Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gelatin Isolation from Skin and Bones (SB)
2.2. Production and Chemical Composition of Fish Protein Hydrolysates (FPHs) and Oils Recovered
2.3. In vitro Bioactivities of FPHs from Fish Discard By-Products
2.4. Low-Cost Media with Peptones from FPHs for Pediococcus acidilactici Culture
3. Material and Methods
3.1. Processing of Fish Discard By-Products
3.2. Gelatin Extraction from SB By-Products
3.3. Production of FPHs
3.4. Chemical Analyses of oils and FPHs
3.5. Fish Peptones from FPHs for Bacterial Culture Media
3.6. Numerical and Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. 2016. Available online: http://www.fao.org/3/a-i5555e.pdf (accessed on 30 November 2018).
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 1380/2013 of the European Parliament and the Council of 11 December 2013 on the Common Fisheries Policy, Amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and Repealing Council Regulations (EC) No 2371/2002 and (EC) No 639/2004 and Council Decision 2004/585/EC; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Ordoñez-Del Pazo, T.; Antelo, L.T.; Franco-Uría, A.; Perez-Martin, R.I.; Sotelo, C.G.; Alonso, A.A. Fish discards management in selected Spanish and Portuguese metiers: Identification and potential valorisation. Trends Food Sci. Technol. 2014, 36, 29–43. [Google Scholar] [CrossRef]
- Uhlmann, S.S.; Ulrich, C.; Kennelly, S.J. The European Landing Obligation Reducing Discards in Complex, Multi-SPECIES and Multi-Jurisdictional Fisheries; Springer Open: Berlin, Germany, 2019; ISBN 978-3-030-03307-1. [Google Scholar] [CrossRef]
- Blanco, M.; Domínguez-Timón, F.; Pérez-Martín, R.I.; Fraguas, J.; Ramos-Ariza, P.; Vázquez, J.A.; Borderías, A.J.; Moreno, H.M. Valorization of recurrently discarded fish species in trawler fisheries in North-West Spain. J. Food Sci. Technol. 2018, 55, 4477–4484. [Google Scholar] [CrossRef] [PubMed]
- Moreno, H.; Carballo, J.; Borderías, J. Raw-appearing restructured fish models made with sodium alginate or microbial transglutaminase and effect of chilled storage. Food Sci. Technol. 2013, 33, 137–145. [Google Scholar] [CrossRef]
- Blanco, M.; Vázquez, J.A.; Pérez-Martín, R.I.; Sotelo, C.G. Hydrolysates of fish skin collagen: An opportunity for valorizing fish industry byproducts. Mar. Drugs 2017, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Noriega, D.; Ramos, P.; Valcarcel, J.; Novoa-Carballal, R.; Pastrana, L.; Reis, R.L.; Pérez-Martín, R.I. Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydr. Polym. 2017, 174, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.C.; Vázquez, J.A.; Pérez-Martín, R.I.; Carvalho, A.P.; Gomes, A.M. Valorization of by-products from commercial fish species: Extraction and chemical properties of skin gelatins. Molecules 2017, 22, 1545. [Google Scholar] [CrossRef] [PubMed]
