Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Rates
2.2. Phylogeny and Habitat Explaining the Proportional Fatty Acid Profiles and Contents of Diatoms and Dinoflagellates
2.3. The Total Fatty Acid Contents of Diatoms and Dinoflagellates
2.4. The w-3 and w-6 PUFA Contents and w-6:3 -Ratios of Diatoms and Dinoflagellates
3. Materials and Methods
3.1. Algal Culturing and Growth Rate Determinations
3.2. Total Lipid Extraction, Fatty Acid Transesterification and Analysis by GC-MS
3.3. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as healthy ingredients for functionalfood: A review. Food Funct. 2017, 8, 2672. [Google Scholar] [CrossRef] [PubMed]
- Twining, C.W.; Brenna, J.T.; Hairston, N.G.; Flecker, A.S. Highly unsaturated fatty acids in nature: What we know and what we need to learn. Oikos 2016, 125, 749–760. [Google Scholar] [CrossRef]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Ω-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Ω-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary ω-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Chen, B. Effects of dietary essential fatty acids on reproduction rates of subtropical calanoid copepod, Acartia erythraea. Mar. Ecol. Prog. Ser. 2012, 455, 95–110. [Google Scholar] [CrossRef]
- Jonasdottir, S.H. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica—laboratory observations. Mar. Biol. 1994, 121, 67–81. [Google Scholar] [CrossRef]
- Peltomaa, E.T.; Aalto, S.L.; Vuorio, K.M.; Taipale, S.J. The importance of phytoplankton biomolecule availability for secondary production. Front. Ecol. Evol. 2017, 5, 128. [Google Scholar] [CrossRef]
- Taipale, S.J.; Kahilainen, K.K.; Holtgrieve, G.W.; Peltomaa, E.T. Simulated eutrophication and browning alters zooplankton nutritional quality and determines juvenile fish growth and survival. Ecol. Evol. 2018, 8, 2671–2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hixson, S.M.; Sharma, B.; Kainz, M.J.; Wacker, A.; Arts, M.T. Production, distribution, and abundance of long chain ω-3 polyunsaturated fatty acids: A fundamental dichotomy between freshwater and terrestrial ecosystems. Environ. Rev. 2015, 23, 414–424. [Google Scholar] [CrossRef]
- Burdge, G.C.; Calder, P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Domenichiello, A.; Kitson, A.P.; Bazinet, R.B. Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Ahlgren, G.; Gustafsson, I.-B.; Boberg, M. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 1992, 28, 37–50. [Google Scholar] [CrossRef]
- Taipale, S.; Strandberg, U.; Peltomaa, E.; Galloway, A.W.E.; Ojala, A.; Brett, M.T. Fatty acid composition as biomarkers of freshwater microalgae: Analysis of 37 strains of microalgae in 22 genera and in 7 classes. Aquat. Microb. Ecol. 2013, 71, 165–178. [Google Scholar] [CrossRef]
- Galloway, A.W.E.; Winder, M. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids. PLoS ONE 2015, 10, e0130053. [Google Scholar] [CrossRef]
- Jónasdóttir, S.H. Fatty Acid Profiles and Production in Marine Phytoplankton. Mar. Drugs 2019, 17, 151. [Google Scholar] [CrossRef]
- Taipale, S.J.; Vuorio, K.; Strandberg, U.; Kahilainen, K.K.; Järvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ. Int. 2016, 96, 156–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brett, M.T.; Müller-Navarra, D.C.; Ballantyne, A.P.; Ravet, J.L.; Goldman, C.R. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr. 2006, 51, 2428–2437. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ω-6/ω-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Brown, M.R.; Jefferey, S.W.; Volkman, J.K.; Dunstan, G.A. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef] [Green Version]
