Marine Collagen as A Promising Biomaterial for Biomedical Applications
Abstract
:1. Introduction
2. Biomaterial Scaffolds in Biomedical Applications
3. Collagen Derived from Marine Organisms
3.1. Characteristics of MC
3.2. Isolation of MC
3.3. Physical and Biochemical Properties of MC
4. Biomedical Applications
4.1. Tissue Engineering and Regeneration
4.1.1. Bone Tissue Engineering and Regeneration
4.1.2. Cartilage Tissue Engineering and Regeneration
4.1.3. Skin Tissue Engineering, Regeneration, and Wound Healing
4.1.4. Wound Dressing and Skin Repair
4.1.5. Vascular Tissue Engineering and Regeneration
4.1.6. Dental Tissue Engineering and Regeneration
4.1.7. Corneal Tissue Engineering and Regeneration
4.1.8. Other Tissue Engineering and Regeneration Data
4.2. Drug Delivery
4.3. Therapeutic Effects of MC on Diseases Associated with Metabolic Disturbance
4.4. Limitations
5. Conclusions and Future Prospective
Author Contributions
Funding
Conflicts of Interest
Appendix A
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Collagen peptide | Enzymatical hydrolysis | MCP from tilapia scale | Primary rat bone marrow-derived mesenchymal stem cells | 1. Promoted cell viability. 2. Upregulated expression of osteogenic markers 3. Upregulated expression of endothelial markers | [84] |
Collagen peptide | Enzymatical hydrolysis | MCP from cod bone and skin | Human osteoblastic cells (NOS-1) | 1.Promoted cell proliferation 2. Upregulated expression of osteogenic markers 3. Accelerated matrix mineralization | [85] |
Collagen peptide | Enzymatical hydrolysis | MCP from Gadiformes and Pleuronectidae | Mouse pre-osteoblastic cells (MC3T3-E1) | 1. Upregulated expression of collagen modifying enzymes 2. Greater collagen deposition 3. Accelerated matrix mineralization | [86] |
Native collagen | Freeze-drying | Tilapia scale collagen | Primary human mesenchymal stem cells | 1. Accelerated early stage of osteoblastic differentiation 2. Upregulated osteoblastic markers | [87] |
Collagen peptide | Enzymatical hydrolysis | MCP from chum salmon skin | In vivo rat model | 1. Increased size, weight, and mineral density and content of femurs 2. Enhanced stiffness and toughness of femurs | [88] |
Collagen peptide | Enzymatical hydrolysis | MCP from Sparidae and Chanos | Human osteoblast-like cells (MG-63) | 1. Increased osteoblast proliferation 2. Inhibited osteoclast proliferation | [89] |
Scaffold | Freeze-drying/EDC cross-linked | Fish scale collagen from Rohu and Catla | Mouse fibroblasts (NIH3T3)/human osteoblast-like cells (MG-63)/in vivo mouse model | 1. Promoted cell proliferation 2. Elicited minimal inflammatory response | [91] |
Scaffold | Freeze-drying/EDC/NHS or HMDI cross-linked | Shark skin collagen/shark teeth apatite | Human osteosarcoma cells (Saos-2) | Increased cell viability | [92] |
Scaffold | Freeze-drying | Marine sponge collagen/chitosan/hydroxyapatite | Human osteoblast-like cells (MG-63) | Promoted cell proliferation | [93] |
Scaffold | Freeze-drying/glutaraldehyde cross-linked | Type-II collagen from shark cartilage/chitosan/hydroxyappatite | Human fetal osteoblasts/human acute T-lymphocyte leukemia cells (6T-CEM) | 1. Increased cell viability 2. Enhanced alkaline phosphatase activity | [94] |
Scaffold | Freeze-drying/dehydrothermal treatment cross-linked | MC/glycosaminoglycan/Aquamin | Mouse pre-osteoblastic cells (MC3T3-E1) | Improved mineralization | [95] |
Scaffold | Vacuum drying/PMMA aggregated | Marine sponge collagen/hydroxyapatite/poly (methyl methacrylate) | Mouse pre-osteoblastic cells (MC3T3-E1)/mouse fibroblasts (L929) | Promoted cell viability | [96] |
Scaffold | Glutaraldehyde/genipin cross-linked | Sturgeon fish collagen/poly (N,N’-dimethylacrylamide | In vivo rabbit bone defect model | 1. Good biomechanical performance 2. Strong bonding ability with bone | [97] |
Scaffold | Freeze-drying/EDC cross-linked | Mineralized salmon collagen/alginate/fibrillized jellyfish collagen | Primary bone marrow-derived mesenchymal stem cells | Induced osteogenic and chondrogenic differentiation | [98] |
Scaffold | Electrospinning | Fish collagen/PLGA/hydroxyapatite | Primary bone marrow-derived mesenchymal stem cells/human gingiva fibroblasts | 1. Enhanced mechanical strength and the degradation rate 2. Improved cytocompatibility | [99] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Collagen peptide | Enzymatical hydrolysis | MCP from skin of deep water ocean fish (cod, haddock and pollock). | Primary horse adipose-derived stromal cells | 1. Increased glycosaminoglycan expression 2. Induced chondrogenic differentiation | [100] |
Collagen peptide | Enzymatical hydrolysis | MCP from skins of Gadiformes | In vivo rabbit osteoarthritis model | Chondroprotective effects | [101] |
Native collagen | Acid soluble collagen isolation method | Tilapia fish scale collagen | Human mesenchymal stem cells | 1. Increased glycosaminoglycan expression 2. Elevated expression of chondrogenic markers 3. Enhanced chondrogenic differentiation | [102] |
Scaffold | Freeze-drying/EDC cross-linked | Jellyfish collagen | Primary human and rat nasal septum chondrocytes/in vivo rat septal cartilage defect model | 1. Promoted adhesion and cartilaginous matrix proteins production 2. Reduced nasal septum perforations | [103] |
Scaffold | Freeze-drying/EDC cross-linked | Fibrillized jellyfish collagen/alginate | Primary human mesenchymal stem cells | Induced chondrogenic differentiation | [104] |
Collagen peptide | Enzymatical hydrolysis | Pharmaceutical grade collagen hydrolysate | Clinical studies in ortheoarthritic patients | 1. Cartilage matrix synthesis 2. Reduced pain | [105] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Scaffold | Solvent casting/glutaraldehyde cross-linked | Aminated poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/tilapia fish skin collagen peptides | Mouse fibroblasts (L929)/in vivo rat wound model | 1. Enhanced cell attachment and proliferation 2. Accelerated wound contractions | [110] |
Scaffold | Freeze-drying/glutaraldehyde cross-linked | Mrigal fish scale collagen | Primary human fibroblasts and keratinocytes/in vivo rat wound model | 1. Enhanced cell growth, attachment, and proliferation 2. Increased wound healing rate, re-epithelialization, and dermal reconstitution | [111] |
