A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides
Abstract
1. Introduction
2. Molecular Characteristics of SIPs
3. Biological Activities of SIPs
3.1. Chemoprevention
3.1.1. Protection of the Reproductive System
3.1.2. Protection of Intestinal Tract
3.1.3. Protection of Other Tissues/Organs
3.2. Antitumour Activities
3.3. Chemosensitization
3.4. Anticoagulant and Procoagulant Activities
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhong, J.P.; Wang, G.; Shang, J.H.; Pan, J.Q.; Li, K.; Huang, Y.; Liu, H.Z. Protective effects of squid ink extract towards hemopoietic injuries induced by cyclophosphamide. Mar. Drugs 2009, 7, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.; Soliman, A.M.; Mohamed, A.S.; Marie, M.A.S. Antioxidant effect of Sepia ink extract on extrahepatic cholestasis induced by bile duct ligation in rats. Biomed. Environ. Sci. 2015, 28, 582–594. [Google Scholar] [PubMed]
- Vate, N.K.; Benjakul, S.; Agustini, T.W. Application of melanin-free ink as a new antioxidative gel enhancer in sardine surimi gel. J. Sci. Food Agric. 2015, 95, 2201–2207. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Luo, P.; Chen, S.H.; Shang, J.H. Effects of squid ink on growth performance, antioxidant functions and immunity in growing broiler chickens. Asian Austral. J. Anim. Sci. 2011, 24, 1752–1756. [Google Scholar] [CrossRef]
- Liu, H.Z.; Wang, G.; Guo, Y.Z.; Pan, J.Q.; Huang, Y.; Zhong, J.P.; Li, K. Sepia ink extract attenuates renal injury caused by cyclophosphamide-induced oxidative stress. Chin. J. Nephrol. 2009, 25, 804–805. [Google Scholar]
- Wang, G.; Guo, Y.Z.; Guan, S.B.; Zhong, J.P.; Pan, J.Q.; Huang, Y.; Liu, H.Z. Protective effects of sepia ink extract on cyclophosphamide-induced pulmonary fibrosis in mice. Chin. J. Mar. Drugs 2009, 28, 36–40. [Google Scholar]
- Wang, G.; Pan, J.Q.; Zhong, J.P.; Li, K.; Huang, Y.; Wu, J.L.; Liu, H.Z. Protective effects of sepia ink extract against cyclophosphamide-induced oxidative damage in mice spleen. Food Sci. 2009, 30, 219–222. [Google Scholar]
- Wang, G.; Liu, H.Z.; Wu, J.L.; Cao, Q.W.; Chen, Y.P.; Yang, C.L.; Zhong, J.P. Study of sepia ink extract on protection from oxidative damage of cardiac muscle and brain tissue in mice. Chin. J. Mod. Appl. Pharm. 2010, 27, 95–99. [Google Scholar]
- Fahmy, S.R.; Soliman, A.M. In vitro antioxidant, analgesic and cytotoxic activities of Sepia officinalis ink and Coelatura aegyptiaca extracts. Afr. J. Pharm. Pharmacol. 2013, 7, 1512–1522. [Google Scholar] [CrossRef]
- Mimura, T.; Itoh, S.; Tsujikawa, K.; Nakajima, H.; Satake, M.; Kohama, Y.; Okabe, M. Studies on biological activities of melanin from marine animals. V. Anti-inflammatory activity of low-molecular-weight melanoprotein from squid (Fr. SM II). Chem. Pharm. Bull. 1987, 35, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Maeda, K.; Terada, T.; Oda, Y.; Morishita, K.; Aonuma, S. Studies on biological activities of melanin from marine animals. III. Inhibitory effect of SM II (low molecular weight melanoprotein from squid) on phenylbutazone-induced ulceration in gastric mucosa in rats, and its mechanism of action. Chem. Pharm. Bull. 1985, 33, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapathi, J.; Thyagarajan, S.P.; Patterson Edward, J.K. Study on cephalopod’s ink for anti-retroviral activity. Indian J. Exp. Biol. 2000, 38, 519–520. [Google Scholar] [PubMed]
