Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B
Abstract
:1. Introduction
2. Results
2.1. Isolation and Screening of Strains for Cytotoxic Activities
2.2. Structural Elucidation
2.3. Analysis of Deoxy-Sugar Glycosyltransferases
2.4. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Isolation and Identification of Strain
3.3. Preparation of Crude Extracts
3.4. Fermentation and Extraction of Strain 110B
3.5. Determination of Aglycone Moieties and Sugars Configuration
3.6. Biological Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar] [CrossRef]
- Jiang, X.T.; Peng, X.; Deng, G.H.; Sheng, H.F.; Wang, Y.; Zhou, H.W.; Tam, N.F.Y. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef]
- Xu, J. Biomolecules produced by mangrove-associated microbes. Curr. Med. Chem. 2011, 18, 5224–5266. [Google Scholar] [CrossRef]
- Gomes, N.C.M.; Borges, L.R.; Rodolfo, P.; Pinto, F.N.; Mendonça-Hagler, L.C.S.; Smalla, K. Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol. Ecol. 2010, 66, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Ghizelini, A.M.; Mendonça-Hagler, L.C.S.; Macrae, A. Microbial diversity in Brazilian mangrove sediments―A mini review. Braz. J. Microbiol. 2012, 43, 1242–1254. [Google Scholar] [CrossRef]
- Hong, K.; Gao, A.H.; Xie, Q.Y.; Gao, H.; Zhuang, L.; Lin, H.P.; Yu, H.P.; Li, J.; Yao, X.S.; Goodfellow, M.; et al. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs 2009, 7, 24–44. [Google Scholar] [CrossRef]
- Abdelmohsen, U.R.; Bayer, K.; Hentschel, U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat. Prod. Rep. 2014, 31, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Velhopereira, S.; Kamat, N.M. Antimicrobial screening of actinobacteria using a modified cross-streak method. Indian. J. Pharm. Sci. 2012, 73, 223–228. [Google Scholar] [CrossRef]
- Hirsch, A.M.; Valdés, M. Micromonospora: An important microbe for biomedicine and potentially for biocontrol and biofuels. Soil. Biol. Biochem. 2010, 42, 536–542. [Google Scholar] [CrossRef]
- Euzéby, J.P. List of bacterial names with standing in nomenclature: A folder available on the internet. Int. J. Syst. Evol. Microbiol. 1997, 47, 590–592. [Google Scholar] [CrossRef]
- Phongsopitanun, W.; Kudo, T.; Ohkuma, M.; Pittayakhajonwut, P.; Suwanborirux, K.; Tanasupawat, S. Micromonospora sediminis sp. nov., isolated from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 3235–3240. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hong, K. Micromonospora ovatispora sp. nov. isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 889–893. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Deng, Z.; Hong, K. Micromonospora zhanjiangensis sp. nov., isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 2015, 65, 4880–4885. [Google Scholar] [CrossRef]
- Li, L.; Tang, Y.L.; Wei, B.; Xie, Q.Y.; Deng, Z.; Hong, K. Micromonospora sonneratiae sp. nov., isolated from a root of Sonneratia apetala. Int. J. Syst. Evol. Microbiol. 2013, 63, 2383–2388. [Google Scholar] [CrossRef] [PubMed]