Scaffold | Freeze-drying/dehydrothermal treatment at 105 °C | Tilapia fish scale collagen/shrimp shell chitosan/glycerin | Primary human keratinocytes and fibroblasts | 1. Cytocompatible 2. Facilitated cell proliferation, adhesion, and infiltration | [112] |
Scaffold | EDC cross-linked | PSC isolated from catfish skin | Mouse fibroblasts (NIH/3T3) | 1. Aligned collagen fibrils 2. Facilitated cell proliferation and migration | [113] |
Scaffold | Freeze-drying/EDC cross-linked | Flatfish skin collagen/alginate/chitooligosaccharides | Primary human dermal cells | 1. Induced cell adhesion and proliferation 2. Promoted well spread cell morphology | [114] |
Scaffold | Freeze-drying | Fish scale collagen | Hamster kidney fibroblasts (BHK21) | Increased cell viability | [115] |
Scaffold | Freeze-drying | ASC and PSC from tilapia skin | In vivo rat wound model | 1. Increased wound contraction 2. Reduced inflammatory reaction 3. Enhanced collagen synthesis and dermal reconstitution 4. Accelerated epithelization and wound healing | [116] |
Scaffold | Freeze-drying/EDC cross-linked | Weever skin collagen/chitosan | Mouse embryonic fibroblasts (MEF)/in vivo rabbit wound model | 1. Biocompatible 2. Increased cell proliferation 3. Reduced inflammation 4. Enhanced tissue regeneration and healing | [117] |
Collagen peptide | Enzymatical hydrolysis | MCP from Nile tilapia skin | Human keratinocyte (HaCaT)/in vivo rabbit scald wound model | 1. Increased cell proliferation 2. Enhanced wound healing | [118] |
Collagen peptide | Enzymatical hydrolysis | MCP from chum salmon skin | In vivo rat wound model | Accelerated wound healing | [119] |
Collagen peptide | Enzymatical hydrolysis | MCP from chum salmon skin | In vivo rat wound model | 1. Faster wound closure and improved tissue regeneration 2. Improved angiogenesis 3. Increased deposition of organized collagen fibers | [120] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Scaffold | Electrospinning | Tilapia skin collagen/bioactive glass | Human keratinocytes (HaCaT)/primary human dermal fibroblasts/primary human umbilical vein endothelial cells | 1. Antibacterial activity against Staphylococcus aureus 2. Promoted cell adhesion, proliferation and migration 3. Induced secretion of type I collagen and vascular endothelial growth factor 4. Accelerated skin wound healing in in rat wound model | [122] |
Native collagen | Casting-solvent evaporation technique | Marine sponge collagen | Swelling behavior/fluid uptake performance test | 1. Suitable swelling behavior and great fluid uptake ability 2. Effective carrier for L-cysteine hydrochloride | 43] |
Scaffold | Freeze-drying/ceftazidime cross-linked | Aminated carboxymethyl guar gum/fish scale collagen | Mouse fibroblasts (NIH3T3) | 1. Excellent biocompatibility 2. Antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa | [123] |
Scaffold | Freeze-drying/glutaraldehyde cross-linked | Fish scale collagen/bean extracts | Mouse fibroblasts (NIH3T3)/human keratinocytes (HaCaT) | 1. Excellent biocompatibility with fibroblasts and keratinocytes 2. Good antimicrobial activity and drug release pattern | [124] |
Scaffold | Electrospinning | MCP/chito-oligosaccharides | Human skin fibroblasts | 1. Good antibacterial activities against Staphylococcus aureus and Escherichia coli 2. Supported fibroblast proliferation | [125] |
Collagen peptide | Enzymatical hydrolysis | Commercially available fish type I collagen hydrolysate from Amino collagen (Meiji Seika, Tokyo, Japan) | 6 weeks clinical studies in 25 Japanese women volunteers (35.1 ± 5.4 years old) | Improved skin hydration | [126,127] |
Collagen peptide | Enzymatical hydrolysis | MCP stabilized orthosilicic acid | Randomized patient groups | 1. No side effects, hypersensitivity, or systemic symptoms 2. Skin rejuvenation | [128] |
Collagen peptide | Enzymatical hydrolysis | Marine sponge collagen | Mouse fibroblasts (L929)/human keratinocytes (HaCaT) | 1. Increased cell proliferation 2. Photo-protective | [129] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Scaffold | Freeze-drying/cold-pressing/1,4-butanediol diglycidyl ether cross-linked | Snakehead fish scale collagen | Mouse lymphatic endothelial cells | 1. Improved cell attachment, proliferation and infiltration 2. Favorable growth of blood and lymphatic vessels | [131] |
Scaffold | Electrospinning | Acid-soluble jellyfish collagen/PLGA | Primary rabbit aortic endothelial cells and smooth muscle cells | 1. Enhanced cell proliferation 2. Directional cell alignment 3. Upregulated expressions smooth muscle and endothelial cell activity-related molecules 4. Enhanced endothelial cell development, and retention of the differentiated cell phenotype | [137] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Collagen peptide | Enzymatical hydrolysis | Tilapia scale type I collagen | Rat odontoblast-like cells (MDPC-23) | 1. Increased cell viability and cell attachment 2. Enhanced osteogenic gene expression 3. Accelerated matrix mineralization | [140] |
Collagen peptide | Enzymatical hydrolysis | MCP from tilapia scales | Primary human periodontal ligament cells | 1. Promoted cell viability 2. Upregulated expression of osteogenic markers and osteogenic-related proteins | [141] |
Scaffold | Elecrospinning | Tilapia fish collagen/bioactive glass/chitosan | Primary human periodontal ligament cells/in vivo dog furcation defect model | 1. Antibacterial activity on Streptococcus mutans 2. Enhanced viability and osteogenic differentiation 3. Promoted bone regeneration | [142] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Scaffold | Decellularization/decalcification | Tilapia fish scale–derived collagen matrix (FSCM) | In vivo rat ocular implantation model | 1. Biocompatible 2. Adequate light transmission 3. Reasonable light-scattering values | [147] |
Native collagen | Drying at 25 °C | Seabass scale collagen | Primary human limbal epithelial cells | 1. Good swelling ratio and microbial resistance 2. Enhanced cell viability, growth, proliferation, and migration | [148] |
Form of MC | Manufacture Technique | Materials | Biological Assessment | Outcomes | Ref |
---|---|---|---|---|---|
Scaffold | Freeze-drying/dehydrothermal cross-linked | Tilapia fish scale collagen/chitosan | Primary oral keratinocytes | Produced multilayered, polarized, stratified epithelial layer with superficial keratinization | [152] |
