google Scholar]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, R.W.M.; Boury-Esnault, N.; Hooper, J.N.A.; Rützler, K.; de Voogd, N.J.; Alvarez, B.; Hajdu, E.; Pisera, A.B.; Manconi, R.; Schönberg, C.; et al. World Porifera Database. Lamellodysidea herbacea (Keller, 1889). Available online: http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=164988 (accessed on 27 August 2021).
- Galitz, A.; Nakao, Y.; Schupp, P.J.; Wörheide, G.; Erpenbeck, D. A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution. Mar. Drugs 2021, 19, 448. [Google Scholar] [CrossRef]
- Unson, M.D.; Holland, N.D.; Faulkner, D.J. A Brominated Secondary Metabolite Synthesized by The Cyanobacterial Symbiont of A Marine Sponge and Accumulation of The Crystalline Metabolite in The Sponge Tissue. Mar. Biol. 1994, 119, 1–11. [Google Scholar] [CrossRef]
- Duffy, J.; Paul, V.J. Prey Nutritional Quality and The Effectiveness of Chemical Defenses against Tropical Reef Fishes. Oecologia 1992, 90, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Carte, B.; Faulkner, D.J. Polybrominated Diphenyl Ethers from Dysidea herbacea, Dysidea chlorea and Phyllospongia foliascens. Tetrahedron 1981, 37, 2335–2339. [Google Scholar] [CrossRef]
- Fu, X.; Schmitz, F.J.; Govindan, M.; Abbas, S.A.; Hanson, K.M.; Horton, P.A.; Crews, P.; Laney, M.; Schatzman, R.C. Enzyme Inhibitors: New and Known Polybrominated Phenols and Diphenyl Ethers from Four Indo-Pacific Dysidea Sponges. J. Nat. Prod. 1995, 58, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Cameron, G.M.; Stapleton, B.L.; Simonsen, S.M.; Brecknell, D.J.; Garson, M.J. New Sesquiterpene and Brominated Metabolites from the Tropical Marine Sponge Dysidea sp. Tetrahedron 2000, 56, 5247–5252. [Google Scholar] [CrossRef]
- Bell, J.J.; Smith, D. Ecology of Sponge Assemblages (Porifera) in the Wakatobi Region, South-East Sulawesi, Indonesia: Richness and Abundance. J. Mar. Biol. Assoc. U.K 2004, 84, 581–591. [Google Scholar] [CrossRef]
- de Voogd, N.J.; Cleary, D.F.R.; Hoeksema, B.W.; Noor, A.; van Soest, R.W.M. Sponge Beta Diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Mar. Ecol. Prog. Ser. 2006, 309, 131–142. [Google Scholar] [CrossRef]
- de Voogd, N.J.; Becking, L.E.; Cleary, D.F. Sponge Community Composition in the Derawan Islands, NE Kalimantan, Indonesia. Mar. Ecol. Prog. Ser. 2009, 396, 169–180. [Google Scholar] [CrossRef]
- Powell, A.L.; Hepburn, L.J.; Smith, D.J.; Bell, J.J. Patterns of Sponge Abundance Across a Gradient of Habitat Quality in The Wakatobi Marine National Park, Indonesia. Open. Mar. Biol. J. 2010, 4, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Putra, M.Y.; Hadi, T.A. Chemical Composition, Antimicrobial, Cytotoxic and Antiplasmodial Activities of Three Sponges from Buton Islands, Indonesia. Indones. J. Mar. Sci. Ilmu Kelaut. 2017, 22, 147–154. [Google Scholar] [CrossRef]
- Hanif, N.; Tanaka, J.; Setiawan, A.; Trianto, A.; de Voogd, N.J.; Murni, A.; Tanaka, C.; Higa, T. Polybrominated Diphenyl Ethers from the Indonesian Sponge Lamellodysidea herbacea. J. Nat. Prod. 2007, 70, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Hanif, N.; Ardan, M.S.; Tohir, D.; Setiawan, A.; de Voogd, N.J.; Farid, M.; Murni, A.; Tanaka, J. Polybrominated Diphenyl Ethers with Broad Spectrum Antibacterial Activity from the Indonesian Marine Sponge Lamellodysidea herbacea. J. App. Pharm. Sci. 2019, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Handayani, D.; Edrada, R.A.; Proksch, P.; Wray, V.; Witte, L.; Van Soest, R.W.; Kunzmann, A.; Soedarsono. Four New Bioactive Polybrominated Diphenyl Ethers of the Sponge Dysidea herbacea from West Sumatra, Indonesia. J. Nat. Prod. 1997, 60, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Torii, M.; Kato, H.; Hitora, Y.; Angkouw, E.D.; Mangindaan, R.E.P.; de Voogd, N.J.; Tsukamoto, S. Lamellodysidines A and B, Sesquiterpenes Isolated from the Marine Sponge Lamellodysidea herbacea. J. Nat. Prod. 2017, 80, 2536–2541. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Shin, D.; Kamiya, K.; Ishida, R.; Setiawan, A.; Kotoku, N.; Kobayashi, M. Marine Spongean Polybrominated Diphenyl Ethers, Selective Growth Inhibitors against the Cancer Cells Adapted to Glucose Starvation, Inhibits Mitochondrial Complex II. J. Nat. Med. 2017, 71, 44–49. [Google Scholar] [CrossRef]
