Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp.
Abstract
:1. Introduction
2. Results
2.1. Extraction and Separation of the Sponge Metabolites
2.2. Purification of SOR
2.3. Physico-Chemical Properties and Partial Amino Acid Sequences of SOR
2.4. Biological Activities of SOR
2.5. Possible Mechanism of Toxicity of SOR
3. Discussion
4. Materials and Methods
4.1. General Procedure
4.2. Sponge Specimen
4.3. Bioassays
4.3.1. Brine Shrimp Assay
4.3.2. Sea Hare Egg Assay
4.3.3. Mouse Behavioral Assay
4.3.4. Cytotoxicity Assay
4.4. Extraction and Separation
4.4.1. Extraction and Initial Separation
4.4.2. pH Dependency Assay
4.4.3. Small Scale Extraction
4.4.4. Large Scale Separation
4.4.5. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.4.6. Amino Acid Sequence Determination
4.4.7. Cleavage of Plasmid DNA by SOR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fusetani, N.; Matsunaga, S. Bioactive sponge peptides. Chem. Rev. 1993, 93, 1793–1806. [Google Scholar] [CrossRef]
- Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta 2018, 1862, 81–196. [Google Scholar] [CrossRef]
- Hamada, T.; Matsunaga, S.; Yano, G.; Fusetani, N. Polytheonamides a and b, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J. Am. Chem. Soc. 2005, 127, 110–118. [Google Scholar] [CrossRef]
- Takada, K.; Hamada, T.; Hirota, H.; Nakao, Y.; Matsunaga, S.; van Soest, R.W.; Fusetani, N. Asteropine a, a sialidase-inhibiting conotoxin-like peptide from the marine sponge Asteropus simplex. Chem. Biol. 2006, 13, 569–574. [Google Scholar] [CrossRef]
- Li, H.; Bowling, J.J.; Fronczek, F.R.; Hong, J.; Jabba, S.V.; Murray, T.F.; Ha, N.-C.; Hamann, M.T.; Jung, J.H. Asteropsin a: An unusual cystine-crosslinked peptide from porifera enhances neuronal Ca2+ influx. Biochim. Biophys. Acta 2013, 1830, 2591–2599. [Google Scholar] [CrossRef]
- Matsunaga, S.; Jimbo, M.; Gill, M.B.; Wyhe, L.L.; Murata, M.; Nonomura, K.; Swanson, G.T.; Sakai, R. Isolation, amino acid sequence and biological activities of novel long-chain polyamine-associated peptide toxins from the sponge Axinyssa aculeata. ChemBioChem 2011, 12, 2191–2200. [Google Scholar] [CrossRef]
- Mebs, D.; Weiler, I.; Heinke, H. Bioactive proteins from marine sponges: Screening of sponge extracts for hemagglutinating, hemolytic, ichthyotoxic and lethal properties and isolation and characterization of hemagglutinins. Toxicon 1985, 23, 955–962. [Google Scholar] [CrossRef]
- Le Pape, P.; Zidane, M.; Abdala, H.; Moré, M.-T. A glycoprotein isolated from the sponge, Pachymatisma johnstonii, has anti-leishmanial activity. Cell Biol. Int. 2000, 24, 51–56. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, B.R.; Beutler, J.A.; Cardellina, J.H.; Gulakowski, R.J.; Krepps, B.L.; Mcmahon, J.B.; Sowder, R.C.; Henderson, L.E.; Pannell, L.K.; Pomponi, S.A. Isolation and characterization of niphatevirin, a human-immunodeficiency-virus-inhibitory glycoprotein from the marine sponge niphates erecta. Eur. J. Biochem. 1997, 245, 47–53. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, B.R. Biologically active proteins from natural product extracts. J. Nat. Prod. 2001, 64, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Gardères, J.; Bourguet-Kondracki, M.-L.; Hamer, B.; Batel, R.; Schröder, H.; Müller, W. Porifera lectins: Diversity, physiological roles and biotechnological potential. Mar. Drugs 2015, 13, 5059–5101. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Wong, J.H.; Pan, W.; Chan, Y.S.; Yin, C.; Dan, X.; Ng, T.B. Marine lectins and their medicinal applications. Appl. Microbiol. Biotechnol. 2015, 99, 3755–3773. [Google Scholar] [CrossRef]