- Songsumanus, A.; Tanasupawat, S.; Igarashi, Y.; Kudo, T. Micromonospora maritima sp. nov., isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 2013, 63, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Azman, A.S.; Othman, I.; Velu, S.S.; Chan, K.G.; Lee, L.H. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front. Microbiol. 2015, 6, 856. [Google Scholar] [CrossRef]
- Kyeremeh, K.; Acquah, K.S.; Sazak, A.; Houssen, W.; Tabudravu, J.; Deng, H.; Jaspars, M. Butremycin, the 3-hydroxyl derivative of ikarugamycin and a protonated aromatic tautomer of 5’-methylthioinosine from a ghanaian Micromonospora sp. K310. Mar. Drugs 2014, 12, 999–1012. [Google Scholar] [CrossRef]
- Xu, D.B.; Ye, W.W.; Han, Y.; Deng, Z.X.; Hong, K. Natural products from mangrove actinomycetes. Mar. Drugs 2014, 12, 2590–2613. [Google Scholar] [CrossRef]
- Al-Maharik, N.; Botting, N.P. An efficient method for the glycosylation of isoflavones. Eur. J. Org. Chem. 2008, 33, 5622–5629. [Google Scholar] [CrossRef]
- Kang, H.R.; Lee, D.; Benndorf, R.; Jung, W.H.; Beemelmanns, C.; Kang, K.S.; Kim, K.H. Termisoflavones A-C, isoflavonoid glycosides from termite-associated Streptomyces sp. RB1. J. Nat. Prod. 2016, 79, 3072–3078. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Rodriguez, L.; Patallo, E.P.; Lipata, F.; Braña, A.F.; Méndez, C.; Salas, J.A.; Rohr, J. Digitoxosyltetracenomycin C and glucosyltetracenomycin C, two novel elloramycin analogues obtained by exploring the sugar donor substrate specificity of glycosyltransferase ElmGT. J. Nat. Prod. 2002, 65, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, J.A.; Sadler, I.H.; Pickup, M.B.; Tabor, A.B. Complete assignment of the 1H and 13C NMR spectra and solution conformation of the antitumour antibiotic, aclacinomycin A. Tetrahedron 1995, 51, 7215–7222. [Google Scholar] [CrossRef]
- Gui, C.; Yuan, J.; Mo, X.H.; Huang, H.B.; Zhang, S.W.; Gu, Y.C.; Ju, J.H. Cytotoxic anthracycline metabolites from a recombinant Streptomyces. J. Nat. Prod. 2018, 81, 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Ndejouong, B.L.S.T.; Sattler, I.; Dahse, H.M.; Kothe, E.; Hertweck, C. Isoflavones with unusually modified B-rings and their evaluation as antiproliferative agents. Cheminform 2009, 43, 4548–4558. [Google Scholar] [CrossRef]
- Bairoch, A.; Apweiler, R.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.Z.; Lopez, R.; Magrane, M.; et al. The universal protein resource (UniProt). Nucleic. Acids. Res. 2005, 33, 154–159. [Google Scholar] [CrossRef]
- Consortium, U.P. UniProt: A hub for protein information. Nucleic. Acids. Res. 2015, 43, 204–212. [Google Scholar] [CrossRef]
- Lu, W.; Leimkuhler, C.; Oberthür, M.; Kahne, D.; Walsh, C.T. AknK is an l-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 2004, 43, 4548–4558. [Google Scholar] [CrossRef]
- Yu, X.Y.; Zhang, L.; Ren, B.; Yang, N.; Liu, M.; Liu, X.T.; Zhang, L.X.; Ding, L.X. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int. J. Syst. Evol. Microbiol. 2015, 65, 896–901. [Google Scholar] [CrossRef]