Scaffold | Electrospinning | MCP from tilapia fish scale/PCL | Thymic epithelial cells | 1. Facilitated cell adhesion, spreading, protrusions, and proliferation 2. Stimulated expression of thymopoietic genes and proteins | [153] |
Form of MC | Manufacture Technique | Drug | Biological Assessment | Route | Ref |
---|---|---|---|---|---|
MC based Scaffolds/PLGA microspheres | Silver carp skin collagen/chitosan/chondroitin sulfate/PLGA | Basic fibroblast growth factor | In vivo rat full-thickness skin wound model | Implanted subcutaneously | [155] |
Nanoparticle | Synodontidae fish scale collagen/calcium alginate | Calcium | Calcium content and bone mineral density | Intragastric administration | [156] |
Gels/films | Eel skin collagen | Antimicrobial drugs (ampicillin and tetracycline) | Anti-bacterial activity (Klebsiella pneumoniae, Staphylococcus aureus, Vibrio cholera, and Pseudomonas aeruginosa)/anti-fungal activity (Epidermophyton floccosum, Trichophyton mentagrophytes, and Candida albicans) | In vitro test | [157] |
Injectable gel | Collagen from chum salmon skin, bone and scales/chitosan | - | In vivo rat model | Implanted subcutaneously | [158] |
Powder/polymeric film | Marine sponge collagen | L-cysteine hydrochloride | In vitro permeation study | Topical application | [43] |
Coating | Marine sponge collagen | - | Disintegration test | In vitro test | [159] |
Nanoparticle | Marine sponge collagen | 17β-estradiol-hemihydrate | Transdermal absorption in human study | Topical application | [160] |
Form of MC | Source of MCP | Biological Assessment | Administration Route | Outcomes | Ref |
---|---|---|---|---|---|
Collagen peptide | Warm sea fish skin | In vivo HFD-fed mouse model | Oral | 1. Suppressed gain of weight and fat mass 2. Reduced levels of pro-inflammatory cytokines | [164] |
Collagen peptide | Chum salmon skin | In vivo T2DM rat model | Oral | 1. Inhibited expression of apoptosis biomarkers 2. Attenuated endothelial thinning and inflammatory exudation 3. Reduced blood glucose levels | [165] |
Collagen peptide | Chum salmon skin | In vivo T2DM rat model | Oral | 1. Improved glucose metabolism and insulin resistance 2. Decreased expression of oxidative stress biomarkers, inflammatory cytokines, and adipocytokines | [166] |
Collagen peptide | Chum salmon skin | Clinical study in patients with T2DM | Oral | 1. Reduced levels of fasting blood glucose, fasting blood insulin, total triglycerides, total cholesterol, LDL, and free-fatty acids 2. Increased levels of insulin sensitivity index, HDL, and adiponectin | [167] |
Collagen peptide | Chum salmon skin | Clinical study in patients with T2DM and primary hypertension | Oral | 1. Reduced levels of fasting blood glucose, diastolic blood pressure, mean arterial pressure, serum triglycerides, total cholesterol, LDL, and free-fatty acids 2. Increased levels HDL, adiponectin, insulin sensitivity index, and insulin secretion index | [168] |
Collagen peptide | Chum salmon skin | Clinical study in patients with T2DM and primary hypertension | Oral | 1. Decreased levels of free fatty acid 2. Increased levels of adiponectin | [169] |
Collagen peptide | Fish protein hydrolysate | Clinical study of two commercial MCP products (Nutripeptin® and Hydro MN Peptide®) in patients with T2DM | Oral | 1. Stabilized blood glucose levels 2. Reduced obesity risk 3. Promoted a prolonged sense of satiety | [105] |
Collagen peptide | Tuna skin | Mouse preadipocytes (3T3-L1)/in vivo HFD-fed mouse obesity model | Oral | 1. Inhibited lipid accumulation 2. Decreased expressions of key regulators in adipocyte differentiation and maintenance 3. Suppressed accumulation of palmitate-induced lipid vacuoles in hepatocytes 4. Reduced adipocyte size. 5. Reduced serum levels of total cholesterol, triglyceride, and LDL 6. Increased serum level of HDL | [170] |
References
- Brinckmann, J. Collagens at a Glance. Top. Curr. Chem. 2005, 247, 1–6. [Google Scholar] [CrossRef]
- Kular, J.K.; Basu, S.; Sharma, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng. 2014, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Wisithphrom, K.; Zhou, J.; Windsor, L.J. Matrix metalloproteinase dependent and independent collagen degradation. Front. Biosci. 2006, 11, 3100–3120. [Google Scholar] [CrossRef] [PubMed]
- Parenteau-Bareil, R.; Gauvin, R.; Cliché, S.; Gariépy, C.; Germain, L.; Berthod, F. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis. Acta Biomater. 2011, 7, 3757–3765. [Google Scholar] [CrossRef]
- Gorgieva, S.; Kokol, V. Biomaterials Applications for Nanomedicine; InTech: London, UK, 2011; Chapter 2; pp. 17–52. ISBN 978-953-307661-4. [Google Scholar]
- Lee, C.H.; Singla, A.; Lee, Y. Biomedical applications of collagen. Int. J. Pharm. 2001, 221, 1–22. [Google Scholar] [CrossRef]
- Shin, S.; Ikram, M.; Subhan, F.; Kang, H.Y.; Lim, Y.; Lee, R.; Jin, S.; Jeong, Y.H.; Kwak, J.Y.; Na, Y.J.; et al. Alginate–marine collagen–agarose composite hydrogels as matrices for biomimetic 3D cell spheroid formation. RSC Adv. 2016, 6, 46952–46965. [Google Scholar] [CrossRef]
- Lee, C.R.; Grodzinsky, A.J.; Spector, M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001, 22, 3145–3154. [Google Scholar] [CrossRef]
- Colchester, A.C.; Colchester, N.T. The origin of bovine spongiform encephalopathy: The human prion disease hypothesis. Lancet 2005, 366, 856–861. [Google Scholar] [CrossRef]
- Easterbrook, C.; Maddern, G. Porcine and bovine surgical products: Jewish, Muslim, and Hindu perspectives. Arch. Surg. 2008, 143, 366–370. [Google Scholar] [CrossRef]
- Sadowska, M.; Kolodziejska, I.; Niecikowska, C. Isolation of collagen from the skin of Baltic cod (Gadus morhua). Food Chem. 2003, 81, 257–262. [Google Scholar] [CrossRef]
- Yamada, S.; Yamamoto, K.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Potency of fish collagen as a scaffold for regenerative medicine. BioMed Res. Int. 2014, 2014, 302932. [Google Scholar] [CrossRef]
- Yamamoto, K.; Igawa, K.; Sugimoto, K.; Yoshizawa, Y.; Yanagiguchi, K.; Ikeda, T.; Yamada, S.; Hayashi, Y. Biological safety of fish (tilapia) collagen. BioMed Res. Int. 2014, 2014, 630757. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N. Isolation of collagen from fish waste materials – skin, bone and fins. Food Chem. 2000, 68, 277–281. [Google Scholar] [CrossRef]