- Ryckebosch, E.; Muylaert, K.; Foubert, I. Optimization of an analytical procedure for extraction of lipids from microalgae. J. Am. Oil Chem. Soc. 2012, 89, 189–198. [Google Scholar] [CrossRef]
- Anderson, B.M.; Ma, D.W. Are all n−3 polyunsaturated fatty acids created equal? Lipids Health Dis. 2009, 8, 33. [Google Scholar] [CrossRef]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol. Res. Pract. 2011. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Ω-6/Ω-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Gester, H. Can adults adequately convert alpha-linolenic acid (18:3n−3) to eicosapentaenoic acid (20:5n−3) and docosahexaenoic acid (22:6n−3)? Int. J. Vitam. Nutr. Res. 1998, 68, 159–173. [Google Scholar]
- Peltomaa, E.; Johnson, M.D.; Taipale, S.J. Marine Cryptophytes Are Great Sources of EPA and DHA. Mar. Drugs 2018, 16, 3. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Turchini, G.M.; Ng, W.K.; Tocher, D.R. (Eds.) Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2011; p. 533. ISBN 9781439808627. [Google Scholar]
- De Roos, B.; Sneddon, A.A.; Sprague, M.; Horgan, G.W.; Brouwer, I.A. The potential impact of compositional changes in farmed fish on its health-giving properties: Is it time to reconsider current dietary recommendations? Public Health Nutr. 2017, 20, 2042–2049. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on ω-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Harmful algal blooms: A global overview. Man. Harmful Mar. Microalgae 2003, 33, 1–22. [Google Scholar]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Bolen, P.; van Dijk, R.; Sinninghe Damsté, J.P.; Rijpstra, W.I.C.; Buma, A.G.J. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Huerliman, R.; de Nys, R.; Hiemann, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 2010, 107, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-N.; Chen, T.-P.; Yang, B.; Liu, J.; Chen, F. Lipid Production from Nannochloropsis. Mar. Drugs 2016, 14, 61. [Google Scholar] [CrossRef]
- Bates, S.S.; Bird, C.J.; Freitas, A.D.; Foxall, R.; Gilgan, M.; Hanic, L.A.; Johnson, G.R.; McCulloch, A.W.; Odense, P.; Pocklington, R.; et al. Pennate diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from eastern Prince Edward Island, Canada. Can. J. Fish. Aquat. Sci. 1989, 46, 1203–1215. [Google Scholar] [CrossRef]
- Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful Freshwater Algal Blooms, With an Emphasis on Cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hällfors, S. 2007: Annex 6: Potentially Harmful Phytoplankton Species of the Baltic Sea. In ICES WGGIB Report 2007, Proceedings of the ICES-IOC-SCOR Working Group on GEOHAB Implementation in the Baltic (WGGIB), Helsinki, Finland, 7–9 May 2007; ICES CM 2007/BCC:05; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2007; pp. 21–28. Available online: http://ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/bcc/2007/wggib07.pdf (accessed on 15 March 2019).
- Van Wagoner, R.M.; Deeds, J.R.; Satake, M.; Ribeiro, A.A.; Place, A.R.; Wright, J.L. Isolation and characterization of karlotoxin 1, a new amphipathic toxin from Karlodinium veneficum. Tetrahedron Lett. 2008, 49, 6457–6461. [Google Scholar] [CrossRef]
- Kremp, A.; Tahvanainen, P.; Litaker, W.; Krock, B.; Suikkanen, S.; Leaw, C.P.; Tomas, C. Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (Dinophyceae) complex: Implications for species boundaries and identities. J. Phycol. 2014, 50, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Moestrup, Ø.; Akselmann, R.; Fraga, S.; Hoppenrath, M.; Iwataki, M.; Komárek, J.; Larsen, J.; Lundholm, N.; Zingone, A. (2009 onwards). IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae. Available online: http://www.marinespecies.org/hab (accessed on 15 March 2019).
