Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mariculture Sites and Monitoring of Water Quality
2.2. Sponge Collection and Seeding
2.3. Mariculture Trials
2.4. Survival Rate Analysis and Sponge Explant Growth
2.5. Statistical Analysis
3. Results
3.1. Polluted versus Pristine Site: Water Temperature, Visibility and TOC
3.2. 1st Mariculture Trial: Testing Materials and Attachment Procedures
3.3. 2nd Mariculture Trial: Testing Culture Plate Orientation and Site
3.4. 3rd Mariculture Trial: Assessment of Sponge Culture Productivity Polluted vs. Pristine Site
4. Discussion
4.1. Explant Survival Rates
4.2. Explant Growth
4.3. Culture of Chondrosia reniformis—Best Practices
- Culture method: Sponge explants cut from parent sponges are glued to PVC plates using gel-based polyacrylate superglue. PVC plates are best positioned vertically onto frames and they should be extended with a basket on the bottom site to recover explants falling off the plates. Chicken wire may be applied during the first few weeks after explanting to prevent early losses but should be removed once the attachment is stable. Prolonged use of chicken wire cover tends to hold sediments and promotes epibiont growth and hence undesired space competition with the cultured sponge.
- Site selection: Sites should not be prone to strong fluctuations in weather. The area should be secured and should be clear of boat traffic and anchoring [10,11]. Sites should be carefully assessed for (e.g., seasonal) strong currents. High water turbidity and increased load of organic content associated with the presence of fish farms does not appear to hamper growth of C. reniformis on vertical plates, making this sponge an interesting candidate for integrated multitrophic mariculture. Daily fish feeding activities and occasional net replacing hinders the use of culture platforms inside the fish farm area. Thus, sponge culture platforms have to be placed outside boat traffic area. To eliminate this problem, one method that we consider for future applications is using layered scallop lanterns placed in between an anchor and a submerged buoy system (just outside the fish farm culture area), a method that was successfully applied by both Duckworth et al. [46] and Kelly et al. [12], for Latrunculia wellingtonensis, Polymastia croceus, and (Heterofibria) manipulatus, respectively.
- Seasonality: Initiating a culture of C. reniformis in the Mediterranean is best done in either spring (April-May) or autumn (October-November) to prevent bacterial infections following cutting of explants from parent sponges.
4.4. Recommendations for Future Research
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Storr, J.F. Ecology of the Gulf of Mexico Commercial Sponges and its Relation to the Fishery; Special Scientific Report; US Fish and Wildlife Service: Washington, DC, USA, 1964; Volume 466, p. 73.
- Manconi, R.; Cubeddu, T.; Corriero, G.; Pronzato, R. Commercial sponges farming as natural control of floating cages pollution. In New Species for Mediterranean Aquaculture; Enne, G., Greppi, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 269–274. [Google Scholar]
- Pronzato, R.; Manconi, R. Mediterranean commercial sponges: Over 5000 years of natural history and cultural heritage. Mar. Ecol. 2008, 29, 146–166. [Google Scholar] [CrossRef]
- Voultsiadou, E.; Dailianis, T.; Antoniadou, C.; Vafidis, D.; Dounas, C.; Chintiroglou, C.C. Aegean Bath Sponges: Historical Data and Current Status. Rev. Fish. Sci. 2011, 19, 34–51. [Google Scholar] [CrossRef]
- Pronzato, R.; Bavestrello, G.; Cerrano, C.; Magnino, G.; Manconi, R.; Pantelis, J.; Sarà, A.; Sidri, M. Sponge farming in the Mediterranean Sea: New perspectives. Mem. Qld. Mus. 1999, 44, 485–491. [Google Scholar]