- Krishnamoorthi, J.; Ramasamy, P.; Shanmugam, V.; Shanmugam, A. Isolation and partial characterization of collagen from outer skin of Sepia pharaonis (Ehrenberg, 1831) from Puducherry coast. Biochem. Biophys. Rep. 2017, 10, 39–45. [Google Scholar] [CrossRef]
- Cicciù, M.; Cervino, G.; Herford, A.S.; Famà, F.; Bramanti, E.; Fiorillo, L.; Lauritano, F.; Sambataro, S.; Troiano, G.; Laino, L. Facial Bone Reconstruction Using both Marine or Non-Marine Bone Substitutes: Evaluation of Current Outcomes in a Systematic Literature Review. Mar. Drugs 2018, 16, 27. [Google Scholar] [CrossRef]
- Huang, Q.; Zou, Y.; Arno, M.C.; Chen, S.; Wang, T.; Gao, J.; Dove, A.P.; Du, J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem. Soc. Rev. 2017, 46, 6255–6275. [Google Scholar] [CrossRef]
- Antoni, D.; Burckel, H.; Josset, E.; Noel, G. Three-dimensional cell culture: A breakthrough in vivo. Int. J. Mol. Sci. 2015, 16, 5517–5527. [Google Scholar] [CrossRef]
- Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003, 5, 29–40. [Google Scholar] [CrossRef]
- Liu, H.Y.; Li, D.; Guo, S.D. Studies on collagen from the skin of channel catfish (Ictalurus punctaus). Food Chem. 2007, 101, 621–625. [Google Scholar] [CrossRef]
- Wong, W.; Mooney, D. Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering; Birkhauser: Boston, MA, USA, 1997; pp. 51–82. ISBN 978-1-4612-8677-6. [Google Scholar]
- Gandhimathi, C.; Muthukumaran, P.; Srinvasan, D.K. Nanofiber Composites in Cardiac Tissue Engineering; Matthew Deans: Chennai, India, 2017; pp. 411–453. ISBN 978-0-08-100173-8. [Google Scholar]
- Sionkowska, A. Polymeric Biomaterials; CRC Press: Boca Raton, FL, USA, 2013; Chapter 11; pp. 309–342. ISBN 978-1-4200-9470-1. [Google Scholar]
- Hutmacher, D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529–2543. [Google Scholar] [CrossRef]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Yarlagadda, P.K.; Chandrasekharan, M.; Shyan, J.Y. Recent advances and current developments in tissue scaffolding. Bio Med. Mater. Eng. 2005, 15, 159–177. [Google Scholar]
- Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat. 2015, 227, 746–756. [Google Scholar] [CrossRef]
- Nicodemus, G.D.; Bryant, S.J. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14, 149–165. [Google Scholar] [CrossRef]
- Baker, B.M.; Mauck, R.L. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 2007, 28, 1967–1977. [Google Scholar] [CrossRef] [Green Version]
- Wise, J.K.; Yarin, A.L.; Megaridis, C.M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng. Part A 2009, 15, 913–921. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Rice, J.J.; Martino, M.M.; Laporte, L.D.; Tortelli, F.; Briquez, P.S.; Hubbell, J.A. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2013, 2, 57–71. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, H.; Hui, X. Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BioMed Res. Int. 2018, 2018, 7848901. [Google Scholar] [CrossRef]
- Skop, N.B.; Calderon, F.; Cho, C.H.; Gandhi, C.D.; Levison, S.W. Improvements in biomaterial matrices for neural precursor cell transplantation. Mol. Cell. Ther. 2014, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.G.; Bowlin, G.L. Tissue-engineering scaffolds: Can we re-engineer mother nature? Expert Rev. Med. Devices 2006, 3, 9–15. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, G.; Ma, L.; Wang, D.; Gao, C. Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. J. Mater. Chem. B 2016, 4, 4410–4419. [Google Scholar] [CrossRef]
- Kim, J.A.; Kim, H.N.; Im, S.K.; Chung, S.; Kang, J.Y.; Choi, N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics 2015, 9, 024115. [Google Scholar] [CrossRef]
- Pallela, R.; Ehrlich, H. Marine Sponges: Chemicobiological and Biomedical Applications; Springer: New Delhi, India, 2016; ISBN 978-81-322-2792-2. [Google Scholar]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, M.S. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef]
- Barzideh, Z.; Latiff, A.A.; Gan, C.Y.; Abedin, M.Z.; Alias, A.K. ACE Inhibitory and Antioxidant Activities of Collagen Hydrolysates from the Ribbon Jellyfish (Chrysaora sp.). Food Technol. Biotechnol. 2014, 52, 495–504. [Google Scholar] [CrossRef]
- Jankangram, W.; Chooluck, S.; Pomthong, B. Comparison of the Properties of Collagen Extracted from Dried Jellyfish and Dried Squid. Afr. J. Biotechnol. 2016, 15, 642–648. [Google Scholar] [CrossRef]
- Langasco, R.; Cadeddu, B.; Formato, M.; Lepedda, A.J.; Cossu, M.; Giunchedi, P.; Pronzato, R.; Rassu, G.; Manconi, R.; Gavini, E. Natural Collagenic Skeleton of Marine Sponges in Pharmaceutics: Innovative Biomaterial for Topical Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 710–720. [Google Scholar] [CrossRef]
- Cho, J.K.; Jin, Y.G.; Rha, S.J.; Kim, S.J.; Hwang, J.H. Biochemical characteristics of four marine fish skins in Korea. Food Chem. 2014, 159, 200–207. [Google Scholar] [CrossRef]
- Caruso, G. Fishery Wastes and By-products: A Resource to Be Valorised. J. Fish. Sci. 2015, 9, 80–83. [Google Scholar]
- Pozzolini, M.; Bruzzone, F.; Berilli, V.; Mussino, F.; Cerrano, C.; Benatti, U.; Giovine, M. Molecular Characterization of a Nonfibrillar Collagen from the Marine Sponge Chondrosia reniformis Nardo 1847 and Positive Effects of Soluble Silicates on Its Expression. Mar. Biotechnol. 2012, 14, 281–293. [Google Scholar] [CrossRef]
- Ehrlich, H.; Deutzmann, R.; Brunner, E.; Cappellini, E.; Koon, H.; Solazzo, C.; Yang, Y.; Ashford, D.; Thomas-Oates, J.; Lubeck, M.; et al. Mineralization of the Meter-Long Biosilica Structures of Glass Sponges is Template on Hydroxylated Collagen. Nat. Chem. 2010, 2, 1084–1088. [Google Scholar] [CrossRef]
- Mahboob, S. Isolation and characterization of collagen from fish waste material-skin, scales and fins of Catla catla and Cirrhinus mrigala. J. Food Sci. Technol. 2015, 52, 4296–4305. [Google Scholar] [CrossRef]
- Skierka, E.; Sadowska, M.; Karwowska, A. Optimization of condition for demineralization baltic cod (Gadus morhua) backbone. Food Chem. 2007, 105, 215–218. [Google Scholar] [CrossRef]
- Skierka, E.; Sadowska, M. The influence of different acids and pepsin on the extractability of collagen from the skin of baltic cod (Gadus morhua). Food Chem. 2007, 105, 1302–1306. [Google Scholar] [CrossRef]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from Marine Biological Sources and Medical Applications. Chem. Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef]