- Kim, S.Y.; Kim, S.H.; Song, K.B. Characterization of a partial purification and angiotensin-converting enzyme inhibitor from squid ink. Agric. Chem. Biotechnol. 2003, 46, 122–123. [Google Scholar]
- Fahmy, S.R.; Soliman, A.; Ali, E.M. Antifungal and antihepatotoxic effects of sepia ink extract against oxidative stress as a risk factor of invasive pulmonary aspergillosis in neutropenic mice. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 148–159. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petkovic, M.V. Determination of the antimicrobial activity of purified melanin from the ink Octopus mimus Gould, 1852 (Cephalopoda: Octopodidae). Lat. Am. J. Aquat. Res. 2013, 41, 584–587. [Google Scholar]
- Shi, L.S.; Liu, H.Z.; Zhong, J.P.; Pan, J.Q. Fresh-keeping effects of melanin-free extract from squid ink on yellowfin sea bream (Sparus latus) during cold storage. J. Aquat. Food Prod. Technol. 2015, 24, 199–212. [Google Scholar] [CrossRef]
- Kumar, P.; Kannan, M.; ArunPrasanna, V.; Vaseeharan, B.; Vijayakumar, S. Proteomics analysis of crude squid ink isolated from Sepia esculenta for their antimicrobial, antibiofilm and cytotoxic properties. Microb. Pathog. 2018, 116, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wang, J.F.; Wang, Y.M.; Pang, L.; Wang, Y.; Xu, W.; Xue, C.H. Study of the radio-protective effect of cuttlefish ink on hemopoietic injury. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 239–243. [Google Scholar] [PubMed]
- Sasaki, J.; Ishita, K.; Takaya, Y.; Uchisawa, H.; Matsue, H. Anti-tumor activity of squid ink. J. Nutr. Sci. Vitaminol. 1997, 43, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.F.; Huang, F.F.; Yang, Z.S.; Yu, D.; Yang, Y.F. Anticancer activity of an oligopeptide isolated from hydrolysates of sepia ink. Chin. J. Nat. Med. 2011, 9, 51–55. [Google Scholar]
- Huang, F.; Yang, Z.; Yu, D.; Wang, J.; Li, R.; Ding, G. Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase-3 activation and elevation of Bax/Bcl-2 ratio. Mar. Drugs 2012, 10, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.L.; Lv, C.L.; Hong, M.B. Experimental study of the effective mechanisms of sepia ink in promoting coagulation of blood. J. China Med. Univ. 1994, 23, 530–531. [Google Scholar]
- Derby, C.D. Cephalopod ink: Production, chemistry, functions and applications. Mar. Drugs 2014, 12, 2700–2730. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhang, N.; Zhang, Q.; Shi, H.; Lu, S.; Xue, C.; Tang, Q.J. Transportation of squid ink polysaccharide SIP through intestinal epithelial cells and its utilization in the gastrointestinal tract. J. Funct. Foods 2016, 22, 408–416. [Google Scholar] [CrossRef]
- Takaya, Y.; Uchisawa, H.; Hanamatsu, K.; Narumi, F.; Okuzaki, B.; Matsue, H. Novel fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure (-6GalNAcα1-3GlcAβ1-3Fucα1-)n. Biochem. Biophy. Res. Commun. 1994, 198, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Takaya, Y.; Uchisawa, H.; Narumi, F.; Matsue, H. Illexins A, B and C from squid ink should have a branched structure. Biochem. Biophy. Res. Commun. 1996, 226, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.G.; Xu, J.; Xue, C.H.; Dong, P.; Sheng, W.J.; Yu, G.L.; Chai, W.G. Sequence determination of a non-sulfated glycosaminoglycan-like polysaccharide from melanin-free ink of the squid Ommastrephes bartrami by negative-ion electrospray tandem mass spectrometry and NMR spectroscopy. Glycoconj. J. 2008, 5, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Li, X.D.; Li, Y.H.; Feng, Y.; Zhou, S.; Wang, F.S. Structural characterization and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem. 2008, 110, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Tao, Y.X.; Luo, P.; Deng, C.M.; Gu, Y.P.; Yang, L.; Zhong, J.P. Preventive effects of a novel polysaccharide from Sepia esculenta ink on ovarian failure and its action mechanisms in cyclophosphamide-treated mice. J. Agric. Food Chem. 2016, 64, 5759–5766. