Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Settlement Inhibition of Amphibalanus amphitrite
2.2. Evaluation of Toxicity Against Artemia salina
2.3. Evaluation of Toxicity against Chaetoceros gracilis
2.4. Evaluation of Cytotoxicity Against RTL-W1 Cell Line
2.5. Evaluation of Cytotoxicity against HEK293 Cell Line
2.6. Evaluation of Growth of Marine Bacteria
2.7. Effect of Perforenol and Bromosphaerol on the Settlement Exploration Behaviour of Amphibalanus amphitrite
3. Discussion
4. Materials and Methods
4.1. Extraction and Isolation of Metabolites
4.2. Rearing of Barnacles
4.3. Amphibalanus amphitrite Settlement Bioassay
4.4. Artemia salina Toxicity Assay
4.5. Chaetoceros gracilis Toxicity Assay
4.6. RTL-W1 Cell Line Cytotoxicity Assay
4.7. HEK 293 Cell Line Cytotoxicity Assay
4.8. Marine Bacteria Growth Assay
4.9. Substrate Exploration Analysis by Amphibalanus amphitrite Cyprids
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef]
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef]
- Gribble, G. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs 2015, 13, 4044–4136. [Google Scholar] [CrossRef]
- Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia paradox: An endless source of chemodiversity. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J.I., Eds.; Springer International: Basel, Switzerland, 2016; Volume 102, pp. 91–252. [Google Scholar]
- MarinLit. A Database of the Marine Natural Products Literature. Available online: http://pubs.rsc.org/marinlit/ (accessed on 30 September 2019).
- Salgado, L.T.; Viana, N.B.; Andrade, L.R.; Leal, R.N.; Da Gama, B.A.P.; Attias, M.; Pereira, R.C.; Amado Filho, G.M. Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J. Struct. Biol. 2008, 162, 345–355. [Google Scholar] [CrossRef]
- Murai, A. Biosynthesis of cyclic bromoethers from red algae. In Comprehensive Natural Products Chemistry; Barton, S.D., Nakanishi, K., Meth-Cohn, O., Eds.; Pergamon: Oxford, UK, 1999; pp. 303–324. [Google Scholar]
- Wang, B.-G.; Gloer, J.B.; Ji, N.-Y.; Zhao, J.-C. Halogenated organic molecules of Rhodomelaceae origin: Chemistry and biology. Chem. Rev. 2013, 113, 3632–3685. [Google Scholar] [CrossRef]
- McKey, D. The distribution of secondary compounds within plants. In Herbivores. Their Interaction with Secondary Plant Metabolites; Rosenthal, G., Janzen, D., Eds.; Academic Press: New York, NY, USA, 1979; pp. 55–134. [Google Scholar]
- Dworjanyn, S.A.; De Nys, R.; Steinberg, P.D. Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar. Biol. 1999, 133, 727–736. [Google Scholar] [CrossRef]
- Young, D.N.; Howard, B.M.; Fenical, W. Sucellular localization of brominated secondary metabolites in the red alga Laurencia snyderae. J. Phycol. 1980, 16, 182–185. [Google Scholar] [CrossRef]
- Schoenwaelder, M.E.A. The occurrence and cellular significance of physodes in brown algae. Phycologia 2002, 41, 125–139. [Google Scholar] [CrossRef]
- Reis, V.M.; Oliveira, L.S.; Passos, R.M.F.; Viana, N.B.; Mermelstein, C.; Sant’anna, C.; Pereira, R.C.; Paradas, W.C.; Thompson, F.L.; Amado-Filho, G.M.; et al. Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton. PLoS ONE 2013, 8, e63929. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.A.; Nys, R.D.; Steinberg, P.D. Chemical defence against bacteria in the red alga Asparagopsis armata: Linking structure with function. Mar. Ecol. Prog. Ser. 2006, 306, 87–101. [Google Scholar] [CrossRef]