- Embley, T. The linear PCR reaction: A simple and robust method for sequencing amplified rRNA genes. Lett. Appl. Microbiol. 1991, 13, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Chou, K.J.; Huang, C.Y.; Wen, Z.H.; Hsu, C.H.; Wu, Y.C.; Dai, C.F.; Sheu, J.H. Steroids from the soft coral Sinularia crassa. Mar. Drugs 2012, 10, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.H.; Hindler, J.F.; Reller, L.B.; Weinstein, M.P. New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.D.; Zhang, H.; Ying, L.P.; Wang, C.X.; Jiang, N.; Zhou, Y.; Wang, H.B.; Bai, H. Five new epothilone metabolites from Sorangium cellulosum strain So0157-2. J. Antibiot. 2009, 62, 483–487. [Google Scholar] [CrossRef] [PubMed]
Position | 1a | 2b | 3b | |||
---|---|---|---|---|---|---|
δc | δH (J in Hz) | δc | δH (J in Hz) | δc | δH (J in Hz) | |
2 | 154.9 | 8.08 s | 154.9 | 8.12 s | 155.2 | 8.21 s |
3 | 125.6 | 126.2 | 125.9 | |||
4 | 178 | 178.1 | 177.9 | |||
5 | 128.5 | 7.97 d (9.0) | 128.2 | 8.06 d (9.0) | 128.2 | 8.12 d (8.9) |
6 | 116.5 | 6.84 dd (9.0, 2.4) | 117.2 | 7.09 dd (9.0, 2.3) | 117.2 | 7.15 dd (8.9, 2.2) |
7 | 164.7 | 163.1 | 163.1 | |||
8 | 103.3 | 6.76 d (2.4) | 104.4 | 7.18 d (2.3) | 104.4 | 7.25 d (2.2) |
9 | 159.8 | 159.4 | 159.3 | |||
10 | 118.2 | 119.8 | 119.7 | |||
1′ | 126.7 | 124.1 | 125.9 | |||
2′, 6′ | 131.3 | 7.39 d (8.7) | 131.4 | 7.31 d (9.0) | 131.3 | 7.47 d (8.7) |
3′, 5′ | 117.5 | 7.05 d (8.7) | 116.3 | 6.78 d (9.0) | 117.4 | 7.13 d (8.7) |
4′ | 158.3 | 158.8 | 158.3 | |||
1″ | 97.6 | 5.62 br d (3.5) | 98.2 | 5.78 br d (3.6) | 97.6 | 5.69 br d (3.5) |
2″ | 32.1 | 2.03 ddd (12.8, 11.9, 3.6) | 32.9 | 2.07 ddd (13.2,12.0, 3.6) | 33.2 | 2.08 ddd (12.8, 12.0, 3.5) |
1.90 dd (12.8, 5.0) | 1.96 dd (13.2, 5.0) | 1.91 dd (12.8, 5.1) | ||||
3″ | 66.7 | 4.09 ddd (11.9, 5.0, 3.0) | 66.6 | 4.09 ddd (12.0, 5.0, 3.0) | 66.7 | 4.16 ddd (12.0, 5.1, 3.1) |
4″ | 72.1 | 3.55 br d (3.0) | 71.9 | 3.57 br d (3.0) | 71.9 | 3.62 m |
5″ | 68.6 | 3.89 q (6.6) | 69.3 | 3.86 q (6.6) | 69.3 | 3.91 m |
6″ | 18.4 | 1.10 d (6.6) | 17.2 | 1.12 d (6.6) | 17.2 | 1.18 d (6.2) |
1‴ | 98.2 | 5.84 br d (3.5) | ||||
2‴ | 32.9 | 2.12 ddd (13.1, 12.0, 3.5) | ||||
1.98 dd (13.1, 5.1) | ||||||
3‴ | 66.5 | 4.13 ddd (12.0, 5.1, 3.1) | ||||
4‴ | 72.1 | 3.62 m | ||||
5‴ | 68.6 | 3.95 m | ||||
6‴ | 17.2 | 1.16 d (6.2) |
Compounds | IC50 (μg/mL) | ||
---|---|---|---|
A549 | HepG2 | HCT116 | |
1 | 17.55 | 52.71 | 16.00 |
2 | 16.95 | 50.90 | 15.40 |
3 | 14.79 | 44.42 | 13.48 |
Doxorubicin | 1.02 | 0.86 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.-J.; Zhang, S.-Y.; Ye, Y.-H.; Yu, Z.; Qi, H.; Zhang, H.; Xue, Z.-L.; Wang, J.-D.; Wu, M. Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Mar. Drugs 2019, 17, 294. https://doi.org/10.3390/md17050294
Wang R-J, Zhang S-Y, Ye Y-H, Yu Z, Qi H, Zhang H, Xue Z-L, Wang J-D, Wu M. Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Marine Drugs. 2019; 17(5):294. https://doi.org/10.3390/md17050294
Chicago/Turabian StyleWang, Rui-Jun, Shao-Yong Zhang, Yang-Hui Ye, Zhen Yu, Huan Qi, Hui Zhang, Zheng-Lian Xue, Ji-Dong Wang, and Min Wu. 2019. "Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B" Marine Drugs 17, no. 5: 294. https://doi.org/10.3390/md17050294
APA StyleWang, R. -J., Zhang, S. -Y., Ye, Y. -H., Yu, Z., Qi, H., Zhang, H., Xue, Z. -L., Wang, J. -D., & Wu, M. (2019). Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Marine Drugs, 17(5), 294. https://doi.org/10.3390/md17050294