- FitzGerald, D.J.; Kreitman, R.; Wilson, W.; Squires, D.; Pastan, I. Recombinant immunotoxins for treating cancer. Int. J. Med. Microbiol. 2004, 293, 577–582. [Google Scholar] [CrossRef]
- Adams, D.J.; Alewood, P.F.; Craik, D.J.; Drinkwater, R.D.; Lewis, R.J. Conotoxins and their potential pharmaceutical applications. Drug Dev. Res. 1999, 46, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Sakai, R.; Swanson, G.T. Recent progress in neuroactive marine natural products. Nat. Prod. Rep. 2014, 31, 273–309. [Google Scholar] [CrossRef]
- Tadokoro, Y.; Nishikawa, T.; Ichimori, T.; Matsunaga, S.; Fujita, M.J.; Sakai, R. N-methyl-β-carbolinium salts and an N-methylated 8-oxoisoguanine as acetylcholinesterase inhibitors from a solitary ascidian, Cnemidocarpa irene. ACS Omega 2017, 2, 1074–1080. [Google Scholar] [CrossRef]
- Uchimasu, H.; Matsumura, K.; Tsuda, M.; Kumagai, K.; Akakabe, M.; Fujita, M.J.; Sakai, R. Mellpaladines and dopargimine, novel neuroactive guanidine alkaloids from a Palauan didemnidae tunicate. Tetrahedron 2016, 72, 7185–7193. [Google Scholar] [CrossRef]
- Liebmann, J.E.; Cook, J.A.; Lipschultz, C.; Teague, D.; Fisher, J.; Mitchell, J.B. Cytotoxic studies of paclitaxel (taxol) in human tumour cell lines. Br. J. Cancer 1993, 68, 1104–1109. [Google Scholar] [CrossRef]
- Miranda, A.F.; Godman, G.C.; Deitch, A.D.; Tanenbaum, S.W. Action of cytochalasin D on cells of established lines: I. Early events. J. Cell Biol. 1974, 61, 481–500. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawazoe, K.; Okamoto, T.; Sasaki, T.; Kitagawa, I. Marine natural products. XXXI. Structure-activity correlation of a potent cytotoxic dimeric macrolide swinholide a, from the okinawan marine sponge Theonella swinhoei, and its isomers. Chem. Pharm. Bull. 1994, 42, 19–26. [Google Scholar] [CrossRef]
- Sawelew, L.; Gault, F.; Nuccio, C.; Perez, Y.; Lorquin, J. Characterisation of palytoxin from an undescribed palythoa (anthozoa: Zoantharia: Sphenopidae) with significant in vitro cytotoxic effects on cancer cells at picomolar doses. BioRxiv 2018, 292219. [Google Scholar] [CrossRef]
- Frew, R.; Wang, Y.; Weiss, T.M.; Nelson, P.; Sawyer, T.W. Attenuation of maitotoxin-induced cytotoxicity in rat aortic smooth muscle cells by inhibitors of Na+/Ca2+ exchange, and calpain activation. Toxicon 2008, 51, 1400–1408. [Google Scholar] [CrossRef]
- Motohashi, S.; Jimbo, M.; Naito, T.; Suzuki, T.; Sakai, R.; Kamiya, H. Isolation, amino acid sequences, and plausible functions of the galacturonic acid-binding egg lectin of the sea hare aplysia kurodai. Mar. Drugs 2017, 15, 161. [Google Scholar] [CrossRef]
- Sakai, R.; Swanson, G.T.; Shimamoto, K.; Green, T.; Contractor, A.; Ghetti, A.; Tamura-Horikawa, Y.; Oiwa, C.; Kamiya, H. Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea. J. Pharmacol. Exp. Ther. 2001, 296, 650–658. [Google Scholar]
- Lencer, W.I.; Tsai, B. The intracellular voyage of cholera toxin: Going retro. Trends Biochem. Sci. 2003, 28, 639–645. [Google Scholar] [CrossRef]
- Odumosu, O.; Nicholas, D.; Yano, H.; Langridge, W. AB toxins: A paradigm switch from deadly to desirable. Toxins 2010, 2, 1612–1645. [Google Scholar] [CrossRef]
- Spangler, B.D. Structure and function of Cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 1992, 56, 622–647. [Google Scholar]
- Johannes, L.; Römer, W. Shiga toxins—From cell biology to biomedical applications. Nat. Rev. Microbiol. 2010, 8, 105–116. [Google Scholar] [CrossRef]
- Kaslow, H.R.; Burns, D. Pertussis toxin and target eukaryotic cells: Binding, entry, and activation. FASEB J. 1992, 6, 2684–2690. [Google Scholar] [CrossRef]