- Milanese, M.; Sarà, M.; Manconi, R.; Ben Abdalla, A.; Pronzato, R. Commercial sponge fishing in Libya: Historical records, present status and perspectives. Fish. Res. 2008, 89, 90–96. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Wimmer, W.; Schatton, W.; Böhm, M.; Batel, R.; Filic, Z. Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: Example, Geodia cydonium. Mar. Biotechnol. 1999, 1, 569–579. [Google Scholar] [CrossRef]
- Van Treeck, P.; Eisinger, M.; Muller, J.; Paster, M.; Schuhmacher, H. Mariculture trials with Mediterranean sponge species: The exploitation of an old natural resource with sustainable and novel methods. Aquaculture 2003, 218, 439–455. [Google Scholar] [CrossRef]
- De Voogd, N.J. The mariculture potential of the Indonesian reefdwelling sponge Callyspongia (Euplacella) biru: Growth, survival and bioactive compounds. Aquaculture 2007, 262, 54–64. [Google Scholar] [CrossRef]
- Duckworth, A. Farming sponges to supply bioactive metabolites and bath sponges: A review. Mar. Biotechnol. 2009, 11, 669–679. [Google Scholar] [CrossRef]
- Schippers, K.J.; Sipkema, D.; Osinga, R.; Smid, H.; Pomponi, S.A.; Martens, D.E.; Wijffels, R.H. Cultivation of Sponges, Sponge Cells and Symbionts: Achievements and Future Prospects. Adv. Mar. Biol. 2012, 62, 273–337. [Google Scholar] [CrossRef]
- Kelly, M.; Handley, S.; Page, M.; Butterfield, P.; Hartill, B.; Kelly, S. Aquaculture trials of the New Zealand bath-sponge Spongia (Heterofibria) manipulatus using lanterns. N. Z. J. Mar. Freshw. Res. 2010, 38, 231–241. [Google Scholar] [CrossRef]
- Pomponi, S.A. The oceans and human health: The discovery and development of marine-derived drugs. Oceanography 2001, 14, 28–42. [Google Scholar] [CrossRef]
- Sipkema, D.; Osinga, R.; Schatton, W.; Mendola, D.; Tramper, J.; Wijffels, R.H. Large-scale production of pharmaceuticals by marine sponges: Sea, cell, or synthesis. Biotechnol. Bioeng. 2005, 90, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Milanese, M.; Chelossi, E.; Manconi, R.; Sarà, A.; Sidri, M.; Pronzato, R. The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomol. Eng. 2003, 20, 363–368. [Google Scholar] [CrossRef]
- Fu, W.; Sun, L.; Zhang, X.; Zhang, W. Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. Biotechnol. Bioeng. 2006, 93, 1112–1122. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Xue, L.; Zhang, B.; Jin, M.; Fu, W. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus. Biotechnol. Bioeng. 2009, 105, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ledda, F.D.; Pronzato, R.; Manconi, R. Mariculture for bacterial and organic waste removal: A field study of sponge filtering activity in experimental farming. Aquac. Res. 2014, 45, 1389–1401. [Google Scholar] [CrossRef]
- Longo, C.; Cardone, F.; Corriero, G. The co-occurrence of the demosponge Hymeniacidon perlevis and the edible mussel Mytilus galloprovincialis as a new tool for bacterial load mitigation in aquaculture. Environ. Sci. Pollut. Res. 2016, 23, 3736–3746. [Google Scholar] [CrossRef]
- Pronzato, R.; Cerrano, C.; Cubeddu, T. Sustainable development in coastal areas: Role of sponge farming in integrated aquaculture. In Aquaculture and Water: Fish Culture, Shellfish Culture and Water Usage; Special Publication No. 26; Grizel, H., Kesmont, P., Eds.; European Aquaculture Society: Bordeaux, France, 1998; pp. 231–232. [Google Scholar] [CrossRef]
- Reiswig, H.M. In-situ pumping activities of tropical Demospongiae. Mar. Biol. 1971, 9, 38–50. [Google Scholar] [CrossRef]
- Pile, A.J.; Witman, J. In situ grazing on plankton <10 μm by the boreal sponge. Mycale lingua. Mar. Ecol. Prog. Ser. 1996, 141, 95–102. [Google Scholar] [CrossRef]
- McMurray, S.E.; Johnson, Z.I.; Hunt, D.E.; Pawlik, J.R.; Finelli, C.M. Selective feeding by the giant barrel sponge enhances foraging efficiency. Limnol. Oceanogr. 2016, 61, 1271–1286. [Google Scholar] [CrossRef]
