Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Microorganism Material and Culture
4.3. Gene Cluster Deletion
4.4. Extraction and Isolation
4.5. Effect of Compounds on Anti-Microbial and Antiproliferative Bioactivities
4.6. ECD Calculation
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Xu, D.B.; Ye, W.W.; Han, Y.; Deng, Z.X.; Hong, K. Natural products from mangrove actinomycetes. Mar. Drugs 2014, 12, 2590–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016, 33, 988–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dan, V.M.; Vinodh, J.S.; Sandesh, C.J.; Sanawar, R.; Lekshmi, A.; Kumar, R.A.; Santhosh Kumar, T.R.; Marelli, U.K.; Dastager, S.G.; Pillai, M.R. Molecular networking and whole-genome analysis aid discovery of an angucycline that inactivates mTORC1/C2 and induces programmed cell death. ACS Chem. Biol. 2020, 15, 780–788. [Google Scholar] [CrossRef]
- Almeida, E.L.; Kaur, N.; Jennings, L.K.; Carrillo Rincon, A.F.; Jackson, S.A.; Thomas, O.P.; Dobson, A.D.W. Genome mining coupled with OSMAC-based cultivation reveal differential production of surugamide A by the marine sponge isolate Streptomyces sp. SM17 when compared to its terrestrial relative S. albidoflavus J1074. Microorganisms 2019, 7, 394. [Google Scholar] [CrossRef] [Green Version]
- Zerikly, M.; Challis, G.L. Strategies for the discovery of new natural products by genome mining. Chembiochem 2009, 10, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B.; Bethe, B.; Hofs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- McAlpine, J.B.; Bachmann, B.O.; Piraee, M.; Tremblay, S.; Alarco, A.M.; Zazopoulos, E.; Farnet, C.M. Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 2005, 68, 493–496. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Ahuja, M.; Oakley, C.E.; Entwistle, R.; Asokan, A.; Zutz, C.; Wang, C.C.; Oakley, B.R. Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of aspercryptin. Angew. Chem. Int. Ed. Engl. 2016, 55, 1662–1665. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.B.; Ma, M.; Deng, Z.X.; Hong, K. Genotype-driven isolation of enterocin with novel bioactivities from mangrove-derived Streptomyces qinglanensis 172205. Appl. Microbiol. Biotechnol. 2015, 99, 5825–5832. [Google Scholar] [CrossRef]
- Terui, Y.; Yiwen, C.; Jun-ying, L.; Ando, T.; Yamamoto, H.; Kawamura, Y.; Tomishima, Y.; Uchida, S.; Okazaki, T.; Munetomo, E.; et al. Xantholipin, a novel inhibitor of HSP47 gene expression produced by Streptomyces sp. Tetrahedron Lett. 2003, 44, 5427–5430. [Google Scholar] [CrossRef]
- Chen, Q.L.; Zhao, Z.H.; Lu, W.; Chu, Y.W. Bromoxantholipin: A novel polycyclic xanthone antibiotic produced by Streptomyces flavogriseus SIIA-A02191. Chin. J. Antibiot. 2011, 36, 566–570. [Google Scholar]
- Zhang, W.; Wang, L.; Kong, L.; Wang, T.; Chu, Y.; Deng, Z.; You, D. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem. Biol. 2012, 19, 422–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Lin, H.P.; Xie, Q.; Li, L.; Xie, X.Q.; Hong, K. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2012, 62, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; He, X.; Liang, J.; Zhou, X.; Deng, Z. Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326. Appl. Microbiol. Biotechnol. 2009, 82, 303–310. [Google Scholar] [CrossRef]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; The John Innes Foundation: Norwich, UK, 2000; pp. 249–252. ISBN 0-7084-0623-8. [Google Scholar]
- Fu, P.; Kong, F.; Wang, Y.; Wang, Y.; Liu, P.; Zuo, G.; Zhu, W. Antibiotic metabolites from the coral-associated actinomycete Streptomyces sp. OUCMDZ-1703. Chin. J. Chem. 2013, 31, 100–104. [Google Scholar] [CrossRef]
- Hong, K.; Gao, A.H.; Xie, Q.Y.; Gao, H.; Zhuang, L.; Lin, H.P.; Yu, H.P.; Li, J.; Yao, X.S.; Goodfellow, M.; et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 2009, 7, 24–44. [Google Scholar] [CrossRef]
- Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zheng, Z.H.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; et al. Penerpenes A-D, Four indole terpenoids with potent protein tyrosine phosphatase inhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett. 2019, 21, 4864–4867. [Google Scholar] [CrossRef]
- Frisch, M. Gaussian 03 Rev. E. 01. 2004. Available online: http://www.gaussian.com/ (accessed on 15 April 2020).