- Yamazaki, H.; Sumilat, D.A.; Kanno, S.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Ishikawa, M.; Mangindaan, R.E.; Namikoshi, M. A Polybromodiphenyl Ether from an Indonesian Marine Sponge Lamellodysidea herbacea and Its Chemical Derivatives Inhibit Protein Tyrosine Phosphatase 1B, an Important Target for Diabetes Treatment. J. Nat. Med. 2013, 67, 730–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapojos, M.M.; Abdjul, D.B.; Yamazaki, H.; Kirikoshi, R.; Takahashi, O.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Ukai, K.; Namikoshi, M. Protein Tyrosine Phosphatase 1B Inhibitory Polybromobiphenyl Ethers and Monocyclofarnesol-type Sesquiterpenes from the Indonesian Marine Sponge Lamellodysidea cf. herbacea. Phytochem. Lett. 2018, 24, 10–14. [Google Scholar] [CrossRef]
- Kamyab, E.; Rohde, S.; Kellermann, M.Y.; Schupp, P.J. Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians. Molecules 2020, 25, 4808. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.-E.; Moeller, M.; Versluis, D.; Nietzer, S.; Kellermann, M.Y.; Schupp, P.J. Mono-and Multispecies Biofilms from a Crustose Coralline Alga Induce Settlement in the Scleractinian Coral Leptastrea purpurea. Coral Reefs 2021, 40, 381–394. [Google Scholar] [CrossRef]
- Zhang, H.; Skildum, A.; Stromquist, E.; Rose-Hellekant, T.; Chang, L.C. Bioactive Polybrominated Diphenyl Ethers from the Marine Sponge Dysidea sp. J. Nat. Prod. 2008, 71, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Salam, K.A.; Furuta, A.; Noda, N.; Tsuneda, S.; Sekiguchi, Y.; Yamashita, A.; Moriishi, K.; Nakakoshi, M.; Tani, H.; Roy, S.R.; et al. PBDE: Structure-activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase. Molecules 2014, 19, 4006–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Munro, M.H. MarinLit Online Database. Available online: https://pubs.rsc.org/marinlit (accessed on 16 June 2021).
- Suyama, T.L.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Ichthyotoxic Brominated Diphenyl Ethers from a Mixed Assemblage of a Red Alga and Cyanobacterium: Structure Clarification and Biological Properties. Toxicon 2010, 55, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Utkina, N.K.; Kazantseva, M.V.; Denisenko, V.A. Brominated Diphenyl Ethers from the Marine Sponge Dysidea fragilis. Chem. Nat. Compd. 1987, 23, 508–509. [Google Scholar] [CrossRef]
- Salva, J.; Faulkner, D.J. A New Brominated Diphenyl Ether from a Philippine Dysidea Species. J. Nat. Prod. 1990, 53, 757–760. [Google Scholar] [CrossRef]
- Köck, M.; Junker, J.; Maier, W.; Will, M.; Lindel, T. A Cocon Analysis of Proton-Poor Heterocycles–Application of Carbon Chemical Shift Predictions for the Evaluation of Structural Proposals. Eur. J. Org. Chem. 1999, 579–586. [Google Scholar] [CrossRef]
- Junker, J.; Maier, W.; Lindel, T.; Köck, M. Computer-Assisted Constitutional Assignment of Large Molecules: Cocon Analysis of Ascomycin. Org. Lett. 1999, 1, 737–740. [Google Scholar] [CrossRef]
- Meiler, J.; Sanli, E.; Junker, J.; Meusinger, R.; Lindel, T.; Will, M.; Maier, W.; Köck, M. Validation of Structural Proposals by Substructure Analysis and 13C NMR Chemical Shift Prediction. J. Chem. Inf. Comput. Sci. 2002, 42, 241–248. [Google Scholar] [CrossRef]
- Meiler, J.; Köck, M. Novel Methods of Automated Structure Elucidation Based on 13C NMR Spectroscopy. Magn. Reson. Chem. 2004, 42, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- NMRPredict; Version 5.1.29; Modgraph Consultants Ltd: Welwyn, UK.