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- Barofsky, A.; Simonelli, P.; Vidoudez, C.; Troedsson, C.; Nejstgaard, C.J.; Jakobsen, H.H.; Pohnert, G. Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J. Plankton Res. 2010, 32, 263–272. [Google Scholar] [CrossRef]
- Sellem, F.; Pesando, D.; Bodennec, G.; El Abed, A.; Girard, J.-P. Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotus lividus. Water Res. 2000, 34, 550–556. [Google Scholar] [CrossRef]
- Fossat, B.; Porthe´-Nibelle, J.; Sola, F.; Masoni, A.; Gentien, P.; Bodennec, G. Toxicity of Fatty Acid 18:5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and K1 Uptake in Isolated Trout Hepatocytes. J. Appl. Toxicol. 1999, 19, 275–278. [Google Scholar] [CrossRef]
- Arzul, G.; Gentien, P.; Bodennec, G.; Toularastel, F.; Youenou, A.; Crassous, M.P. Comparison of toxic effects in Gymnodinium cf. nagasakiense polyunsaturated fatty acids. In Harmful Marine Algal Blooms; Lassus, P., Arzul, G., Erard, E., Gentien, P., Marcaillou, C., Eds.; Lavoisier Intercept: Paris, France, 1995; pp. 395–400. [Google Scholar]
- Mooney, B.D.; Nichols, P.D.; de Salas, M.F.; Hallegraeff, G.M. Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): Chemotaxonomy and putative lipid phycotoxins. J. Phycol. 2007, 43, 101–111. [Google Scholar] [CrossRef]
- Silva, G.; Pereira, R.B.; Valentão, P.; Andrade, P.B.; Sousa, C. Distinct fatty acid profile of ten brown macroalgae. Braz. J. Pharmacogn. 2013, 23, 608–613. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [PubMed]
- Guillard, R.R.L.; Lorenzen, C.J. Yellowgreen algae with chlorophyllide. J. Phycol. 1972, 8, 10–14. [Google Scholar]
- Willén, T. Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic. Oikos 1962, 13, 169–199. [Google Scholar] [CrossRef]
Habitat | Number | Diatoms | Origin of Strain | Collection Site, Isolated by (Year) | Medium | Temperature (°C) | Light (µmol quanta s−1 m−2) | Potentially Toxic (Yes/No) | Cells (cells mL−1) | µ Max (divisions day−1) |
---|---|---|---|---|---|---|---|---|---|---|
Marine | M1 | Pseudo-nitzschia pungens CCAP 1061/44 | CCAP | LY1, Argyll, Scotland, UK; Garvetto (2015) | F/2+Si, 30 psu | 16 | 115 | yes | 5.5 × 104 | 0.18 |
M2 | Skeletonema marinoi K-0669 | NORCCA (SCCAP) | Hvidøre, Øresund (The Sound), Denmark; N.H. Larsen (2004) | F/2+Si, 30 psu | 4 | 115 | no | 1.3 × 106 | 0.46 | |
M3 | Thalassiosira nordenskioldii CCAP 1085/31 | CCAP | Arctic waters, West Greenland Shelf; Fragoso (2013) | F/2+Si, 30 psu | 4 | 115 | no | 3.7 × 104 | 0.22 | |
Brackish | B1 | Diatoma tenuis DTTV B5 | FINMARI CC | Tvärminne Storfjärden, Baltic Sea; A. Kremp (2008) | F/2+Si, 6 psu | 4 | 115 | no | 1.0 × 105 | 0.33 |