- Montero, P.; Gómez-Guillén, M.C. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. J. Food Sci. 2000, 65, 434–438. [Google Scholar] [CrossRef]
- Gómez-Guillen, M.C.; Turnay, J.; Fernández-Martín, M.D.; Ulmo, N.; Lizarbe, M.; Montero, P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002, 16, 25–34. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.; Montero, P. Extraction of gelatin from megrim (Lepidorhombus boscii) skins with several organic acids. J. Food Sci. 2001, 62, 213–216. [Google Scholar] [CrossRef]
- Khiari, Z.; Rico, D.; Martin-Diana, A.B.; Barry-Ryan, C. Valorization of fish by-products: Rheological, textural and microstructural properties of mackerel skin gelatins. J. Mater. Cycles Waste Manag. 2017, 19, 180–191. [Google Scholar] [CrossRef]
- Romotowska, P.E.; Karlsdóttir, M.G.; Gudjónsdóttir, M.; Kristinsson, H.G.; Arason, S. Seasonal and geographical variation in chemical composition and lipid stability of Atlantic mackerel (Scomber scombrus) caught in Icelandic waters. J. Food Comp. Anal. 2016, 49, 9–18. [Google Scholar] [CrossRef]
- Romotowska, P.E.; Karlsdóttir, M.G.; Gudjónsdóttir, M.; Kristinsson, H.G.; Arason, S. Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (Scomber scombrus). Int. J. Food Sci. Tech. 2016, 51, 1711–1720. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Pérez-Gálvez, R.; Morales-Medina, R.; Guadix, A.; Guadix, E.M. Discarded species in the west Mediterranean sea as sources of omega-3 PUFA. Eur. J. Lipid Sci. Technol. 2013, 115, 982–989. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Venegas-Venegas, E.; Rincón-Cervera, M.A.; Suárez, M.D. Fatty acid profiles of livers from selected marine fish species. J. Food Comp. Anal. 2011, 24, 217–222. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; DiNicolantonio, J.J. Mediterranean diet: ω-6 and ω-3 fatty acids and diabetes. Am. J. Clin. Nutr. 2017, 106, 953–954. [Google Scholar] [PubMed]
- Karoud, W.; Sila, A.; Krichen, F.; Martinez-Alvarez, O.; Bougatef, A. Characterization, surface properties and biological activities of protein hydrolysates obtained from hake (Merluccius merluccius) heads. Waste Biomass Valor. 2019, 10, 287–297. [Google Scholar] [CrossRef]
- Aksnes, A.; Hope, B.; Jönsson, E.; Björnsson, B.T.; Albrektsen, S. Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I: Growth, growth regulation and feed utilization. Aquaculture 2006, 261, 305–317. [Google Scholar] [CrossRef]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Caprioni, R.; Nogueira, M.; Menduíña, A.; Ramos, P.; Pérez-Martín, R.I. Valorisation of effluents obtained from chemical and enzymatic chitinproduction of Illex argentinus pen by-products as nutrientsupplements for various bacterial fermentations. Biochem. Eng. J. 2016, 116, 34–44. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Library Cataloguing-in-Publication Data; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Novel functional food ingredients from marine sources. Curr. Opin. Food Sci. 2015, 2, 123–129. [Google Scholar] [CrossRef]