- Steinbeck, C.; Krause, S.; Kuhn, S. NMRShiftDBConstructing a Free Chemical Information System with Open-Source Components. J. Chem. Inf. Comput. Sci. 2003, 43, 1733–1739. [Google Scholar] [CrossRef] [Green Version]
- Robien, W. The Advantage of Automatic Peer-Reviewing of 13C-NMR Reference Data Using the CSEARCH-Protocol. Molecules 2021, 26, 3413. [Google Scholar] [CrossRef]
- Bowden, B.F.; Towerzey, L.; Junk, P.C. A New Brominated Diphenyl Ether from the Marine Sponge Dysidea herbacea. Aust. J. Chem. 2000, 53, 299–301. [Google Scholar] [CrossRef]
- Sharma, G.M.; Vig, B. Studies on Antimicrobial Substances of Sponges. VI. Structures of two Antibacterial Substances Isolated from Marine Sponge Dysidea herbacea. Tetrahedron Lett. 1972, 17, 1715–1718. [Google Scholar] [CrossRef]
- Agrawal, M.S.; Bowden, B.F. Marine Sponge Dysidea herbacea Revisited: Another Brominated Diphenyl Ether. Mar. Drugs 2005, 3, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Schmitz, F.J. New Brominated Diphenyl Ether from an Unidentified Species of Dysidea Sponge. C-13 NMR Data for Some Brominated Diphenyl Ethers. J. Nat. Prod. 1996, 59, 1102–1103. [Google Scholar] [CrossRef] [PubMed]
- Pedradab, S. Isolation and Structure Elucidation of Secondary Metabolites from Marine Sponges and a Marine-derived Fungus. Doctoral Dissertation, Heinrich-Heine Universität, Düsseldorf, Germany, 2005. [Google Scholar]
- Utkina, N.K.; Likhatskaya, G.N.; Balabanova, L.A.; Bakunina, I.Y. Sponge-derived Polybrominated Diphenyl Ethers and Dibenzo-p-dioxins, Irreversible Inhibitors of the Bacterial α-d-galactosidase. Environ. Sci. Process. Impacts 2019, 21, 1754–1763. [Google Scholar] [CrossRef]
- Ortlepp, S.; Pedpradap, S.; Dobretsov, S.; Proksch, P. Antifouling Activity of Sponge-derived Polybrominated Diphenyl Ethers and Synthetic Analogues. Biofouling 2008, 24, 201–208. [Google Scholar] [CrossRef]
- Pennings, S.C.; Pablo, S.R.; Paul, V.J.; Duffy, J.E. Effects of Sponge Secondary Metabolites in Different Diets on Feeding by Three Groups of Consumers. J. Exp. Mar. Bio. Ecol. 1994, 180, 137–149. [Google Scholar] [CrossRef]
- Faulkner, D.J.; Unson, M.D.; Bewley, C.A. The Chemistry of Some Sponges and Their Symbionts. Pure Appl. Chem. 1994, 66, 1983–1990. [Google Scholar] [CrossRef]
- Becerro, M.A.; Starmer, J.A.; Paul, V.J. Chemical Defenses of Cryptic and Aposematic Gastropterid Molluscs Feeding on Their Host Sponge Dysidea granulosa. J. Chem. Ecol. 2006, 32, 1491–1500. [Google Scholar] [CrossRef]
- Andree, K.B.; Carrasco, N.; Carella, F.; Furones, D.; Prado, P. Vibrio mediterranei, a Potential Emerging Pathogen of Marine Fauna: Investigation of Pathogenicity Using a Bacterial Challenge in Pinna nobilis and Development of A Species-specific PCR. J. Appl. Microbiol. 2021, 130, 617–631. [Google Scholar] [CrossRef]