- Kubanek, J.; Jensen, P.R.; Keifer, P.A.; Sullards, M.C.; Collins, D.O.; Fenical, W. Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA 2003, 100, 6916–6921. [Google Scholar] [CrossRef] [PubMed]
- Nocchi, N.; Soares, A.R.; Souto, M.L.; Fernández, J.J.; Martin, M.N.; Pereira, R.C. Detection of a chemical cue from the host seaweed Laurencia dendroidea by the associated mollusc Aplysia brasiliana. PLoS ONE 2017, 12, e0187126. [Google Scholar] [CrossRef] [PubMed]
- De Nys, R.; Leya, T.; Maximilien, R.; Afsar, A.; Nair, P.S.R.; Steinberg, P.D. The need for standardised broad scale bioassay testing: A case study using the red alga Laurencia rigida. Biofouling 1996, 10, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Sudatti, D.B.; Rodrigues, S.V.; Coutinho, R.; Da Gama, B.a.P.; Salgado, L.T.; Amado Filho, G.M.; Pereira, R.C. Transport and defensive role of elatol at the surface of the red seaweed Laurencia obtusa (Ceramiales, Rhodophyta). J. Phycol. 2008, 44, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, P.D.; De Nys, R. Chemical mediation of colonization of seaweed surfaces. J. Phycol. 2002, 38, 621–629. [Google Scholar] [CrossRef]
- Umezawa, T.; Oguri, Y.; Matsuura, H.; Yamazaki, S.; Suzuki, M.; Yoshimura, E.; Furuta, T.; Nogata, Y.; Serisawa, Y.; Matsuyama-Serisawa, K.; et al. Omaezallene from red alga Laurencia sp.: Structure elucidation, total synthesis, and antifouling activity. Angew. Chem. Int. Ed. 2014, 53, 3909–3912. [Google Scholar] [CrossRef]
- Rittschof, D.; Branscomb, E.S.; Costlow, J.D. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 1984, 82, 131–146. [Google Scholar] [CrossRef]
- Rittschof, D.; Clare, A.S.; Gerhart, D.J.; Mary, S.A.; Bonaventura, J. Barnacle in vitro assays for biologically active substances: Toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite darwin. Biofouling 1992, 6, 115–122. [Google Scholar] [CrossRef]
- Kotsiri, M.; Protopapa, M.; Roumelioti, G.-M.; Economou-Amilli, A.; Efthimiadou, E.K.; Dedos, S.G. Probing the settlement signals of Amphibalanus amphitrite. Biofouling 2018, 34, 492–506. [Google Scholar] [CrossRef]
- Piazza, V.; Roussis, V.; Garaventa, F.; Greco, G.; Smyrniotopoulos, V.; Vagias, C.; Faimali, M. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar. Biotechnol. 2011, 13, 764–772. [Google Scholar] [CrossRef]
- Clare, A.S.; Rittschof, D.; Costlow, J.D. Effects of the nonsteroidal ecdysone mimic RH 5849 on larval crustaceans. J. Exp. Zool. 1992, 262, 436–440. [Google Scholar] [CrossRef]
- Al-Lihaibi, S.S.; Abdel-Lateff, A.; Alarif, W.M.; Nogata, Y.; Ayyad, S.E.N.; Okino, T. Potent antifouling metabolites from Red Sea organisms. Asian J. Chem. 2015, 27, 2252–2256. [Google Scholar] [CrossRef]
- Aldred, N.; Alsaab, A.; Clare, A.S. Quantitative analysis of the complete larval settlement process confirms Crisp’s model of surface selectivity by barnacles. Proc. R. Soc. 2018, 285, 20171957. [Google Scholar] [CrossRef] [PubMed]
- Kotsiri, M.; Protopapa, M.; Mouratidis, S.; Zachariadis, M.; Vassilakos, D.; Kleidas, I.; Samiotaki, M.; Dedos, S.G. Should I stay or should I go? The settlement-inducing protein complex guides barnacle settlement decisions. J. Exp. Biol. 2018, 221, jeb185348. [Google Scholar] [CrossRef] [PubMed]
- Dreanno, C.; Kirby, R.R.; Clare, A.S. Locating the barnacle settlement pheromone: Spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite. Proc. R. Soc. 2006, 273, 2721–2728. [Google Scholar] [CrossRef] [PubMed]