- Miteva, M.A.; Guyon, F.; Tuffery, P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic. Acids Res. 2010, 38, W622–W627. [Google Scholar] [CrossRef] [Green Version]
- Sai, C.M.; Li, D.H.; Xue, C.M.; Wang, K.B.; Hu, P.; Pei, Y.H.; Bai, J.; Jing, Y.K.; Li, Z.L.; Hua, H.M. Two pairs of enantiomeric alkaloid dimers from Macleaya cordata. Org. Lett. 2015, 17, 4102–4105. [Google Scholar] [CrossRef]
- Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J. Comput. Chem. 1995, 16, 1449–1458. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||||
---|---|---|---|---|---|---|
δH (J in Hz) | δC, Type | HMBC | δH (J in Hz) | δC, Type | HMBC | |
1 | 133.6, C | 2.38 s | 26.0, CH3 | C-2, 4 | ||
2 | 7.63 d (8.8) | 125.9, CH | C-1, 4, 6 | 202.0, C | ||
3 | 7.95 d (8.4) | 120.8, CH | C-1, 5, 10 | 140.7, C | ||
4 | 120.6, C | 7.28 d (11.4) | 139.6, CH | C-2, 6, 11 | ||
5 | 149.7, C | 7.16 dd (11.5, 14.6) | 137.9, CH | C-3, 7 | ||
6 | 144.6, C | 6.84 dd (11.2, 14.6) | 138.8, CH | C-4, 7, 8 | ||
7 | 7.41 dd (11.1, 15.6) | 144.5, CH | C-5, 6, 9 | |||
8 | 143.4, C | 6.31 d (15.7) | 133.7, CH | C-6, 9, 10 | ||
9 | 108.2 *, C | 201.3, C | ||||
10 | 181.4, C | 2.32 s | 27.4, CH3 | C-7, 8, 9 | ||
11 | 158.9, C | 1.94 d (1.0) | 12.0, CH3 | C-2, 3 | ||
12 | 109.5 *, C | |||||
13 | 131.4, C | |||||
14 | 131.3, C | |||||
15 | 5.15 dd (6.4, 14.0) | 71.1, CH | ||||
16 | a, 2.37 m | 25.3, CH2 | C-13, 15, 17, 18 | |||
b, 2.54 overlapped | ||||||
17 | 136.0 **, C | |||||
18 | 141.5 **, C | |||||
19 | 178.6, C | |||||
20 | 117.3, C | |||||
21 | 145.1, C | |||||
22 | 182.8, C | |||||
23 | 6.55 s | 99.6, CH | C-20, 22, 24, 27 | |||
24 | 154.5, C | |||||
25-NH | 12.67 s | C-20, 23, 26, 27 | ||||
26 | 151.9, C | |||||
27 | 2.36 s | 19.5, CH3 | C-23, 24 | |||
28 | a, 5.71 d (5.9) b, 5.48 d (5.8) | 91.3, CH2 | C-14, 15 C-15 | |||
29 | 4.08 s | 61.6, CH3 | C-6 | |||
11-OH | 12.67 s | C-9 |
Position | 3 | 4 | 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
δH (J in Hz) | δC, Type | HMBC | δH (J in Hz) | δC, Type | HMBC | δH (J in Hz) | δC, Type | HMBC | |
1 | 183.3, C | 182.6, C | 183.4, C | ||||||
2 | 45.9, C | 44.9, C | 45.0, C | ||||||
3 | 3.96 s | 81.5, CH | C-1, 2, 4, 5, 13, 14 | 3.98 s | 83.8, CH | C- 2, 4, 5, 13, 14 | 4.53 s | 75.1, CH | C-2, 4, 5, 14, 15 |
4 | 88.0, C | 86.2, C | 90.4, C | ||||||
5 | 6.14 d (15.4) | 142.1, CH | C- 3, 4, 7, 15 | 6.27 d (15.6) | 139.0, CH | C- 4, 6, 7, 15 | 3.63 d (2.3) | 77.9, CH | C-3, 4, 7, 15 |