- Denner, E.B.; Smith, G.W.; Busse, H.-J.; Schumann, P.; Narzt, T.; Polson, S.W.; Lubitz, W.; Richardson, L.L. Aurantimonas coralicida gen. nov., sp. nov., the Causative Agent of White Plague Type II on Caribbean Scleractinian Corals. Int. J. Syst. Evol. Microbiol. 2003, 53, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Lotte, L.; Sindt, A.; Ruimy, R.; Neri, D.; Lotte, R.; Weiss, N.; Vassallo, M. Description of the First Case of Catheter-Related Bloodstream Infection Due to Pantoea eucrina in a Cancer Patient. SN Compr. Clin. Med. 2019, 1, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, Y.; Sawabe, E.; Ohkusu, K.; Tojo, N.; Tohda, S. First Report of Sepsis Caused by Rhodococcus corynebacterioides in a Patient with Myelodysplastic Syndrome. J. Clin. Microbiol. 2012, 50, 1089–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An Emerging Pathogen. Interdiscip. Perspect. Infect. Dis. 2012, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagahama, T.; Hamamoto, M.; Nakase, T.; Takami, H.; Horikoshi, K. Distribution and Identification of Red Yeasts in Deep-sea Environments around the Northwest Pacific Ocean. Antonie Van Leeuwenhoek 2001, 80, 101–110. [Google Scholar] [CrossRef]
- Gharaghani, M.; Taghipour, S.; Mahmoudabadi, A.Z. Molecular Identification, Biofilm Formation and Antifungal Susceptibility of Rhodotorula spp. Mol. Biol. Rep. 2020, 47, 8903–8909. [Google Scholar] [CrossRef] [PubMed]
- Malakar, B.; Venu, S.; Samuel, V.D.; Abhilash, K. Increasing Signs of Degradation of Shallow Water Coral Reefs Due to Repeated Bleaching and Spatial Competition among Benthic Substrates. Wetl. Ecol. Manag. 2020, 1–7. [Google Scholar] [CrossRef]
- Powell, A.; Smith, D.J.; Hepburn, L.J.; Jones, T.; Berman, J.; Jompa, J.; Bell, J.J. Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality. PLoS ONE 2014, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, J.R.; Chanas, B.; Toonen, R.J.; Fenical, W. Defenses of Caribbean Sponges against Predatory Reef Fish. I. Chemical Deterrency. Mar. Ecol. Prog. Ser. 1995, 127, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Helber, S.B.; de Voogd, N.J.; Muhando, C.A.; Rohde, S.; Schupp, P.J. Anti-predatory Effects of Organic Extracts of 10 Common Reef Sponges from Zanzibar. Hydrobiologia 2016, 790, 247–258. [Google Scholar] [CrossRef]
- Rohde, S.; Nietzer, S.; Schupp, P.J. Prevalence and Mechanisms of Dynamic Chemical Defenses in Tropical Sponges. PLoS ONE 2015, 10, e0132236. [Google Scholar] [CrossRef]
- Helber, S.B.; Hoeijmakers, D.J.J.; Muhando, C.A.; Rohde, S.; Schupp, P.J. Sponge Chemical Defenses are a Possible Mechanism for Increasing Sponge Abundance on Reefs in Zanzibar. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Okanya, P.W.; Mohr, K.I.; Gerth, K.; Jansen, R.; Müller, R. Marinoquinolines A− F, Pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes). J. Nat. Prod. 2011, 74, 603–608. [Google Scholar] [CrossRef]
- Khosravi Babadi, Z.; Ebrahimipour, G.; Wink, J.; Narmani, A.; Risdian, C. Isolation and Identification of Streptomyces sp. Act4Zk, A Good Producer of Staurosporine and Some Derivatives. Lett. Appl. Microbiol. 2021, 72, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; et al. The Green Tea Polyphenol, Epigallocatechin-3-gallate, Inhibits Hepatitis C Virus Entry. Hepatology 2011, 54, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