- Dreanno, C.; Kirby, R.R.; Clare, A.S. Smelly feet are not always a bad thing: The relationship between cyprid footprint protein and the barnacle settlement pheromone. Biol. Lett. 2006, 2, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Dreanno, C.; Matsumura, K.; Dohmae, N.; Takio, K.; Hirota, H.; Kirby, R.R.; Clare, A.S. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc. Natl. Acad. Sci. USA 2006, 103, 14396–14401. [Google Scholar] [CrossRef] [PubMed]
- Dreanno, C.; Kirby, R.R.; Clare, A.S. Involvement of the barnacle settlement-inducing protein complex (SIPC) in species recognition at settlement. J. Exp. Mar. Biol. Ecol. 2007, 351, 276–282. [Google Scholar] [CrossRef]
- Dahms, H.; Dobretsov, S. Antifouling compounds from marine macroalgae. Mar. Drugs 2017, 15, 265. [Google Scholar] [CrossRef]
- Dahms, H.; Hellio, C. Laboratory bioassays for screening marine antifouling compounds. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds.; Woodhead: Cambridge, UK, 2009; pp. 275–307. [Google Scholar]
- Briand, J.-F. Marine antifouling laboratory bioassays: An overview of their diversity. Biofouling 2009, 25, 297–311. [Google Scholar] [CrossRef]
- Hellio, C.; De La Broise, D.; Dufossé, L.; Le Gal, Y.; Bourgougnon, N. Inhibition of marine bacteria by extracts of macroalgae: Potential use for environmentally friendly antifouling paints. Mar. Environ. Res. 2001, 52, 231–247. [Google Scholar] [CrossRef]
- Qian, P.-Y.; Li, Z.; Xu, Y.; Li, Y.; Fusetani, N. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling 2015, 31, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.-Y.; Xu, Y.; Fusetani, N. Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling 2009, 26, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Qian, P.-Y.; Chen, L.; Xu, Y. Mini-review: Molecular mechanisms of antifouling compounds. Biofouling 2013, 29, 381–400. [Google Scholar] [CrossRef] [PubMed]
- ASTM. Standard Guide for Conducting Static Toxicity Tests with Microalgae. E1218-04; American Society for Testing and Material (ASTM) International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Lee, L.E.; Clemons, J.H.; Bechtel, D.G.; Caldwell, S.J.; Han, K.B.; Pasitschniak-Arts, M.; Mosser, D.D.; Bols, N.C. Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol. Toxicol. 1993, 9, 279–294. [Google Scholar] [CrossRef]
- Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 1977, 36, 59–74. [Google Scholar] [CrossRef]
- Almeida, E.; Diamantino, T.C.; De Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 2007, 59, 2–20. [Google Scholar] [CrossRef]
- Almeida, J.R.; Vasconcelos, V. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol. Adv. 2015, 33, 343–357. [Google Scholar] [CrossRef]
- Gonzalez, A.G.; Aguiar, J.M.; Darias, J.; Gonzalez, E.; Martin, J.D.; Martin, V.S.; Perez, C.; Fayos, J.; Martinez-Ripoll, M. Perforenol, a new polyhalogenated sesquiterpene from Laurencia perforata. Tetrahedron Lett. 1978, 19, 3931–3934. [Google Scholar] [CrossRef]
- Kokkotou, K.; Ioannou, E.; Nomikou, M.; Pitterl, F.; Vonaparti, A.; Siapi, E.; Zervou, M.; Roussis, V. An integrated approach using UHPLC–PDA–HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: Dereplication and tracing of natural products. Phytochemistry 2014, 108, 208–219. [Google Scholar] [CrossRef]
- MolluscaBase. Aplysia depilans Gmelin, 1791, World Register of Marine Species. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=138754 (accessed on 12 November 2019).