- Hayes, M.; Mora, L.; Hussey, K.; Aluko, R.E. Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innov. Food Sci. Emerg. Technol. 2016, 37, 253–260. [Google Scholar] [CrossRef]
- Amado, I.R.; Vázquez, J.A.; González, M.P.; Murado, M.A. Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochem. Eng. J. 2013, 76, 43–54. [Google Scholar] [CrossRef]
- Taheri, A.; Farvin, K.H.S.; Jacobsen, C.; Baron, C.P. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chem. 2014, 142, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.B.; Kim, J.G.; Je, J.Y. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 2014, 147, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Chi, C.F.; Zhao, Y.Q.; Wang, B. Preparation, physicochemical and antioxidant properties of acid- and pepsin-soluble collagens from the swim bladders of miiuy croaker (Miichthys miiuy). Mar. Drugs 2018, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Blanco, M.; Massa, A.E.; Amado, I.R.; Pérez-Martín, R.I. Production of fish protein hydrolysates from Scyliorhinus canicula discards with antihypertensive and antioxidant activities by enzymatic hydrolysis and mathematical optimization using response surface methodology. Mar. Drugs 2017, 15, 306. [Google Scholar] [CrossRef] [PubMed]
- Cheung, I.W.Y.; Cheung, L.K.Y.; Tan, N.Y.; Li-Chan, E.C.Y. The role of molecular size in antioxidant activity of peptide fractions from Pacific hake (Merluccius productus) hydrolysates. Food Chem. 2012, 134, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Aissaoui, N.; Abidi, F.; Marzouki, M.N. ACE inhibitory and antioxidant activities of red scorpionfish (Scorpaena notata) protein hydrolysates. J. Food Sci. Technol. 2015, 52, 7092–7102. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stantone, C.; Ross, R.P. Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification. Food Chem. 2018, 245, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Cinq-Mars, C.D.; Li-Chan, E.C. Optimizing angiotensin I-converting enzyme inhibitory activity of Pacific hake (Merluccius productus) fillet hydrolysate using response surface methodology and ultrafiltration. J. Agric. Food Chem. 2007, 55, 9380–9388. [Google Scholar] [CrossRef] [PubMed]
- Pires, C.; Teixeira, B.; Cardoso, C.; Mendes, R.; Nunes, M.L.; Batista, I. Cape hake protein hydrolysates prepared from alkaline solubilised proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity. Proc. Biochem. 2015, 50, 1006–1015. [Google Scholar] [CrossRef]