Sample | MIC [µg/mL] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gram-Positive Strains | Gram-Negative Strains | Fungi | ||||||||
Bs | Sa | Ms | Ec | Pae | Ab | Rg | Mh | Ca | Pa | |
Crude Extract | 0.5 | 0.5 | 66.7 | 66.7 | >66.7 | 8.3 | 1.0 | 0.5 | >66.7 | 2.1 |
HEX | 0.5 | 0.5 | n.t. | 1.0 | n.t. | 2.1 | 0.5 | 0.5 | n.t. | 1.0 |
DCM | 0.5 | 0.5 | n.t. | 1.0 | n.t. | 1.0 | 0.5 | 1.0 | n.t. | 0.5 |
EtOAc | 1.0 | 4.2 | n.t. | >66.7 | n.t. | >66.7 | 16.7 | 16.7 | n.t. | 33.3 |
H2O | 66.7 | >66.7 | n.t. | >66.7 | n.t. | >66.7 | n.t. | >66.7 | n.t. | >66.7 |
1d | 0.5 | 0.5 | n.t. | >66.7 | n.t. | 16.7 | 4.2 | 8.3 | n.t. | 4.2 |
2b | 0.5 | 2.1 | n.t. | >66.7 | n.t. | >66.7 | 2.1 | 8.3 | n.t. | 13.9 |
Gentamicin | n.t. | 0.5 | n.t. | 0.5 | n.t. | 2.8 | n.t. | n.t. | n.t. | n.t. |
Tetracycline | 2.8 | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. |
Nystatin | n.t. | n.t. | n.t. | n.t. | n.t. | n.t. | 33.3 | 8.3 | n.t. | 5.6 |
Compound | Observed MS | Result in MarinLit | References |
---|---|---|---|
1d | 574.6137 [M−H]− 575.6210 [M] | 3,4,5-tribromo-2-(2′,4′-dibromophenoxy)phenol [M] = 575.6210 | [40] |
2b | 652.5246 [M−H]− 653.5318 [M] | 3,4,5,6-tetrabromo-2-(2′,4′-dibromophenoxy)phenol [M] = 653.5315 | [41] |
Position | 1d (This Work) | Literature Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharma and Vig 1972 1d | Carte and Faulkner 1981 1d | Bowdenet al., 2000 1b | Bowdenet al., 2000 1d | Fu and Schmitz 1996 1d | Pedpradab 2005 1d | Fu et al., 1995 1d | Fu et al., 1995 1d | Fu et al., 1995 1d | Sumaya et al., 2010 1d | Utkina et al., 2019 1d | ||
δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | δ(1H) | |
1 | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH |
2 | OR | OR | OR | OR | OR | OR | OR | OR | OR | OR | OR | OR |
3 | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br |
4 | Br | Br | Br | 7.55 | Br | Br | Br | Br | Br | Br | Br | Br |
5 | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br |
6 | 7.45 | 7.50 | 7.42 | Br | 7.42 | 7.43 | 7.41 | 7.42 | 7.51 | 7.38 | 7.44 | 7.45 |
1′ | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH | OH |
2′ | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br |
3′ | 7.80 | 7.80 | 7.76 | 7.78 | 7.79 | 7.84 | 7.85 | 7.77 | 7.82 | 7.78 | 7.79 | 7.90 |
4′ | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br | Br |
5′ | 7.31 | 7.38 | 7.26 | 7.28 | 7.29 | 7.35 | 7.31 | 7.27 | 7.39 | 7.28 | 7.29 | 7.40 |
6′ | 6.42 | 6.56 | 6.41 | 6.41 | 6.41 | 6.51 | 7.85 | 6.38 | 6.63 | 6.42 | 6.41 | 6.51 |
Position | δ13C [ppm] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1d (This Work) | 1a * | 1b * | 1c * | 1d * | Bowden et al., 2000-1b | Bowden et al., 2000-1d | Fu and Schmitz 1996-1d | Pedpradab 2005-1d | Fu et al., 1995-1d | Sumaya et al., 2010-1d | Utkina et al., 2019-1d | |
1 | 148.9 | 150.2 | 148.3 | 146.7 | 151.5 | 148.1 | 148.9 | 150.8 | 151.4 | 150.9 | 148.9 | 150.8 |
2 | 139.5 | 143.8 | 138.7 | 140.9 | 139.5 | 138.7 | 139.9 | 139.5 | 139.7 | 139.7 | 139.5 | 139.4 |
3 | 121.1 | 122.1 | 116.8 | 120.2 | 121.4 | 116.7 | 113.6 | 121.5 | 121.9 | 121.6 | 121.1 | 121.6 |
4 | 119.2 | 115.5 | 128.0 | 116.1 | 116.1 | 128.0 | 119.3 | 115.9 | 116.2 | 116.1 | 119.2 | 116.0 |