- Vogel, S. Current-Induced Flow through Living Sponges in Nature. Proc. Natl. Acad. Sci. USA 1977, 74, 2069–2071. [Google Scholar] [CrossRef] [PubMed]
- Savarese, M.; Patterson, M.R.; Chernykh, V.I.; Fialkov, V.A. Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 1. In situ pumping rates. Limnol. Oceanogr. 1997, 42, 171–178. [Google Scholar] [CrossRef]
- Weisz, J.B.; Lindquist, N.; Martens, C.S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 2008, 155, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Osinga, R.; Sidri, M.; Cerig, E.; Gokalp, S.Z.; Gokalp, M. Sponge Aquaculture Trials in the East-Mediterranean Sea: New Approaches to Earlier Ideas. Open Mar. Biol. J. 2010, 4, 74–81. [Google Scholar] [CrossRef]
- Tommonaro, G.; Iodice, C.; AbdEl-Hady, F.K.; Guerriero, G.; Pejin, B. The Mediterranean Sponge Dysidea avara as a 40 Year Inspiration of Marine Natural Product Chemists. J. Homeopath. Ayurvedic Med. 2014. [Google Scholar] [CrossRef]
- Swatschek, D.; Schatton, W.; Kellerman, J.; Muller, W.E.G.; Kreuterc, J. Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur. J. Pharm. Biopharm. 2002, 53, 107–113. [Google Scholar] [CrossRef]
- Nickel, M.; Brummer, F. In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J. Biotechnol. 2003, 100, 147–159. [Google Scholar] [CrossRef]
- Silva, T.H.; Moreira-Silva, J.; Marques, A.L.; Domingues, A.; Bayon, Y.; Reis, R.L. Marine origin collagens and its potential applications. Mar. Drugs 2014, 12, 5881–5901. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, R.L. Method to Obtain Collagen/Gelatin from Marine Sponges. WO Patent WO2015151030A1, 8 October 2015. Available online: https://patentimages.storage.googleapis.com/8c/50/55/0a910f35b77782/WO2015151030A1.pdf (accessed on 26 November 2018).
- Silva, J.; Barros, A.; Aroso, I.; Fassini, D.; Silva, T.H.; Reis, R.L.; Duarte, A. Extraction of Collagen/Gelatin from the Marine Demosponge Chondrosia reniformis (Nardo, 1847) Using Water Acidified with Carbon Dioxide—Process Optimization. Ind. Eng. Chem. Res. 2016, 55, 6922–6930. [Google Scholar] [CrossRef]
- Bavestrello, G.; Benatti, U.; Calcinai, B.; Cattaneo-Vietti, R.; Cerrano, C.; Favre, A.; Giovine, M.; Lanza, S.; Pronzato, R.; Sara, M. Body Polarity and Mineral Selectivity in the Demosponge Chondrosia reniformis. Biol. Bull. 1998, 195, 120–125. [Google Scholar] [CrossRef]
- Wilkinson, C.; Vacelet, J. Transplantation of marine sponges to different conditions of light and current. J. Exp. Mar. Biol. Ecol. 1979, 37, 91–104. [Google Scholar] [CrossRef]
- Garrabou, J.; Zabala, M. Growth dynamics in four Mediterranean Demosponges. Estuar. Coast. Shelf Sci. 2001, 52, 293–303. [Google Scholar] [CrossRef]
- Hannah, L.; Pearce, C.M.; Cross, S.F. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture 2013, 406–407, 34–42. [Google Scholar] [CrossRef]
- Menzel, D.W.; Vaccaro, R.F. The measurement of dissolved organic and particulate carbon in seawater. Limnol. Oceanogr. 2003, 9, 138–142. [Google Scholar] [CrossRef]
- Page, M.J.; Handley, S.J.; Northcote, P.T.; Cairney, D.; Willan, R.C. Successes and pitfalls of the aquaculture of the sponge Mycale hentscheli. Aquaculture 2011, 312, 52–61. [Google Scholar] [CrossRef]
- Le Pennec, G.; Perovic, S.; Ammar, M.S.A.; Grebenjuk, V.A.; Steffen, R.; Brummer, F.; Mueller, W.E.G. Cultivation of primmorphs from the marine sponge Suberites domuncula: Morphogenetic potential of silicon and iron a review. J. Biotechnol. 2003, 100, 93–108. [Google Scholar] [CrossRef]
- Duckworth, A.R.; Battershill, C.N.; Bergquist, P.R. Influence of explant procedures and environmental factors on culture success of three sponges. Aquaculture 1997, 156, 251–267. [Google Scholar] [CrossRef]