- Lin, Y.K.; Liu, D.C. Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 2006, 94, 621–625. [Google Scholar] [CrossRef]
- Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 343–354. [Google Scholar] [CrossRef]
- Silva, T.H.; Moreira-Silva, J.; Marques, A.L.; Domingues, A.; Bayon, Y.; Reis, R.L. Marine Origin Collagens and Its Potential Applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, C.D.; Barbaglio, A.; Martinello, T.; Alongi, V.; Fassini, D.; Cullorà, E.; Patruno, M.; Bonasoro, F.; Barbosa, M.A.; Carnevali, M.D.; et al. Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: The sea urchin. Mar. Drugs 2014, 12, 4912–4933. [Google Scholar] [CrossRef]
- Ferrario, C.; Leggio, L.; Leone, R.; Di Benedetto, C.; Guidetti, L.; Coccè, V.; Ascagni, M.; Bonasoro, F.; La Porta, C.A.M.; Candia Carnevali, M.D.; et al. Marine-derived collagen biomaterials from echinoderm connective tissues. Mar. Environ. Res. 2017, 128, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, G.; Shi, B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Soc. Leather Technol. Chem. 2005, 90, 23–28. [Google Scholar]
- Zhang, H.; Yu, L.; Yang, Q.; Sun, J.; Bi, J.; Liu, S.; Zhang, C.; Tang, L. Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides. Molecules 2012, 17, 5661–5674. [Google Scholar] [CrossRef]
- Schrieber, R.; Gareis, H. Gelatine Handbook: Theory and Industrial Practice; Wiley Blackwell: New York, NY, USA, 2007; ISBN 978-3-527-315482. [Google Scholar]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- He, H.L.; Liu, D.; Ma, C.B. Review on the angiotensin-I-converting enzyme (ACE) inhibitor peptides from marine proteins. Appl. Biochem. Biotechnol. 2013, 169, 738–749. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Dornelles, R.C.P.; Mello, R.O.; Kubota, E.H.; Mazutti, M.A.; Kempka, A.P.; Demiate, I.M. Collagen Extraction Process. Int. Food Res. 2016, 23, 913–922. [Google Scholar]
- Gallop, P.M.; Seifter, S. Preparation and properties of soluble collagens. Methods Enzymol. 1963, 6, 635–641. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Lavety, J.; Love, R.M. The connective tissues of fish VIII. Comparative studies on hake, cod and catfish collagens. J. Food Technol. 1976, 11, 389–399. [Google Scholar] [CrossRef]
- Kimura, S. Vertebrate skin type I collagen: Comparison of bony fishes with lamprey and calf. Comp. Biochem. Physiol. Part B 1983, 74, 525–528. [Google Scholar] [CrossRef]
- Kimura, S.; Zhu, X.P.; Matsui, R.; Shinjoh, M.; Takamizawa, S. Characterization of fish muscle type I collagen. J. Food Sci. 1988, 53, 1315–1318. [Google Scholar] [CrossRef]
- Nagai, T.; Yamashita, E.; Taniguchi, K.; Kanamori, N.; Suzuki, N. Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chem. 2001, 72, 425–429. [Google Scholar] [CrossRef]
- Nagai, N.; Yunoki, S.; Suzuki, T.; Sakata, M.; Tajima, K.; Munekata, M. Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells. J. Biosci. Bioeng. 2004, 97, 389–394. [Google Scholar] [CrossRef]
- Bae, I.; Osatomi, K.; Yoshida, A.; Osako, K.; Yamaguchi, A.; Hara, K. Biochemical properties of acid-soluble collagens extracted from the skins of underutilised fishes. Food Chem. 2008, 108, 49–54. [Google Scholar] [CrossRef]
- Gao, L.L.; Wang, Z.Y.; Li, Z.; Zhang, C.X.; Zhang, D.Q. The characterization of acid and pepsin soluble collagen from ovine bones (Ujumuqin sheep). J. Integr. Agric. 2018, 17, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Muralidharan, N.; Jeya Shakila, R.; Sukumar, D.; Jeyasekaran, G. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J. Food Sci. Technol. 2013, 50, 1106–1113. [Google Scholar] [CrossRef]
- Hayashi, Y.; Yamada, S.; Yanagi Guchi, K.; Koyama, Z.; Ikeda, T. Chitosan and fish collagen as biomaterials for regenerative medicine. Adv. Food Nutr. Res. 2012, 65, 107–120. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yoshizawa, Y.; Yanagiguchi, K.; Ikeda, T.; Yamada, S.; Hayashi, Y. The characterization of fish (tilapia) collagen sponge as a biomaterial. Int. J. Polym. Sci. 2015, 2015, 957385. [Google Scholar] [CrossRef]
- Xu, Y.; Bhate, M.; Brodsky, B. Characterization of the Nucleation Step and Folding of a Collagen Triple-Helix Peptide. Biochemistry 2002, 41, 8143–8151. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Babu, I.R.; Ganesh, K.N. Enhanced triple helix stability of collagen peptides with 4R-aminoprolyl (Amp) residues: Relative roles of electrostatic and hydrogen bonding effects. J. Am. Chem. Soc. 2001, 123, 2079–2080. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Colec, C.G.B.; Duodub, K.G. Extraction and physicochemical characterisation of Nile perch (Lates niloticus) skin and bone gelatine. Food Hydrocoll. 2004, 18, 581–592. [Google Scholar] [CrossRef]
- Nomura, Y.; Sakai, H.; Ishii, Y.; Shirai, K. Preparation and some properties of type I collagen from fish scales. Biosci. Biotechnol. Biochem. 1996, 60, 2092–2094. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Lanier, T.C.; Hultin, H.O. Food Chemistry; Marcel Dekker: New York, NY, USA, 1996; Chapter 15; pp. 902–924. ISBN 0-8247-9346-3. [Google Scholar]
- Dimitriou, R.; Jones, E.; McGonagle, D.; Giannoudis, P.V. Bone regeneration: Current concepts and future directions. BMC Med. 2011, 9, 66. [Google Scholar] [CrossRef]
- Cicciù, M. Real Opportunity for the Present and a Forward Step for the Future of Bone Tissue Engineering. J. Craniofac. Surg. 2017, 28, 592–593. [Google Scholar] [CrossRef]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef]
- Pallela, R.; Venkatesan, J.; Bhatnagar, I.; Shim, Y.B.; Kim, S.K. Application of Marine Collagen–Based Scaffolds in Bone Tissue Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 519–528. ISBN 978-042-908-673-1. [Google Scholar]
- Liu, C.; Sun, J. Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules 2014, 15, 436–443. [Google Scholar] [CrossRef]
- Yamada, S.; Yoshizawa, Y.; Kawakubo, A.; Ikeda, T.; Yanagiguchi, K.; Hayashi, Y. Early gene and protein expression associated with osteoblast differentiation in response to fish collagen peptides powder. Dent. Mater. J. 2013, 32, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Nagaoka, H.; Terajima, M.; Tsuda, N.; Hayashi, Y.; Yamauchi, M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent. Mater. J. 2013, 32, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, R.; Uemura, T.; Xu, Z.; Yamaguchi, I.; Ikoma, T.; Tanaka, J. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. A 2015, 103, 2531–2539. [Google Scholar] [CrossRef]