- Aissaoui, N.; Abidi, F.; Hardouin, J.; Abdelkafi, Z.; Marrakchi, N.; Jouenne, T.; Marzouki, M.N. Two novel peptides with angiotensin I converting enzyme inhibitory and antioxidative activities from Scorpaena notata muscle protein hydrolysate. Biotech. Appl. Biochem. 2017, 64, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Geirsdottir, M.; Sigurgisladottir, S.; Hamaguchi, P.Y.; Thorkelsson, G.; Johannsson, R.; Kristinsson, H.G.; Kristjansson, M.M. Enzymatic hydrolysis of blue whiting (Micromesistius poutassou); functional and bioactive properties. J. Food Sci. 2011, 76, C14–C20. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, A.; Sivakumar, N.; Victor, R. Fish waste-potential low cost substrate for bacterial protease production: A brief review. Open Biotechnol. J. 2016, 10, 335–341. [Google Scholar] [CrossRef]
- Djellouli, M.; Martínez-Álvarez, O.; Arancibia, M.Y.; Florez-Cuadrado, D.; Ugarte-Ruíz, M.; Domínguez, L.; Zadi-Karam, H.; Karam, N.; Roudj, S.; López-Caballero, M.E. Effect of seafood peptones on biomass and metabolic activity by Enterococcus faecalis DM19. LWT Food Sci. Technol. 2017, 81, 94–100. [Google Scholar] [CrossRef]
- Shi, S.; Li, J.; Blersch, D.M. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production. Appl. Microbiol. Biotech. 2018, 102, 4765–4772. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Venus, J. Utilization of protein-rich residues in biotechnological processes. Appl. Microbiol. Biotechnol. 2016, 100, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, S.; Papagianni, M.; Filiousis, G.; Ambrosiadis, I.; Koidis, P. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresour. Technol. 2008, 99, 5384–5390. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; González, M.P.; Murado, M.A. Preliminary tests on nisin and pediocin production using waste protein sources. Factorial and kinetic studies. Bioresour. Technol. 2006, 97, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.A.; Ramos, P.; Valcarcel, J.; Antelo, L.T.; Novoa-Carballal, R.; Reis, R.L.; Pérez-Martín, R.I. An integral and sustainable valorisation strategy of squid pen byproducts. J. Clean. Prod. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Aspmo, S.I.; Horn, S.J.; Eijsink, V.G.H. Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Proc. Biochem. 2005, 40, 3714–3722. [Google Scholar] [CrossRef]
- Horn, S.J.; Aspmo, S.I.; Eijsink, V.G.H. Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme Microb. Technol. 2007, 40, 1328–1334. [Google Scholar] [CrossRef]
- Vázquez, J.; Docasal, S.; Prieto, M.; González, M.P.; Murado, M. Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Biores. Technol. 2008, 99, 6246–6257. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Spackman, D.H.; Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 1958, 30, 1185–1190. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemistry. Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1997. [Google Scholar]
