Next Article in Journal
Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90
Next Article in Special Issue
Degradation of Fucoxanthin to Elucidate the Relationship between the Fucoxanthin Molecular Structure and Its Antiproliferative Effect on Caco-2 Cells
Previous Article in Journal
Butyrolactone-I from Coral-Derived Fungus Aspergillus terreus Attenuates Neuro-Inflammatory Response via Suppression of NF-κB Pathway in BV-2 Cells
Previous Article in Special Issue
A Rapid Method for the Determination of Fucoxanthin in Diatom
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessReview
Mar. Drugs 2018, 16(6), 203;

Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms

Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain
Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain
Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, Copayapu 2862, CP 1530000 Copiapó, Chile
These authors have contributed equally to this work.
Author to whom correspondence should be addressed.
Received: 11 April 2018 / Revised: 28 May 2018 / Accepted: 5 June 2018 / Published: 8 June 2018
(This article belongs to the Collection Marine Carotenoids)
Full-Text   |   PDF [5540 KB, uploaded 8 June 2018]


Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine. View Full-Text
Keywords: carotenoids; antioxidants; bioactive compounds; blue biotechnology; marine microorganisms carotenoids; antioxidants; bioactive compounds; blue biotechnology; marine microorganisms
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; Reig García-Galbis, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar. Drugs 2018, 16, 203.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top