- Xu, Y.; Han, X.; Li, Y. Effect of marine collagen peptides on long bone development in growing rats. J. Sci. Food Agric. 2010, 90, 1485–1491. [Google Scholar] [CrossRef]
- Hu, C.H.; Yao, C.H.; Chan, T.M.; Huang, T.L.; Sen, Y.; Huang, C.Y.; Ho, C.Y. Effects of Different Concentrations of Collagenous Peptide from Fish Scales on Osteoblast Proliferation and Osteoclast Resorption. Chin. J. Physiol. 2016, 59, 191–201. [Google Scholar] [CrossRef]
- Velasco, M.A.; Narváez-Tovar, C.A.; Garzón-Alvarado, D.A. Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res. Int. 2015, 2015, 729076. [Google Scholar] [CrossRef]
- Pati, F.; Datta, P.; Adhikari, B.; Dhara, S.; Ghosh, K.; Das Mohapatra, P.K. Collagen scaffolds derived from fresh water fish origin and their biocompatibility. J. Biomed. Mater. Res. A 2012, 100, 1068–1079. [Google Scholar] [CrossRef]
- Diogo, G.S.; Senra, E.L.; Pirraco, R.P.; Canadas, R.F.; Fernandes, E.M.; Serra, J.; Pérez-Martín, R.I.; Sotelo, C.G.; Marques, A.P.; González, P.; et al. Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Mar. Drugs 2018, 16, 269. [Google Scholar] [CrossRef]
- Pallela, R.; Venkatesan, J.; Janapala, V.R.; Kim, S.K. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J. Biomed. Mater. Res. A 2012, 100, 486–495. [Google Scholar] [CrossRef]
- Elango, J.; Zhang, J.; Bao, B.; Palaniyandi, K.; Wang, S.; Wenhui, W.; Robinson, J.S. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2016, 91, 51–59. [Google Scholar] [CrossRef]
- Brennan, O.; Stenson, B.; Widaa, A.; O Gorman, D.M.; O Brien, F.J. Incorporation of the natural marine multi-mineral dietary supplement Aquamin enhances osteogenesis and improves the mechanical properties of a collagen-based bone graft substitute. J. Mech. Behav. Biomed. Mater. 2015, 47, 114–123. [Google Scholar] [CrossRef]
- Parisi, J.R.; Fernandes, K.R.; Avanzi, I.R.; Dorileo, B.P.; Santana, A.F.; Andrade, A.L.; Gabbai-Armelin, P.R.; Fortulan, C.A.; Trichês, E.S.; Granito, R.N.; et al. Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. Mar. Biotechnol. 2019, 21, 30–37. [Google Scholar] [CrossRef]
- Mredha, M.T.I.; Kitamura, N.; Nonoyama, T.; Wada, S.; Goto, K.; Zhang, X.; Nakajima, T.; Kurokawa, T.; Takagi, Y.; Yasuda, K.; et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials 2017, 132, 85–95. [Google Scholar] [CrossRef]
- Bernhardt, A.; Paul, B.; Gelinsky, M. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects. Mar. Drugs 2018, 16, 91. [Google Scholar] [CrossRef]
- Jin, S.; Sun, F.; Zou, Q.; Huang, J.; Zuo, Y.; Li, Y.; Wang, S.; Cheng, L.; Man, Y.; Yang, F.; et al. Fish Collagen and Hydroxyapatite Reinforced Poly(lactide-co-glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules 2019, 20, 2058–2067. [Google Scholar] [CrossRef]
- Raabe, O.; Reich, C.; Wenisch, S.; Hild, A.; Burg-Roderfeld, M.; Siebert, H.C.; Arnhold, S. Hydrolyzed fish collagen induced chondrogenic diVerentiation of equine adipose tissue-derived stromal cells. Histochem. Cell Biol. 2010, 134, 545–554. [Google Scholar] [CrossRef]
- Ohnishi, A.; Osaki, T.; Matahira, Y.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Minami, S. Evaluation of the Chondroprotective Effects of Glucosamine and Fish Collagen Peptide on a Rabbit ACLT Model Using Serum Biomarkers. J. Vet. Med. Sci. 2013, 75, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.; Uemura, T.; Yamaguchi, I.; Ikoma, T.; Tanaka, J. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J. Biosci. Bioeng. 2016, 122, 219–225. [Google Scholar] [CrossRef]
- Bermueller, C.; Schwarz, S.; Elsaesser, A.F.; Sewing, J.; Baur, N.; Bomhard, A.; Scheithauer, M.; Notbohm, H.; Rotter, N. Marine Collagen Scaffolds for Nasal Cartilage Repair: Prevention of Nasal Septal Perforations in a New Orthotopic Rat Model Using Tissue Engineering Techniques. Tissue Eng. Part A 2013, 19, 2201–2214. [Google Scholar] [CrossRef] [Green Version]
- Pustlauk, W.; Paul, B.; Gelinsky, M.; Bernhardt, A. Jellyfish collagen and alginate: Combined marine materials for superior chondrogenesis of hMSC. Mater. Sci. Eng. C 2016, 64, 190–198. [Google Scholar] [CrossRef]
- Cheung, R.C.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef]
- Sitje, T.S.; Grøndahl, E.C.; Sørensen, J.A. Clinical innovation: Fish-derived wound product for cutaneous wounds. Wounds Int. 2018, 9, 44–50. [Google Scholar]
- Wolcott, R.; Fletcher, J. The role of wound cleansing in the management of wounds. Wounds Int. 2014, 1, 25–31. [Google Scholar]
- Elias, P.M. The skin barrier as an innate immune element. Semin. Immunopathol. 2007, 29, 3–14. [Google Scholar] [CrossRef]
- Menon, G.K.; Kligman, A.M. Barrier functions of human skin: A holistic view. Skin Pharmacol. Physiol. 2009, 22, 178–189. [Google Scholar] [CrossRef]
- Vigneswari, S.; Murugaiyah, V.; Kaur, G.; Abdul Khalil, H.P.; Amirul, A.A. Biomacromolecule immobilization: Grafting of fish-scale collagen peptides onto aminolyzed P(3HB-co-4HB) scaffolds as a potential wound dressing. Biomed. Mater. 2016, 11, 055009. [Google Scholar] [CrossRef]
- Pal, P.; Srivas, P.K.; Dadhich, P.; Das, B.; Maity, P.P.; Moulik, D.; Dhara, S. Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. Int. J. Biol. Macromol. 2016, 93, 1507–1518. [Google Scholar] [CrossRef]
- Ullah, S.; Zainol, I.; Chowdhury, S.R.; Fauzi, M.B. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility. Int. J. Biol. Macromol. 2018, 111, 158–168. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Zhao, Y.; Wei, B.; Xu, C.; He, L.; Oliveira, C.L.P.; Wang, H. Centrifugation-induced fibrous orientation in fish-sourced collagen matrices. Soft Matter 2017, 13, 9220–9228. [Google Scholar] [CrossRef]
- Chandika, P.; Ko, S.C.; Oh, G.W.; Heo, S.Y.; Nguyen, V.T.; Jeon, Y.J.; Lee, B.; Jang, C.H.; Kim, G.; Park, W.S.; et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int. J. Biol. Macromol. 2015, 81, 504–513. [Google Scholar] [CrossRef]
- El-Rashidy, A.A.; Gad, A.; Abu-Hussein, A.H.; Habib, S.I.; Badr, N.A.; Hashem, A.A. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. Int. J. Biol. Macromol. 2015, 79, 618–626. [Google Scholar] [CrossRef]