B2 | Melosira arctica MATV-1402 | FINMARI CC | Längden, Tvärminne, Baltic Sea; J. Oja (2014) | F/2+Si, 6 psu | 4 | 115 | no | 2.1 × 105 | 0.32 | |
B3 | Skeletonema marinoi Skeletonema | FINMARI CC | Tvärminne Storfjärden, Baltic Sea; K. Spilling (2006) | F/2+Si, 6 psu | 4 | 115 | no | 1.1 × 106 | 0.25 | |
B4 | Thalassiosira baltica TBLL7-1301 | FINMARI CC | LL7, Gulf of Finland, Baltic Sea; A. Kremp (2013) | F/2+Si, 6 psu | 4 | 115 | no | 7.2 × 104 | 0.19 | |
Freshwater | F1 | Diatoma tenuis CPCC 62 | CPCC | Lake Ontario, Canada; C. Ewing (1984) | MWC | 18 | 70 | no | 2.6 × 104 | 0.22 |
F2 | Nitzschia sp. FD397 | UTEX | Minnesota, USA; D. Czarnecki (1998) | MWC | 18 | 70 | no | 1.5 × 105 | 0.20 | |
F3 | Stephanodiscus hantzschii CPCC 267 (CCAP 1079/4) | CPCC | Esthwaite Water, Cumbria, England, UK; Jaworski (1983) | MWC | 18 | 70 | no | 6.9 × 105 | 0.07 | |
Dinoflagellates | ||||||||||
Marine | M4 | Apocalathium malmogiense K-0399 | NORCCA (SCCAP) | Igloolik Island, Canada; N. Daugbjerg (1989) | F/2-Si, 30 psu | 4 | 115 | no | 1.3 × 104 | 0.12 |
Brackish | B5 | Alexandrium ostenfeldii AOF-0926 | FINMARI CC | Föglö, Åland Islands, Baltic Sea; A. Kremp (2009) | F/2-Si, 6 psu | 16 | 115 | yes | 3.9 × 103 | 0.08 |
B6 | Apocalathium malmogiense SHTV-5 | FINMARI CC | Tvärminne Storfjärden, Baltic Sea; A. Kremp (2002) | F/2-Si, 6 psu | 4 | 115 | no | 2.6 × 104 | 0.14 | |
B7 | Heterocapsa triquetra HTF 1002 | FINMARI CC | Föglö, Åland Islands, Baltic Sea; P. Hakanen (2010) | F/2-Si, 6 psu | 16 | 115 | no | 3.0 × 104 | 0.33 | |
B8 | Karlodinium veneficum KVDAN 22 | FINMARI CC | Danskog, Raseborg, Baltic Sea; M. Parrow (2013) | F/2-Si, 6 psu | 16 | 115 | yes | 5.0 × 104 | 0.16 | |
Freshwater | F4 | Gymnodinium fuscum K-1836 | NORCCA (SCCAP) | Lake Fiolen, Sweden; G. Hansen (2012) | MWC | 18 | 70 | no | 1.3 × 106 | nd |
F5 | Peridinium cinctum K-1721 | NORCCA (SCCAP) | Freshwater rockpool, Tvärminne, Finland; G. Hansen (2011) | MWC | 18 | 70 | no | 2.6 × 104 | nd |
Source | df | SS | MS | Pseudo-F | P (perm) | P (MC) |
---|---|---|---|---|---|---|
Profile Model | ||||||
Ph | 1 | 13771 | 13771 | 53.987 | 0.001 | 0.001 |
Ha | 2 | 3846 | 1923 | 7.5405 | 0.001 | 0.001 |
PhxHa | 2 | 3310 | 1655 | 6.4893 | 0.001 | 0.001 |
Res | 29 | 7397 | 255 | |||
Total | 34 | 29649 | ||||
Content Model | ||||||
Ph | 1 | 6260 | 6260 | 30.196 | 0.001 | 0.001 |
Ha | 2 | 7956 | 3978 | 19.186 | 0.001 | 0.001 |
PhxHa | 2 | 5159 | 2579 | 12.442 | 0.001 | 0.001 |
Res | 29 | 6012 | 207 | |||
Total | 34 | 26083 |