6 | 6.46 dd (9.9, 15.4) | 129.8, CH | C-4, 7, 8 | 6.46 dd (9.8,15.6) | 130.2, CH | C-4, 5, 8 | 4.44 d (5.8) | 72.8, CH | C-7, 8 |
7 | 6.71 overlapped | 140.7, CH | C-6 | 6.71 overlapped | 141.0, CH | C-8, 9 | 6.35 dd (5.6, 15.3) | 144.4, CH | C-6, 9 |
8 | 6.71 overlapped | 130.6, CH | C-6, 7 | 6.71 overlapped | 130.4, CH | 6.78 dd (11.2, 15.1) | 127.9, CH | C-6, 9, 10 | |
9 | 7.23 dd (1.0, 10.3) | 141.3, CH | C-6, 8, 11, 16 | 7.23 dd (1.0, 10.0) | 141.5, CH | C-7, 8, 11, 16 | 7.22 d (11.1) | 141.1, CH | C-7, 8, 11, 16 |
10 | 137.7, C | 137.5, C | 137.3, C | ||||||
11 | 202.2, C | 202.3, C | 202.5, C | ||||||
12 | 2.34 s | 25.8, CH3 | C-9, 10, 11 | 2.33 s | 25.8, CH3 | C-9, 10, 11 | 2.34 s | 25.8, CH3 | C-9, 10, 11 |
13 | 1.19 s | 20.5, CH3 | C-1, 2, 3, 14 | 1.21 s | 25.3, CH3 | C-1, 2, 3, 14 | 1.24 s | 25.6, CH3 | C-1, 2, 3, 14 |
14 | 1.22 s | 26.3, CH3 | C-1, 2, 3, 13 | 1.04 s | 19.9, CH3 | C-1, 2, 3, 13 | 1.20 s | 21.2, CH3 | C-1, 2, 13 |
15 | 1.46 s | 22.1, CH3 | C-3, 4, 5, 6 | 1.52 s | 27.4, CH3 | C-3, 4, 5, 6 | 1.43 s | 19.3, CH3 | C-3, 4, 5, |
16 | 1.87 d (1.0) | 11.7, CH3 | C-8, 9, 10, 11 | 1.87 d (0.8) | 11.7, CH3 | C-8, 9, 10, 11 | 1.87 s | 11.6, CH3 | C-9, 10, 11 |
Compound. | E. coli | S. aureus | C. albicans |
---|---|---|---|
1 | >100 | 0.78 | 3.13 |
kanamycin | 6.25 | 6.25 | / |
nystatin | / | / | 3.13 |
Compound | MCF-7 (IC50 ± SD, 48 h) | HeLa (IC50 ± SD, 48 h) |
---|---|---|
1 | 5.78 ± 0.26 | 6.25 ± 0.29 |
2 | 206.91 ± 9.69 | 183.03 ± 11.11 |
3 | >179.86 | 168.13 ± 13.15 |
4 | 136.87 ± 10.67 | 129.14 ± 3.98 |
Paclitaxel | <0.46 | <0.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Tian, E.; Kong, F.; Hong, K. Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205. Mar. Drugs 2020, 18, 255. https://doi.org/10.3390/md18050255
Xu D, Tian E, Kong F, Hong K. Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205. Marine Drugs. 2020; 18(5):255. https://doi.org/10.3390/md18050255
Chicago/Turabian StyleXu, Dongbo, Erli Tian, Fandong Kong, and Kui Hong. 2020. "Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205" Marine Drugs 18, no. 5: 255. https://doi.org/10.3390/md18050255
APA StyleXu, D., Tian, E., Kong, F., & Hong, K. (2020). Bioactive Molecules from Mangrove Streptomyces qinglanensis 172205. Marine Drugs, 18(5), 255. https://doi.org/10.3390/md18050255