- Petraki, A. Isolation and structure elucidation of secondary metabolites from the sea hare Aplysia depilans. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, July 2016. [Google Scholar]
- Petraki, A.; Ioannou, E.; Papazafiri, P.; Roussis, V. Dactylomelane diterpenes from the sea hare Aplysia depilans. J. Nat. Prod. 2015, 78, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Harizani, M. Isolation and Structure Elucidation of Secondary Metabolites from the Red Algae Laurencia microcladia and Laurencia obtusa. Master’s Thesis, National and Kapodistrian University of Athens, Athens, Greece, July 2013. [Google Scholar]
- Konidaris, G. Isolation and Structure Elucidation of Secondary Metabolites from the Red Alga Laurencia glandulifera. Master’s Thesis, National and Kapodistrian University of Athens, Athens, Greece, December 2015. [Google Scholar]
- Giannaropoulou, E. Isolation and Structure Elucidation of Secondary Metabolites from a Red Alga of the Genus Laurencia. Master’s Thesis, National and Kapodistrian University of Athens, Athens, Greece, December 2013. [Google Scholar]
- Ioannou, E.; Nappo, M.; Avila, C.; Vagias, C.; Roussis, V. Metabolites from the sea hare Aplysia fasciata. J. Nat. Prod. 2009, 72, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Carballo, J.L.; Hernández-Inda, Z.L.; Pérez, P.; García-Grávalos, M.D. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol. 2002, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Vanhaecke, P.; Persoone, G.; Claus, C.; Sorgeloos, P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol. Environ. Saf. 1981, 5, 382–387. [Google Scholar] [CrossRef]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.L.; Fox, J.M.; Granvil, D.R. Intensive algae culture techniques. In CRC Handbook of Mariculture, Volume 1 Crustacean Aquaculture, 2nd ed.; McVey, J.P., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1993. [Google Scholar]
- Kienzler, A.; Tronchère, X.; Devaux, A.; Bony, S. Assessment of RTG-W1, RTL-W1, and PLHC-1 fish cell lines for genotoxicity testing of environmental pollutants by means of a Fpg-modified comet assay. Toxicol. In Vitro 2012, 26, 500–510. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc. 2016, 4. [Google Scholar] [CrossRef]
- Repetto, G.; Del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Zobell, C. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 1941, 4, 42–75. [Google Scholar]
Secondary Metabolite | IC50 Settlement | LC50 Mortality | EC50 No Metamorphosis | Therapeutic Ratio (TR = LC50/IC50) | Settlement/No Metamorphosis Ratio IC50/EC50 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 72 h | 72 h | |
1 | 27.90 | 14.64 | 16.21 | 26.01 | 229.80 | 29.46 | 37.99 | ND | ND | 1.82 | ND |
2 | 2.02 | 18.11 | 19.77 | >1000 | 790.20 | 191.20 | 43.99 | 38.24 | 36.47 | 9.67 | 0.54 |
3 | 1.04 | 1.80 | 2.00 | 66.06 | 382.20 | 269.20 | ND | 80.93 | 109.2 | 134.60 | 0.02 |
4 | 0.12 | 0.18 | 0.34 | 3.55 | 2.98 | 2.80 | 10.35 | 12.38 | 5.85 | 8.24 | 0.06 |
5 | 2.26 | 5.45 | 12.87 | 33.14 | ND | ND | 27.01 | 0.001 | 0.287 | ND | 44.84 |
6 | 2.42 | 2.22 | 1.27 | 12.31 | 5.29 | 2.31 | 28.33 | 10.85 | 14.98 | 1.82 | 0.08 |
7 | 17.49 | 17.69 | 10.28 | 24.75 | 23.42 | 24.96 | 25.41 | 21.68 | 53.24 | 2.43 | 0.19 |
8 | 15.83 | 17.49 | 6.95 | 7.76 | 7.38 | 5.93 | 6.81 | 5.01 | 5.42 | 0.85 | 1.28 |
9 | 0.520 | 0.660 | 0.500 | 76.23 | 116.4 | 49.14 | 38.17 | 47.36 | 57.81 | 98.28 | 0.01 |