Taxa | Habitat | Total FA (µg FA mg DW−1) | ω-3 (µg FA mg DW−1) | ALA (µg FA mg DW−1) | SDA (µg FA mg DW−1) | OPA (µg FA mg DW−1) | EPA (µg FA mg DW−1) | DHA (µg FA mg DW−1) | ω-6 (µg FA mg DW−1) | LA (µg FA mg DW−1) | GLA (µg FA mg DW−1) | ARA (µg FA mg DW−1) | DPA (µg FA mg DW−1) | ω-6:3 -ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diatoms | Marine | 7.6 (4.5) | 1.7 (1.2) | 0.1 (0.1) | 0.3 (0.3) | 0.01 (0.01) | 1.1 (0.7) | 0.2 (0.1) | 0.1 (0.04) | 0.1 (0.04) | 0.007 (0.0007) | 0.003 (0.003) | - | 1:25 |
Brackish | 26.3 (15.2) | 3.7 (3.2) | 0.02 (0.01) | 0.4 (0.2) | 0.01 (0.01) | 2.9 (2.7) | 0.3 (0.2) | 0.3 (0.2) | 0.2 (0.1) | 0.04 (0.02) * | 0.1 (0.1) | - | 1:14 | |
Freshwater | 88.9 (36.5) * | 21.1 (6.2) * | 0.2 (0.1) * | 1.5 (1.2) | - | 17.4 (5.2) * | 1.2 (0.9) * | 0.6 (0.3) | 0.5 (0.3) | - | 0.9 (0.8) | 0.1 (0.1) * | 1:36 | |
Dinoflagellates | Marine | 44.3 (1.1) † | 13.7 (0.8) † | 0.2 (0.01) † | 2.0 (0.1) † | 6.3 (0.2) † | 0.3 (0.1) † | 10.4 (0.6) † | 1.7 (0.1) † | 1.6 (0.04) † | 0.12 (0.01) † | 0.3 (0.005) † | - | 1:8 † |
Brackish | 37.8 (20.3) | 15.1 (10.4) | 0.4 (0.3) | 4.5 (4.3) | 7.0 (7.0) | 1.1 (1.0) | 8.6 (5.7) | 1.0 (0.6) | 0.9 (0.5) | 0.04 (0.002) | 0.3 (0.3) | - | 1:16 | |
Freshwater | 140.4 (7.0) * | 45.8 (5.3) * | 0.1 (0.1) | 3.4 (2.9) | 8.7 (8.0) | 11.6 (2.1) * | 29.7 (5.3) * | 1.4 (1.0) | 1.4 (1.0) | 0.03 (0.005) | 0.02 (0.02) | - | 1:32 |
Habitat | Diatoms | Total FA (µg FA mg DW−1) | ω-3 (µg FA mg DW−1) | ALA (µg FA mg DW−1) | SDA (µg FA mg DW−1) | OPA (µg FA mg DW−1) | EPA (µg FA mg DW−1) | DHA (µg FA mg DW−1) | ω-6 (µg FA mg DW−1) | LA (µg FA mg DW−1) | GLA (µg FA mg DW−1) | ARA (µg FA mg DW−1) | DPA (µg FA mg DW−1) | ω-6:3 -ratio |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Marine | Pseudo-nitzschia pungens CCAP 1061/44 | 2.6 (1.2) | 0.6 (0.2) | 0.0003 (0.001) | - | - | 0.5 (0.02) | 0.08 (0.03) | 0.03 (0.03) | 0.03 (0.03) | 0.01 (0.001) | 0.02 (0.01) | - | 1:24 |
Skeletonema marinoi K-0669 | 11.4 (3.4) | 2.9 (0.6) | 0.03 (0.005) | 0.7 (0.2) | 0.02 (0.02) | 1.9 (0.4) | 0.3 (0.02) | 0.1 (0.01) | 0.1 (0.01) | 0.01 (0.001) | - | - | 1:27 | |
Thalassiosira nordenskioldii CCAP 1085/31 | 8.8 (2.5) | 1.4 (0.9) | 0.2 (0.1) | 0.2 (0.1) | - | 1.0 (0.7) | 0.1 (0.05) | 0.1 (0.02) | 0.1 (0.1) | - | - | - | 1:24 | |
Brackish | Diatoma tenuis DTTV B5 | 16.8 (2.1) | 1.7 (0.5) | 0.01 (0.01) | 0.2 (0.1) | - | 1.3 (0.5) | 0.02 (0.04) | 0.3 (0.1) | 0.2 (0.02) | 0.05 (0.01) | 0.01 (0.002) | - | 1:5 |
Melosira arctica MATV-1402 | 50.0 (3.7) * | 8.5 (0.4) * | 0.03 (0.01) | 0.3 (0.01) | 0.02 (0.002) | 7.0 (0.3) * | 0.5 (0.002) * | 0.5 (0.01) | 0.3 (0.006) | 0.09 (0.002) | 0.4 (0.0003) | - | 1:18 | |
Skeletonema marinoi Skeletonema | 14.4 (0.1) | 1.0 (0.1) | 0.02 (0.001) | 0.4 (0.002) | 0.02 (0.05) | 0.5 (0.1) | 0.1 (0.05) | 0.1 (0.002) | 0.1 (0.01) | 0.01 (0.003) | 0.007 (0.001) | - | 1:9 | |
Thalassiosira baltica TBLL7-1301 | 24.1 (0.7) | 3.8 (0.1) | 0.4 (0.1) | 0.6 (0.03) | - | 2.7 (0.1) | 0.4 (0.01) | 0.1 (0.01) | 0.1 (0.01) | 0.02 (0.004) | 0.01 (0.001) | - | 1:29 | |