- Chen, J.; Gao, K.; Liu, S.; Wang, S.; Elango, J.; Bao, B.; Dong, J.; Liu, N.; Wu, W. Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process In Vivo. Mar. Drugs 2019, 17, 33. [Google Scholar] [CrossRef]
- Li, Q.; Mu, L.; Zhang, F.; Sun, Y.; Chen, Q.; Xie, C.; Wang, H. A novel fish collagen scaffold as dural substitute. Mater. Sci. Eng. C 2017, 80, 346–351. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, P.; Zhou, C.; Li, S.; Hong, P. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Mar. Drugs 2017, 15, 102. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Liang, R.; Zhao, M.; Zhang, Z.; Li, Y. Oral administration of marine collagen peptides prepared from chum salmon (Oncorhynchus keta) improves wound healing following cesarean section in rats. Food Nutr. Res. 2015, 59, 26411. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Ding, Y.; Dai, X.; Li, Y. Oral administration of marine collagen peptides from Chum Salmon skin enhances cutaneous wound healing and angiogenesis in rats. J. Sci. Food Agric. 2011, 91, 2173–2179. [Google Scholar] [CrossRef]
- Shah, J.B. The History of Wound Care. J. Am. Coll. Certif. Wound Spec. 2011, 3, 65–66. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Sui, B.; Mo, X.; Sun, J. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: Fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo. Int. J. Nanomed. 2017, 12, 3495–3507. [Google Scholar] [CrossRef]
- Jana, P.; Mitra, T.; Selvaraj, T.K.R.; Gnanamani, A.; Kundu, P.P. Preparation of guar gum scaffold film grafted with ethylenediamine and fish scale collagen, cross-linked with ceftazidime for wound healing application. Carbohydr. Polym. 2016, 153, 573–581. [Google Scholar] [CrossRef]
- Muthukumar, T.; Prabu, P.; Ghosh, K.; Sastry, T.P. Fish scale collagen sponge incorporated with Macrotyloma uniflorum plant extract as a possible wound/burn dressing material. Colloids Surf. B Biointerfaces 2014, 113, 207–212. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.L.; Zhang, Q.; Li, P. Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: Antibacterial properties and potential for wound dressing. Int. J. Nanomed. 2011, 6, 667–676. [Google Scholar] [CrossRef]
- Sibilla, S.; Godfrey, M.; Brewer, S.; Budh-Raja, A.; Genovese, L. An Overview of the Beneficial Effects of Hydrolysed Collagen as a Nutraceutical on Skin Properties: Scientific Background and Clinical Studies. Open Nutraceuticals J. 2015, 8, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Ohara, H.; Ito, K.; Nakamura, Y.; Takahashi, S. Clinical effect of fish type1 collagen hydrolysate on skin properties. ITE Lett. 2006, 7, 386–390. [Google Scholar]
- Petersen Vitello Kalil, C.L.; Campos, V.; Cignachi, S.; Favaro Izidoro, J.; Prieto Herman Reinehr, C.; Chaves, C. Evaluation of cutaneous rejuvenation associated with the use of ortho-silicic acid stabilized by hydrolyzed marine collagen. J. Cosmet. Dermatol. 2018, 17, 814–820. [Google Scholar] [CrossRef]
- Pozzolini, M.; Millo, E.; Oliveri, C.; Mirata, S.; Salis, A.; Damonte, G.; Arkel, M.; Scarfì, S. Elicited ROS Scavenging Activity, Photoprotective, and Wound-Healing Properties of Collagen-Derived Peptides from the Marine Sponge Chondrosia reniformis. Mar. Drugs 2018, 16, 465. [Google Scholar] [CrossRef]
- Serbo, J.V.; Gerecht, S. Vascular tissue engineering: Biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res. Ther. 2013, 4, 8. [Google Scholar] [CrossRef]
- Wang, J.K.; Yeo, K.P.; Chun, Y.Y.; Tan, T.T.Y.; Tan, N.S.; Angeli, V.; Choong, C. Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomater. 2017, 63, 246–260. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, H.P.; Quek, C.H.; Chia, S.M.; Yu, H. Quantitative measurement of collagen methylation by capillary electrophoresis. Electrophoresis 2004, 25, 3416–3421. [Google Scholar] [CrossRef]
- Wang, J.; Lee, I.L.; Lim, W.S.; Chia, S.M.; Yu, H.; Leong, K.W.; Mao, H.Q. Evaluation of collagen and methylated collagen as gene carriers. Int. J. Pharm. 2004, 279, 115–126. [Google Scholar] [CrossRef]
- Liang, C.; Peyman, G.A.; Serracarbassa, P.; Calixto, N.; Chow, A.A.; Rao, P. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int. Ophthalmol. 1998, 22, 13–18. [Google Scholar] [CrossRef]
- Sehgal, P.K.; Srinivasan, A. Collagen-coated microparticles in drug delivery. Expert Opin. Drug Deliv. 2009, 6, 687–695. [Google Scholar] [CrossRef]
- Gough, J.E.; Scotchford, C.A.; Downes, S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 2002, 61, 121–130. [Google Scholar] [CrossRef]
- Jeong, S.I.; Kim, S.Y.; Cho, S.K.; Chong, M.S.; Kim, K.S.; Kim, H.; Lee, S.B.; Lee, Y.M. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 2007, 28, 1115–1122. [Google Scholar] [CrossRef]
- Aurrekoetxea, M.; Garcia-Gallastegui, P.; Irastorza, I.; Luzuriaga, J.; Uribe-Etxebarria, V.; Unda, F.; Ibarretxe, G. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front. Physiol. 2015, 6, 289. [Google Scholar] [CrossRef]
- Chang, W.J.; Shinichi, A.; Kamakura, S.; Huang, R.Y.; Chen, J.W. Bioengineering Materials in Dental Application. BioMed Res. Int 2017, 2017, 2135036. [Google Scholar] [CrossRef]
- Tang, J.; Saito, T. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study. BioMed Res. Int 2015, 2015, 139476. [Google Scholar] [CrossRef]
- Liu, C.; Sun, J. Hydrolyzed tilapia fish collagen induces osteogenic differentiation of human periodontal ligament cells. Biomed. Mater. 2015, 10, 065020. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Sui, B.; Liu, C.; Mo, X.; Sun, J. Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. Biomed. Mater. 2017, 13, 055004. [Google Scholar] [CrossRef]
- Lamm, V.; Hara, H.; Mammen, A.; Dhaliwal, D.; Cooper, D.K. Corneal blindness and xenotransplantation. Xenotransplantation 2014, 21, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Akpek, E.K.; Cassard, S.D.; Dunlap, K.; Hahn, S.; Ramulu, P.Y. Donor Corneal Transplantation vs Boston Type 1 Keratoprosthesis in Patients with Previous Graft Failures: A Retrospective Single Center Study (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 2015, 113, T3-1–T3-12. [Google Scholar]
- Zhao, X.; Song, W.; Chen, Y.; Liu, S.; Ren, L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater. Sci. 2018, 7, 51–62. [Google Scholar] [CrossRef]
- Chae, J.J.; Ambrose, W.M.; Espinoza, F.A.; Mulreany, D.G.; Ng, S.; Takezawa, T.; Trexler, M.M.; Schein, O.D.; Chuck, R.S.; Elisseeff, J.H. Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. Acta Ophthalmol. 2015, 93, e57–e66. [Google Scholar] [CrossRef]