10 | 5.24 | 0.662 | 4.66 | 28.83 | 28.49 | 28.75 | 39.29 | 71.05 | 57.17 | 6.17 | 0.08 |
11 | 0.003 | 0.002 | 0.002 | 56.14 | 38.42 | ND | 0.003 | 0.002 | ND | ND | ND |
12 | 0.089 | 0.073 | 0.042 | 0.327 | 0.194 | 0.061 | 0.396 | 0.250 | 0.066 | 1.45 | 0.64 |
13 | 1.49 | 1.06 | 1.02 | 29.81 | 848.7 | 8.15 | 46.35 | 64.68 | 78.93 | 7.99 | 0.01 |
14 | 0.011 | 0.065 | 0.028 | 1.96 | 3.61 | 3.54 | 6.42 | 5.15 | 7.72 | 126.43 | 0.00 |
15 | 2.84 | 7.02 | 5.37 | 31.71 | 33.35 | 34.65 | 63.63 | 55.09 | 72.96 | 6.45 | 0.07 |
16 | 1.42 | 1.96 | 2.20 | >1000 | >1000 | >1000 | 58.34 | 49.09 | 58.46 | >1000 | 0.04 |
17 | 0.634 | 0.806 | 1.19 | ND | ND | >1000 | 0.057 | 0.921 | 100.60 | >1000 | 0.01 |
18 | 0.046 | 0.076 | 0.316 | 26.24 | 26.31 | 20.34 | 45.36 | 50.37 | 48.51 | 64.37 | 0.01 |
19 | 0.400 | 0.915 | 0.756 | 412.9 | 365.8 | 573.1 | 52.80 | 57.89 | 70.41 | 758.07 | 0.01 |
20 | 2.57 | 2.89 | 3.32 | ND | ND | 138.3 | 46.98 | 11.28 | 10.05 | 41.66 | 0.33 |
21 | 3.21 | 7.37 | 0.575 | 0.575 | 1.12 | 18.63 | 7.42 | 18.16 | 0.001 | 32.40 | 575.00 |
22 | 0.025 | 0.043 | 0.055 | 6.86 | 10.11 | 71.34 | 0.008 | 0.010 | 58.66 | 1297.0 | 0.00 |
23 | 0.237 | 9.18 | 9.70 | ND | ND | ND | 0.276 | 10.31 | 11.24 | ND | 0.86 |
24 * | ND | 9.49 | 207.50 | 259.8 | 527.5 | 527.5 | 0.058 | 63.06 | 163.4 | 2.54 | 1.27 |
25 * | 62.72 | 55.62 | 75.42 | 643 | 624.6 | 618.2 | 47.07 | 42.75 | 53.27 | 8.20 | 1.42 |
Bromosphaerol | 0.580 | 0.624 | 0.836 | 17.90 | 4.57 | 2.50 | 0.450 | 0.267 | 0.561 | 2.99 | 1.49 |
Secondary Metabolite | Artemia salina | Chaetoceros gracilis | RTL-W1 Cell Line | HEK293 Cell Line | |||||
---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 96 h | Mitochondria Function | Cell Viability | Lysosome Activity | Mitochondria Function | Cell Viability | Lysosome Activity | |
4 | 21.11 | 0.739 | - | - | - | - | - | - | - |
9 | 283.20 | 189 | 49.81 | >1000 | 15.97 | >1000 | 10.78 | 81.10 | >1000 |
11 | 10.05 | 1.57 | 4.52 | - | - | - | - | - | - |
12 | 6.59 | 0.373 | - | - | - | - | - | - | - |
14 | 34.19 | 15.13 | 1.61 | - | - | - | - | - | - |
18 | 34.88 | 38.05 | 10.71 | >1000 | 0.456 | 138.2 | 0.225 | >1000 | >1000 |
19 | 31.53 | 303.8 | 352.4 | >1000 | 12.81 | >1000 | 0.062 | 434.10 | >1000 |
22 | 3.07 | 9.63 | 2.15 | - | - | - | - | - | - |
Bromosphaerol | >1000 | >1000 | 4.34 | >1000 | 0.575 | 143.7 | 57.61 | 97.12 | 340.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Protopapa, M.; Kotsiri, M.; Mouratidis, S.; Roussis, V.; Ioannou, E.; Dedos, S.G. Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Mar. Drugs 2019, 17, 646. https://doi.org/10.3390/md17110646
Protopapa M, Kotsiri M, Mouratidis S, Roussis V, Ioannou E, Dedos SG. Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Marine Drugs. 2019; 17(11):646. https://doi.org/10.3390/md17110646
Chicago/Turabian StyleProtopapa, Maria, Manto Kotsiri, Sofoklis Mouratidis, Vassilios Roussis, Efstathia Ioannou, and Skarlatos G. Dedos. 2019. "Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia" Marine Drugs 17, no. 11: 646. https://doi.org/10.3390/md17110646
APA StyleProtopapa, M., Kotsiri, M., Mouratidis, S., Roussis, V., Ioannou, E., & Dedos, S. G. (2019). Evaluation of Antifouling Potential and Ecotoxicity of Secondary Metabolites Derived from Red Algae of the Genus Laurencia. Marine Drugs, 17(11), 646. https://doi.org/10.3390/md17110646