Freshwater | Diatoma tenuis CPCC 62 | 53.8 (0.4) * | 20.7 (0.2) * | 0.3 (0.01) | 1.2 (0.02) | - | 18.9 (0.3) * | 0.2 (0.01) | 0.9 (0.04) * | 0.9 (0.02) * | - | 0.2 (0.01) | - | 1:23 |
Nitzschia sp. FD397 | 133.9 (2.5) * | 28.8 (0.2) * | 0.03 (0.01) | 0.3 (0.01) | - | 23.1 (0.2) * | 2.4 (0.03) * | 0.3 (0.03) | 0.3 (0.01) | - | 3.0 (0.4) * | - | 1:95 | |
Stephanodiscus hantzschii CPCC 267 (CCAP 1079/4) | 82.3 (26.0) * | 16.3 (4.8) * | 0.2 (0.1) | 2.6 (1.0) | - | 12.6 (3.5) * | 1.0 (0.2) * | 0.6 (0.2) | 0.4 (0.1) | - | 0.03 (0.01) | 0.1 (0.03) * | 1:29 | |
Dinoflagellates | ||||||||||||||
Marine | Apocalathium malmogiense K-0399 | 44.3 (1.1) | 13.4 (0.8) | 0.2 (0.1) | 2.0 (0.1) | 6.2 (0.3) | 0.3 (0.1) | 10.4 (0.6) | 1.7 (0.1) | 1.6 (0.01) | 0.1 (0.01) | 0.3 (0.01) | - | 1:8 |
Brackish | Alexandrium ostenfeldii AOF-0926 | 27.1 (0.7) | 13.4 (0.6) | 0.1 (0.01) | 3.0 (0.1) | 1.1 (0.003) | 3.4 (0.02) | 6.6 (0.08) | 0.9 (0.04) | 0.8 (0.03) | 0.04 (0.004) | 0.03 (0.0003) | - | 1:14 |
Apocalathium malmogiense SHTV-5 | 83.3 † | 36.8 † | 0.5 † | 13.3 † | 23.0 † | 0.8 † | 20.6 † | 2.3 † | 1.9 † | 1.1 † | 0.2 † | - | 1:16 | |
Heterocapsa triquetra HTF 1002 | 32.9 (2.1) | 15.5 (1.2) | 0.9 (0.3) | 5.1 (1.4) | 7.3 (0.6) | 0.1 (0.01) | 9.0 (0.7) | 0.5 (0.01) | 0.5 (0.001) | 0.02 (0.001) | 0.3 (0.01) | - | 1:29 | |
Karlodinium veneficum KVDAN 22 | 30.7 (3.0) | 5.9 (1.1) | 0.3 (0.04) | 0.9 (0.1) | 4.7 (0.8) | 0.2 (0.01) | 4.3 (0.8) | 0.7 (0.1) | 0.7 (0.02) | 0.02 (0.002) | 0.2 (0.01) | - | 1:8 | |
Freshwater | Gymnodinium fuscum K-1836 | 136.5 (6.6) * | 48.1 (3.8) * | 0.02 (0.02) | 0.2 (0.01) | 17.5 (0.1) * | 13.7 (0.2) * | 34.1 (1.1) * | 2.6 (0.1) * | 2.2 (0.1) * | - | 0.05 (0.004) | - | 1:19 |
Peridinium cinctum K-1721 | 143.0 (8.1) * | 44.3 (6.9) * | 0.1 (0.01) * | 5.6 (0.5) * | 2.9 (0.4) | 10.2 (1.3) * | 26.8 (4.8) * | 0.7 (0.05) | 0.7 (0.01) * | 0.06 (0.01) | - | - | 1:68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peltomaa, E.; Hällfors, H.; Taipale, S.J. Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs. Mar. Drugs 2019, 17, 233. https://doi.org/10.3390/md17040233
Peltomaa E, Hällfors H, Taipale SJ. Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs. Marine Drugs. 2019; 17(4):233. https://doi.org/10.3390/md17040233
Chicago/Turabian StylePeltomaa, Elina, Heidi Hällfors, and Sami J. Taipale. 2019. "Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs" Marine Drugs 17, no. 4: 233. https://doi.org/10.3390/md17040233
APA StylePeltomaa, E., Hällfors, H., & Taipale, S. J. (2019). Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs. Marine Drugs, 17(4), 233. https://doi.org/10.3390/md17040233