5 | 122.9 | 121.8 | 122.1 | 132.8 | 121.7 | 122.2 | 122.9 | 121.5 | 122.2 | 121.7 | 122.9 | 121.6 |
6 | 120.7 | 116.5 | 113.3 | 109.8 | 121.0 | 113.4 | 120.8 | 120.7 | 121.9 | 120.9 | 120.7 | 120.5 |
1′ | 151.7 | 152.1 | 152.1 | 152.2 | 152.3 | 152.1 | 151.8 | 152.3 | 152.6 | 152.4 | 151.7 | 152.3 |
2′ | 112.7 | 115.0 | 112.6 | 112.4 | 111.9 | 112.6 | 112.8 | 111.7 | 111.9 | 111.9 | 112.7 | 111.8 |
3′ | 136.3 | 135.4 | 135.7 | 135.7 | 135.7 | 136.1 | 136.4 | 135.1 | 135.9 | 135.3 | 136.3 | 135.1 |
4′ | 116.2 | 116.1 | 116.1 | 116.1 | 116.1 | 115.8 | 116.3 | 114.1 | 114.5 | 116.0 | 116.2 | 114.0 |
5′ | 131.6 | 132.6 | 131.4 | 131.4 | 131.4 | 131.3 | 131.6 | 131.5 | 131.9 | 131.6 | 131.6 | 131.7 |
6′ | 115.7 | 120.8 | 121.9 | 116.9 | 115.8 | 115.8 | 115.8 | 115.9 | 114.5 | 114.4 | 115.7 | 115.9 |
Position | 2b (This Work) | Literature Data | |
---|---|---|---|
Utkina et al., 1987 2b | Salva and Faulkner 1990 2a | ||
δ(1H) | δ(1H) | δ(1H) | |
1 | OH | OH | OH |
2 | OR | OR | OR |
3 | Br | Br | Br |
4 | Br | Br | Br |
5 | Br | Br | Br |
6 | Br | Br | Br |
1′ | OR | OR | OR |
2′ | Br | Br | Br |
3′ | 7.80 | 7.79 | 6.52 |
4′ | Br | Br | 6.99 |
5′ | 7.30 | 7.29 | 7.18 |
6′ | 6.41 | 6.42 | 7.65 |
Position | δ13C [ppm] | ||||
---|---|---|---|---|---|
2b (This Work) | 2b * | Utkina et al., 1987 2b | Salva and Faulkner 1990 2a | 2a * | |
1 | 146.8 | 147.3 | 148.8 | 147.3 | 147.3 |
2 | 139.2 | 139.8 | 139.8 | 139.5 | 139.5 |
3 | 121.0 | 120.9 | 117.2 | 120.9 | 120.9 |
4 | 125.6 | 120.1 | 125.2 | 125.5 | 120.1 |
5 | 119.7 | 119.4 | 119.8 | 119.4 | 119.4 |
6 | 114.2 | 114.0 | 115.8 | 114.0 | 114.0 |
1′ | 151.9 | 152.2 | 152.0 | 152.4 | 152.4 |
2′ | 112.7 | 112.4 | 112.1 | 111.6 | 111.5 |
3′ | 136.2 | 135.7 | 135.0 | 134.0 | 133.9 |
4′ | 115.7 | 116.1 | 114.3 | 124.6 | 125.3 |
5′ | 131.4 | 131.4 | 131.3 | 128.6 | 128.6 |
6′ | 116.0 | 116.9 | 116.1 | 114.5 | 114.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, M.R.; Kellermann, M.Y.; Rohde, S.; Putra, M.Y.; Murniasih, T.; Risdian, C.; Mohr, K.I.; Wink, J.; Praditya, D.F.; Steinmann, E.; et al. Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea. Mar. Drugs 2021, 19, 611. https://doi.org/10.3390/md19110611
Faisal MR, Kellermann MY, Rohde S, Putra MY, Murniasih T, Risdian C, Mohr KI, Wink J, Praditya DF, Steinmann E, et al. Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea. Marine Drugs. 2021; 19(11):611. https://doi.org/10.3390/md19110611
Chicago/Turabian StyleFaisal, Muhammad R., Matthias Y. Kellermann, Sven Rohde, Masteria Y. Putra, Tutik Murniasih, Chandra Risdian, Kathrin I. Mohr, Joachim Wink, Dimas F. Praditya, Eike Steinmann, and et al. 2021. "Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea" Marine Drugs 19, no. 11: 611. https://doi.org/10.3390/md19110611
APA StyleFaisal, M. R., Kellermann, M. Y., Rohde, S., Putra, M. Y., Murniasih, T., Risdian, C., Mohr, K. I., Wink, J., Praditya, D. F., Steinmann, E., Köck, M., & Schupp, P. J. (2021). Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea. Marine Drugs, 19(11), 611. https://doi.org/10.3390/md19110611