- Miller, E.L.; Bimbo, A.P.; Walters, D.E.; Barlow, S.M.; Sheridan, B. Determination of nitrogen solubility in dilute pepsin hydrochloric acid solution of fishmeal: Interlaboratory study. J. AOAC Int. 2002, 85, 1374–1381. [Google Scholar] [PubMed]
- Estévez, N.; Fuciños, P.; Sobrosa, A.C.; Pastrana, L.; Pérez, N.; Rúa, M.L. Modeling the angiotensinconverting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration-response curves. Biotechnol. Prog. 2012, 28, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Curran, T.; Gowen, A.; Vázquez, J.A. An efficient methodology for quantification of synergy and antagonism in single electron transfer antioxidant assays. Food Res. Int. 2015, 67, 284–298. [Google Scholar] [CrossRef]
- Prieto, M.A.; Vázquez, J.A.; Murado, M.A. Crocin bleaching antioxidant assay revisited. Application to microplate to analyse antioxidant and prooxidant activities. Food Chem. 2015, 167, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Bernfeld, P. Enzymes of starch degradation and synthesis. Adv. Enzymol. 1951, 12, 379–427. [Google Scholar]
- Cabo, M.L.; Murado, M.A.; González, M.P.; Pastoriza, L. A method for bacteriocin quantification. J. Appl. Microbiol. 1999, 87, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Murado, M.A.; González, M.P.; Vázquez, J.A. Dose–response relationships: An overview, a generative model and its application to the verification of descriptive models. Enzyme Microb. Technol. 2002, 31, 439–455. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Murado, M.A. Mathematical tools for objective comparison of microbial cultures. Application to evaluation of 15 peptones for lactic acid bacteria productions. Biochem. Eng. J. 2008, 39, 276–287. [Google Scholar] [CrossRef]
Fish Discards | Yield (% w/w Fresh SB) | Pro + OHPro (%) | Strength (Bloom) |
---|---|---|---|
G | - | - | - |
Bo | 0.23 ± 0.13 | >18 | ND |
HM | 0.58 ± 0.29 | >16 | ND |
Ha | 1.71 ± 0.15 | >18 | 58.2 ± 4.4 |
Me | 0.88 ± 0.09 | >18 | 30.0 ± 3.2 |
FPHs | mb (%) | Voil (%) | Vdig (%) | Prs (g/L) | Pr-tN (g/L) | TS (g/L) | Dig (%) |
---|---|---|---|---|---|---|---|
SB_G | 37.4 ± 2.7 | - | 90.6 ± 3.5 | 42.2 ± 2.0 | 43.0 ± 0.8 | 0.73 ± 0.01 | 92.1 ± 0.9 |
SB_HM | 17.9 ± 1.4 | 2.35 ± 0.69 | 86.9 ± 0.8 | 38.4 ± 0.1 | 39.3 ± 1.1 | 0.70 ± 0.01 | 92.8 ± 0.5 |
SB_Bo | 42.4 ± 3.9 | 0.20 ± 0.04 | 85.2 ± 0.6 | 34.2 ± 0.5 | 34.8 ± 2.2 | 1.15 ± 0.05 | 91.7 ± 1.7 |
SB_Ha | 22.6 ± 0.3 | - | 89.5 ± 0.9 | 33.1 ± 0.5 | 33.7 ± 1.3 | 0.59 ± 0.02 | 93.7 ± 1.0 |
SB_Me | 20.6 ± 2.4 | 1.41 ± 0.11 | 87.5 ± 0.0 | 40.4 ± 3.1 | 41.9 ± 1.1 | 0.50 ± 0.02 | 93.9 ± 0.7 |
H_G | 21.6 ± 11.5 | - | 85.8 ± 0.6 | 29.4 ± 0.7 | 31.5 ± 2.3 | 0.83 ± 0.04 | 92.2 ± 1.4 |
H_HM | 14.3 ± 0.3 | 0.87 ± 0.32 | 90.5 ± 4.1 | 27.7 ± 0.9 | 31.3 ± 1.3 | 1.06 ± 0.07 | 90.3 ± 0.5 |
H_Bo | 20.3 ± 2.3 | 0.60 ± 0.20 | 89.1 ± 2.2 | 29.1 ± 4.8 | 34.5 ± 0.7 | 0.87 ± 0.12 | 90.1 ± 0.3 |
H_Ha | 13.3 ± 0.3 | - | 88.7 ± 2.6 | 29.5 ± 0.3 | 32.8 ± 4.8 | 0.79 ± 0.08 | 92.0 ± 0.3 |