- van Essen, T.H.; Lin, C.C.; Hussain, A.K.; Maas, S.; Lai, H.J.; Linnartz, H.; van den Berg, T.J.; Salvatori, D.C.; Luyten, G.P.; Jager, M.J. A fish scale-derived collagen matrix as artificial cornea in rats: Properties and potential. Invest. Ophthalmol. Vis. Sci. 2013, 54, 3224–3233. [Google Scholar] [CrossRef]
- Krishnan, S.; Sekar, S.; Katheem, M.F.; Krishnakumar, S.; Sastry, T.P. Fish scale collagen--a novel material for corneal tissue engineering. Artif. Organs 2012, 36, 829–835. [Google Scholar] [CrossRef]
- Izumi, K.; Feinberg, S.E.; Iida, A.; Yoshizawa, M. Intraoral grafting of an ex vivo produced oral mucosa equivalent: A preliminary report. Int. J. Oral Maxillofac. Surg. 2003, 32, 188–197. [Google Scholar] [CrossRef]
- Izumi, K.; Marcelo, C.L.; Feinberg, S.E. Enrichment of oral mucosa and skin keratinocyte progenitor/stem cells. Methods Mol. Biol. 2013, 989, 293–303. [Google Scholar] [CrossRef]
- Smith, L.E.; Hearnden, V.; Lu, Z.; Smallwood, R.; Hunter, K.D.; Matcher, S.J.; Thornhill, M.H.; Murdoch, C.; MacNeil, S. Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro. J. Biomed. Opt. 2011, 16, 116015. [Google Scholar] [CrossRef]
- Terada, M.; Izumi, K.; Ohnuki, H.; Saito, T.; Kato, H.; Yamamoto, M.; Kawano, Y.; Nozawa-Inoue, K.; Kashiwazaki, H.; Ikoma, T.; et al. Construction and characterization of a tissue-engineered oral mucosa equivalent based on a chitosan-fish scale collagen composite. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1792–1802. [Google Scholar] [CrossRef]
- Choi, D.J.; Choi, S.M.; Kang, H.Y.; Min, H.J.; Lee, R.; Ikram, M.; Subhan, F.; Jin, S.W.; Jeong, Y.H.; Kwak, J.Y.; et al. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture. J. Biotechnol. 2015, 205, 47–58. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Cao, H.; Chen, M.M.; Liu, Y.; Liu, Y.Y.; Huang, Y.Q.; Wang, J.H.; Chen, J.D.; Zhang, Q.Q. Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids Surf. B Biointerfaces 2015, 136, 1098–1106. [Google Scholar] [CrossRef]
- Guo, H.; Hong, Z.; Yi, R. Core-Shell Collagen Peptide Chelated Calcium/Calcium Alginate Nanoparticles from Fish Scales for Calcium Supplementation. J. Food Sci. 2015, 80, N1595–N1601. [Google Scholar] [CrossRef]
- Veeruraj, A.; Arumugam, M.; Ajithkumar, T.; Balasubramanian, T. Isolation and characterization of drug delivering potential of type-I collagen from eel fish Evenchelys macrura. J. Mater. Sci. Mater. Med. 2012, 23, 1729–1738. [Google Scholar] [CrossRef]
- Wang, W.; Itoh, S.; Aizawa, T.; Okawa, A.; Sakai, K.; Ohkuma, T.; Demura, M. Development of an injectable chitosan/marine collagen composite gel. Biomed. Mater. 2010, 5, 065009. [Google Scholar] [CrossRef]
- Nicklas, M.; Schatton, W.; Heinemann, S.; Hanke, T.; Kreuter, J. Enteric coating derived from marine sponge collagen. Drug Dev. Ind. Pharm. 2009, 35, 1384–1388. [Google Scholar] [CrossRef]
- Nicklas, M.; Schatton, W.; Heinemann, S.; Hanke, T.; Kreuter, J. Preparation and characterization of marine sponge collagen nanoparticles and employment for the transdermal delivery of 17beta-estradiol-hemihydrate. Drug Dev. Ind. Pharm. 2009, 35, 1035–1042. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef]
- Leitner, D.R.; Frühbeck, G.; Yumuk, V.; Schindler, K.; Micic, D.; Woodward, E.; Toplak, H. Obesity and Type 2 Diabetes: Two Diseases with a Need for Combined Treatment Strategies—EASO Can Lead the Way. Obes. Facts 2017, 10, 483–492. [Google Scholar] [CrossRef]
- Tschöp, M.; DiMarchi, R. Single-Molecule Combinatorial Therapeutics for Treating Obesity and Diabetes. Diabetes 2017, 66, 1766–1769. [Google Scholar] [CrossRef] [Green Version]
- Astre, G.; Deleruyelle, S.; Dortignac, A.; Bonnet, C.; Valet, P.; Dray, C. Diet-induced obesity and associated disorders are prevented by natural bioactive type 1 fish collagen peptides (Naticol®) treatment. J. Physiol. Biochem. 2018, 74, 647–654. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, W.; Liu, J.; Mu, B.; Zhang, F.; Lai, N.; Zhou, J.; Xu, A.; Li, Y. Marine collagen peptides reduce endothelial cell injury in diabetic rats by inhibiting apoptosis and the expression of coupling factor 6 and microparticles. Mol. Med. Rep. 2017, 16, 3947–3957. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, W.; Mu, B.; Zhang, F.; Lai, N.; Zhou, J.; Xu, A.; Liu, J.; Li, Y. Effects of marine collagen peptides on glucose metabolism and insulin resistance in type 2 diabetic rats. J. Food Sci. Technol. 2017, 54, 2260–2269. [Google Scholar] [CrossRef]
- Zhu, C.F.; Li, G.Z.; Peng, H.B.; Zhang, F.; Chen, Y.; Li, Y. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl. Physiol. Nutr. Metab. 2010, 35, 797–804. [Google Scholar] [CrossRef]
- Zhu, C.F.; Li, G.Z.; Peng, H.B.; Zhang, F.; Chen, Y.; Li, Y. Therapeutic effects of marine collagen peptides on Chinese patients with type 2 diabetes mellitus and primary hypertension. Am. J. Med. Sci. 2010, 340, 360–366. [Google Scholar] [CrossRef]
- Zhu, C.F.; Li, G.Z.; Peng, H.B.; Zhang, F.; Chen, Y.; Li, Y. Effect of marine collagen peptides on markers of metabolic nuclear receptors in type 2 diabetic patients with/without hypertension. Biomed. Environ. Sci. 2010, 23, 113–120. [Google Scholar] [CrossRef]
- Lee, E.J.; Hur, J.; Ham, S.A.; Jo, Y.; Lee, S.; Choi, M.J.; Seo, H.G. Fish collagen peptide inhibits the adipogenic differentiation of preadipocytes and ameliorates obesity in high fat diet-fed mice. Int. J. Biol. Macromol. 2017, 104, 281–286. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.-S.; Ok, Y.-J.; Hwang, S.-Y.; Kwak, J.-Y.; Yoon, S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar. Drugs 2019, 17, 467. https://doi.org/10.3390/md17080467
Lim Y-S, Ok Y-J, Hwang S-Y, Kwak J-Y, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Marine Drugs. 2019; 17(8):467. https://doi.org/10.3390/md17080467
Chicago/Turabian StyleLim, Ye-Seon, Ye-Jin Ok, Seon-Yeong Hwang, Jong-Young Kwak, and Sik Yoon. 2019. "Marine Collagen as A Promising Biomaterial for Biomedical Applications" Marine Drugs 17, no. 8: 467. https://doi.org/10.3390/md17080467
APA StyleLim, Y. -S., Ok, Y. -J., Hwang, S. -Y., Kwak, J. -Y., & Yoon, S. (2019). Marine Collagen as A Promising Biomaterial for Biomedical Applications. Marine Drugs, 17(8), 467. https://doi.org/10.3390/md17080467