- Nešić, D.; Hsu, Y.; Stebbins, C.E. Assembly and function of a bacterial genotoxin. Nature 2004, 429, 429–433. [Google Scholar] [CrossRef]
- Collier, R. Understanding the mode of action of diphtheria toxin: A perspective on progress during the 20th century. Toxicon 2001, 39, 1793–1803. [Google Scholar] [CrossRef]
- Sandvig, K.; van Deurs, B. Entry of ricin and Shiga toxin into cells: Molecular mechanisms and medical perspectives. EMBO J. 2000, 19, 5943–5950. [Google Scholar] [CrossRef]
- Faïs, T.; Delmas, J.; Serres, A.; Bonnet, R.; Dalmasso, G. Impact of CDT toxin on human diseases. Toxins 2016, 8, 220. [Google Scholar] [CrossRef]
- Guerra, L.; Cortes-Bratti, X.; Guidi, R.; Frisan, T. The biology of the cytolethal distending toxins. Toxins 2011, 3, 172–190. [Google Scholar] [CrossRef] [PubMed]
- Erickson, H.P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 2009, 11, 32–51. [Google Scholar] [CrossRef]
- Riobó, P.; Paz, B.; Franco, J.M.; Vázquez, J.A.; Murado, M.; Cacho, E. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose–death time relationships. Food Chem. Toxicol. 2008, 46, 2639–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, A.; Murata, M.; Oshima, Y.; Iwashita, T.; Yasumoto, T. Some chemical properties of maitotoxin, a putative calcium channel agonist isolated from a marinedinoflagellate. J. Biochem. 1988, 104, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Takuwa, K.; Nakao, M.; Ito, E.; Miyake, M.; Noda, M.; Nakajima, T. Novel proteinaceous toxins from the box jellyfish (sea wasp) Carybdea rastoni. Biochem. Biophys. Res. Commun. 2000, 275, 582–588. [Google Scholar] [CrossRef] [PubMed]
HT-29 | A-549 | MDA-MB-231 | |
---|---|---|---|
Crude extract | 20 a (5) | −26 b (5) | −1 b (5) |
Fraction 6 c | 27 a (25) | −1 b (5) | −3 b (5) |
Fraction | Total Protein (mg) | Total Activity (unit) a | Recovery (%) b | Relative Activity Unit/mg |
---|---|---|---|---|
Crude extract | 2400 | 556,000 | 100 | 230 |
HiTrap | 294 | 234,000 | 24 | 796 |
RESOURCE-ISO | 32 | 15,400 | 2.8 | 481 |
RESOURCE-Q | 2.5 | 18,500 | 3.3 | 7370 |
Fraction A | 0.14 | 19,400 | 3.5 | 137,588 |
Compound | MW | Brine Shrimp LD50 a (µg/mL, µM) | Mice Lethality ng, pmol/ kg | Cytotoxicity |
---|---|---|---|---|
SOR | 116,000 | 0.34, 3.1 × 10−3 | 287, 2.39 (i.c.v.) | 0.517 pM b |
Paclitaxel | 854 | 0.86, 0.99 | 2.6 nM b [18] | |
Cytochalasin D | 507 | 0.29, 0.34 | 0.1 µM c [19] | |
Swinholide A | 1389 | 0.55, 0.40 | 22 nM d [20] | |
Palytoxin | 2680 | 45, 16.8 (i.v.) | ~0.7 pM e [21] | |
Maitotoxin | 3425 | 130, 38 (i.p.) | ~58 pM f [22] | |
CrTX-A | 43,000 | 20,000, 465 (i.v.) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, R.; Tanano, K.; Ono, T.; Kitano, M.; Iida, Y.; Nakano, K.; Jimbo, M. Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Mar. Drugs 2019, 17, 216. https://doi.org/10.3390/md17040216
Sakai R, Tanano K, Ono T, Kitano M, Iida Y, Nakano K, Jimbo M. Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Marine Drugs. 2019; 17(4):216. https://doi.org/10.3390/md17040216
Chicago/Turabian StyleSakai, Ryuichi, Kota Tanano, Takumi Ono, Masaya Kitano, Yusuke Iida, Koji Nakano, and Mitsuru Jimbo. 2019. "Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp." Marine Drugs 17, no. 4: 216. https://doi.org/10.3390/md17040216
APA StyleSakai, R., Tanano, K., Ono, T., Kitano, M., Iida, Y., Nakano, K., & Jimbo, M. (2019). Soritesidine, a Novel Proteinous Toxin from the Okinawan Marine Sponge Spongosorites sp. Marine Drugs, 17(4), 216. https://doi.org/10.3390/md17040216