H_Me | 17.9 ± 1.0 | - | 84.8 ± 1.6 | 34.5 ± 1.6 | 36.4 ± 1.4 | 0.62 ± 0.06 | 92.0 ± 0.1 |
FPHs | Hm (%) | α (dimensionless) | τ (min) | vm (% min−1) | R2 | p-Values |
---|---|---|---|---|---|---|
SB_Bo | 13.83 ± 0.06 | 0.537 ± 0.013 | 6.53 ± 0.20 | 0.396 ± 0.009 | 0.993 | <0.005 |
SB_G | 15.36 ± 0.08 | 0.664 ± 0.007 | 28.78 ± 0.35 | 0.123 ± 0.002 | 0.999 | <0.005 |
SB_HM | 19.34 ± 0.06 | 0.882 ± 0.013 | 18.87 ± 0.46 | 0.313 ± 0.009 | 0.993 | <0.005 |
SB_Ha | 20.88 ± 0.07 | 1.062 ± 0.016 | 33.18 ± 0.35 | 0.232 ± 0.003 | 0.998 | <0.005 |
SB_Me | 21.10 ± 0.14 | 0.667 ± 0.007 | 36.78 ± 0.57 | 0.133 ± 0.002 | 0.999 | <0.005 |
H_Bo | 17.55 ± 0.08 | 0.608 ± 0.013 | 10.97 ± 0.25 | 0.337 ± 0.007 | 0.995 | <0.005 |
H_G | 18.45 ± 0.06 | 0.587 ± 0.009 | 10.71 ± 0.18 | 0.350 ± 0.005 | 0.997 | <0.005 |
H_HM | 21.42 ± 0.08 | 0.744 ± 0.019 | 12.93 ± 0.33 | 0.427 ± 0.010 | 0.992 | <0.005 |
H_Ha | 21.86 ± 0.16 | 0.498 ± 0.016 | 7.42 ± 0.29 | 0.509 ± 0.027 | 0.989 | <0.005 |
H_Me | 20.41 ± 0.14 | 0.647 ± 0.012 | 21.98 ± 0.41 | 0.208 ± 0.005 | 0.997 | <0.005 |
Sample | Antioxidant | Antihypertensive | |||
---|---|---|---|---|---|
FPHs | DPPH (%) | ABTS (μg/mL) | Crocin (μg/mL) | IACE (%) | IC50 (μg/mL) |
SB_G | 34.26 ± 2.85 | 13.02 ± 2.11 | 7.45 ± 0.66 | 57.02 ± 7.10 | 361.1 ± 39.3 |
SB_Bo | 2.29 ± 1.52 | 3.45 ± 1.88 | ND | ND | NDe |
SB_HM | 21.88 ± 4.25 | 12.13 ± 0.93 | 4.95 ± 1.87 | 33.26 ± 27.39 | NDe |
SB_Ha | 23.12 ± 1.98 | 9.45 ± 2.02 | 3.98 ± 2.67 | 42.05 ± 2.75 | NDe |
SB_Me | 13.25 ± 1.99 | 6.89 ± 0.88 | 2.61 ± 1.95 | 25.41 ± 4.87 | NDe |
H_G | 40.28 ± 3.72 | 16.32 ± 1.72 | 8.35 ± 0.53 | 62.18 ± 4.06 | 195.6 ± 20.7 |
H_Bo | 49.12 ± 3.58 | 25.45 ± 2.12 | 11.45 ± 0.98 | 73.77 ± 8.33 | 178.3 ± 31.3 |
H_HM | 25.21 ± 2.09 | 12.94 ± 1.65 | 6.53 ± 3.01 | 45.46 ± 3.97 | NDe |
H_Ha | 24.05 ± 2.42 | 10.55 ± 0.67 | 5.19 ± 1.74 | 44.48 ± 8.00 | NDe |
H_Me | 10.02 ± 1.52 | 2.32 ± 1.87 | ND | 7.71 ± 1.66 | NDe |
Parameters | SBP_G | SBP_Ha | SBP_Bo | SBP_HM | SBP_Me | HP_G | HP_Ha | HP_Bo | HP_HM | HP_Me | MRS 1 | MRS 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass (X) | ||||||||||||
Xm (g/L) | 1.74 ± 0.04 | 1.13 ± 0.04 | 1.67 ± 0.07 | 1.25 ± 0.05 | 1.03 ± 0.06 | 0.84 ± 0.06 | 0.86 ± 0.07 | 0.94 ± 0.07 | 0.90 ± 0.05 | 1.08 ± 0.07 | 1.05 ± 0.08 | 0.97 ± 0.08 |
vx(g L−1·h−1) | 0.15 ± 0.02 | 0.11 ± 0.02 | 0.17 ± 0.04 | 0.14 ± 0.04 | 0.13 ± 0.06 | 0.11 ± 0.06 | 0.10 ± 0.05 | 0.11 ± 0.05 | 0.11 ± 0.04 | 0.11 ± 0.05 | 0.13 ± 0.06 | 0.06 ± 0.03 |
λx(h) | 4.66 ± 1.09 | 4.64 ± 1.03 | 6.32 ± 1.24 | 5.26 ± 1.33 | 5.55 ± 2.35 | 4.15 ± 2.35 | 4.59 ± 2.34 | 6.30 ± 2.14 | 4.22 ± 1.83 | 4.28 ± 2.34 | 3.42 ± 2.33 | 2.98 ± 2.33 |
YX/Rs(gX/gRs) | 0.156 | 0.115 | 0.171 | 0.136 | 0.104 | 0.088 | 0.089 | 0.096 | 0.136 | 0.12 | 0.134 | 0.131 |
YX/Pr(gX/gPr) | 0.942 | 0.599 | 0.984 | 0.798 | 0.600 | 0.538 | 0.564 | 0.523 | 0.869 | 0.650 | 0.710 | 0.658 |