- Alexander, B.E.; Achlatis, M.; Osinga, R.; van der Geest, H.G.; Cleutjens, J.P.M.; Schutte, B.; de Goeij, J.M. Cell kinetics during regeneration in the sponge Halisarca caerulea; how local is the response to tissue damage? PeerJ 2015, 3, e820. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.; Zhang, X.C.; Cao, X.P.; Xue, L.Y.; Cao, H.; Zhang, W. Selective feeding by sponges on pathogenic microbes: A reassessment of potential for abatement of microbial pollution. Mar. Ecol. Prog. Ser. 2010, 403, 75–89. [Google Scholar] [CrossRef]
- Corriero, G.; Longo, C.; Mercurio, M.; Marzano, C.N.; Lembo, G.; Spedicato, M.T. Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 2004, 238, 195–205. [Google Scholar] [CrossRef]
- Wulff, J.L. Trade-Offs in Resistance to Competitors and Predators, and Their Effects on the Diversity of Tropical Marine Sponges. J. Anim. Ecol. 2005, 74, 313–321. [Google Scholar] [CrossRef]
- Duckworth, A.; Battershill, C.; Schiel, D.R. Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 2004, 242, 237–250. [Google Scholar] [CrossRef]
- Lerner, C.; Hajdu, E. Two new Mycale (Naviculina) Gray (Mycalidae, Poecilosclerida, Demospongiae) from the Paulista Biogeographic Province (Southwestern Atlantic). Rev. Bras. Zool. 2002, 19, 109–122. [Google Scholar] [CrossRef]
a. 1st trial Material test and attachment procedures | Material | Attachment Method | Advantage | Disadvantage | Result |
Air-concrete | Iron screw | No attachment | Not suitable | ||
PVC—white | Cable-ties | Survival (80%) | Dispersion of explants | Not selected for 2nd trial | |
Superglue | Ease of operation | Lower survival (60%) | Selected for 3rd trial | ||
Chicken wire | High survival (100%) | handling time | Selected for 2nd trial | ||
PVC—black | Cable-ties | Survival (80%) | Dispersion of explants | No preference; the color of the plate did not affect the result | |
Cemented PVC | Cable-ties | High survival (100%) | Cost, handling time and weight | Not selected |
b. 2nd trial Testing culture orientation and site | Site | Material | Disadvantage | Survival Rate | Average Growth | Result | Orientation (°) |
Pristine | PVC chicken wire | Squeezed explants, resulted in unwanted epibiont growth, time & cost | 63% survival after 6 months of culture | Culture frame demolished by an anchor | Chicken wire method is not suitable | 90° was selected for the next trial | |
Polluted | 79% survival after 6 months & 1 year of culture | 39.2 ± 36.2% in 12 months for dark angles | |||||
−40.9 ± 37.7% in 12 months for light angles |
c. 3rd trial Assessment of productivity at the optimal culture orientation | Site | Species | Survival Rate | Average Growth | Growth per Culture Interval | Range of Growth for Individuals | |
0–6 Months | 7–13 Months | ||||||
Pristine | C. reniformis (n = 15 plates) | 39% | 79.0 ± 37.4% in 13 months | 69.8 ± 33.6% | 5.4 ± 5.7% | −3.6–135.6% | |
Polluted | C. reniformis (n = 16 plates) | 86% | 170.4 ± 109.1% in 13 months | 114.0 ± 94.6% | 30.1 ± 27.9% | 0.8–322.9% |
Factor | F | df | Error | p |
---|---|---|---|---|
Culture site | 14.439 | 1 | 27 | 0.001 ** |
Time | 55.550 | 1 | 27 | 0.000 ** |
Culture site x Time | 2.686 | 1 | 27 | 0.113 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gökalp, M.; Wijgerde, T.; Sarà, A.; De Goeij, J.M.; Osinga, R. Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis. Mar. Drugs 2019, 17, 29. https://doi.org/10.3390/md17010029
Gökalp M, Wijgerde T, Sarà A, De Goeij JM, Osinga R. Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis. Marine Drugs. 2019; 17(1):29. https://doi.org/10.3390/md17010029
Chicago/Turabian StyleGökalp, Mert, Tim Wijgerde, Antonio Sarà, Jasper M. De Goeij, and Ronald Osinga. 2019. "Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis" Marine Drugs 17, no. 1: 29. https://doi.org/10.3390/md17010029
APA StyleGökalp, M., Wijgerde, T., Sarà, A., De Goeij, J. M., & Osinga, R. (2019). Development of an Integrated Mariculture for the Collagen-Rich Sponge Chondrosia reniformis. Marine Drugs, 17(1), 29. https://doi.org/10.3390/md17010029