R2 | 0.998 | 0.997 | 0.996 | 0.995 | 0.994 | 0.981 | 0.982 | 0.985 | 0.989 | 0.992 | 0.983 | 0.982 |
Lactic acid (La) | ||||||||||||
Lam(g/L) | 8.77 ± 0.33 | 7.57 ± 0.49 | 6.82 ± 0.49 | 6.60 ± 0.48 | 7.67 ± 0.49 | 6.83 ± 0.49 | 7.15 ± 0.49 | 7.72 ± 0.48 | 7.16 ± 0.83 | 7.62 ± 0.49 | 7.43 ± 0.40 | 7.67 ± 0.40 |
vLa(g L−1·h−1) | 0.80 ± 0.17 | 0.67 ± 0.23 | 0.65 ± 0.26 | 0.66 ± 0.28 | 0.76 ± 0.23 | 0.72 ± 0.23 | 0.78 ± 0.26 | 0.80 ± 0.28 | 0.45 ± 0.23 | 0.62 ± 0.26 | 0.78 ± 0.25 | 0.90 ± 0.25 |
λLa(h) | 3.69 ± 1.35 | 3.24 ± 2.21 | 4.01 ± 2.37 | 3.49 ± 2.40 | 3.51 ± 2.21 | 3.52 ± 2.21 | 4.15 ± 2.37 | 4.89 ± 2.40 | 1.48 (NS) | 2.13 ± 2.12 | 3.58 ± 1.75 | 4.18 ± 1.75 |
YLa/Rs(gLa/gRs) | 0.799 | 0.853 | 0.773 | 0.800 | 0.884 | 0.765 | 0.813 | 0.873 | 0.825 | 0.839 | 0.834 | 0.841 |
YLa/Pr(gLa/gPr) | 4.84 | 4.45 | 4.44 | 4.69 | 5.08 | 4.67 | 5.17 | 4.74 | 5.29 | 4.84 | 4.44 | 4.24 |
R2 | 0.996 | 0.988 | 0.987 | 0.985 | 0.987 | 0.985 | 0.988 | 0.992 | 0.966 | 0.968 | 0.992 | 0.990 |
Pediocin (BT) | ||||||||||||
BTm(BU/mL) | 209.1 ± 8.3 | 175.5 ± 8.9 | 142.4 ± 13.1 | 176.8 ± 10.5 | 142.2 ± 20.7 | 133.1 ± 8.4 | 127.9 ± 5.6 | 130.3 ± 9.3 | 151.8 ± 12.2 | 146.7 ± 11.2 | 204.5 ± 10.2 | 220.7 ± 13.6 |
vBT(BU mL−1·h−1) | 14.7 ± 2.7 | 10.3 ± 2.0 | 5.79 ± 1.15 | 8.6 ± 1.5 | 6.13 ± 2.26 | 10.0 ± 2.9 | 9.30 ± 1.81 | 7.81 ± 2.09 | 8.09 ± 2.27 | 8.94 ± 2.72 | 13.6 ± 2.9 | 12.2 ± 2.9 |
λBT(h) | 6.7 ± 1.3 | 7.60 ± 1.70 | 11.4 ± 2.4 | 10.7 ± 1.8 | 9.88 ± 4.22 | 9.36 ± 1.99 | 9.90 ± 1.36 | 10.1 ± 2.3 | 8.25 ± 2.63 | 8.02 ± 2.53 | 7.68 ± 1.66 | 6.07 ± 2.14 |
YBT/Rs(BU/mgRs) | 18.80 | 18.92 | 15.30 | 20.15 | 16.14 | 13.71 | 13.96 | 14.71 | 17.13 | 15.42 | 22.29 | 23.63 |
YBT/Pr(BU/mgPr) | 113.70 | 98.76 | 87.79 | 118.10 | 92.67 | 83.66 | 88.71 | 79.93 | 109.71 | 89.02 | 118.54 | 119.04 |
R2 | 0.997 | 0.996 | 0.995 | 0.997 | 0.983 | 0.994 | 0.997 | 0.994 | 0.992 | 0.992 | 0.996 | 0.994 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, J.A.; Meduíña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar. Drugs 2019, 17, 139. https://doi.org/10.3390/md17030139
Vázquez JA, Meduíña A, Durán AI, Nogueira M, Fernández-Compás A, Pérez-Martín RI, Rodríguez-Amado I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Marine Drugs. 2019; 17(3):139. https://doi.org/10.3390/md17030139
Chicago/Turabian StyleVázquez, José Antonio, Araceli Meduíña, Ana I. Durán, Margarita Nogueira, Andrea Fernández-Compás, Ricardo I. Pérez-Martín, and Isabel Rodríguez-Amado. 2019. "Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation" Marine Drugs 17, no. 3: 139. https://doi.org/10.3390/md17030139
APA StyleVázquez, J. A., Meduíña, A., Durán, A. I., Nogueira, M., Fernández-Compás, A., Pérez-Martín, R. I., & Rodríguez-Amado, I. (2019). Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Marine Drugs, 17(3), 139. https://doi.org/10.3390/md17030139