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Costa, R.R.; Mano, J.F. Marine origin polysaccharides in drug delivery systems. Mar. Drugs 2016, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.F.; de Morais, A.M.B.; de Morais, R.M.S.C. Marine polysaccharide from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Vazqez, J.A.; Rodriguez-Amado, I.; Montemayor, M.I.; Fraguas, J.; del Pilar Gonzalez, M.; Murado, M.A. Chondronitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Mar. Drugs 2013, 11, 747–774. [Google Scholar] [CrossRef] [PubMed]
- Takaya, Y.; Uchisawa, H.; Matsue, H.; Okuzaki, B.I.; Narumi, F.; Sasaki, J.I.; Ishida, K. An investigation of the antitumor peptidoglycan fraction from squid ink. Biol. Pharm. Bull. 1994, 17, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zuo, T.; Lu, S.; Wu, J.; Wang, J.; Zheng, R.; Chen, S.; Xue, C. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food Funct. 2014, 5, 2529–2535. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Cao, L.; Sun, X.; Li, X.; Wu, J.; Lu, S.; Xue, C.; Tang, Q. Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food Funct. 2014, 5, 3189–3196. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zuo, T.; Zhang, N.; Shi, H.; Liu, F.; Wu, J.; Wang, Y.; Xue, C.; Tang, Q. High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. J. Funct. Foods 2016, 20, 506–515. [Google Scholar] [CrossRef]
- Zuo, T.; Cao, L.; Xue, C.; Tang, Q.J. Dietary squid ink polysaccharide induces goblet cells to protect small intestinal from chemotherapy induced injury. Food Funct. 2015, 6, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; He, X.; Cao, L.; Xue, C.; Tang, Q.J. The dietary polysaccharide from Ommastrephes bartrami prevents chemotherapeutic mucositis by promoting the gene expression of antimicrobial peptides in Paneth cells. J. Funct. Foods 2015, 12, 530–539. [Google Scholar] [CrossRef]
- Zuo, T.; Cao, L.; Li, X.; Zhang, Q.; Xue, C.; Tang, Q. The squid ink polysaccharides protect tight junctions and adherens junctions from chemotherapeutic injury in the small intestinal epithelium of mice. Nutr. Cancer 2015, 67, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zuo, T.; Li, X.M.; Yu, Q.; Cao, B.B.; Wang, J.F. Protective effects of polysaccharides from the ink of Ommastrephes bartrami on the intestinal mucosa of the mice with chemotherapy and its mechanism. Chin. Pharmacol. Bull. 2013, 29, 1558–1562. [Google Scholar]
- Chen, S.G.; Wang, J.F.; Xue, C.H.; Li, H.; Sun, B.B.; Xue, Y.; Chai, W.G. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis. Carbohyd. Polym. 2010, 81, 560–566. [Google Scholar] [CrossRef]
- Chen, S.G.; Li, Z.G.; Wang, Y.M.; Li, G.Y.; Sun, B.B.; Xue, C.H. Sulfation of a squid ink polysaccharide and its anticoagulant activities. Chem. J. Chin. Univ. 2010, 31, 2407–2412. [Google Scholar]
- Wang, S.; Cheng, Y.; Wang, F.; Sun, L.; Liu, C.; Chen, G.; Li, Y.; Ward, S.G.; Qu, X. Inhibition activity of sulfated polysaccharide of Sepiella maindroni ink on matrix metalloproteinase (MMP)-2. Biomed. Pharmacother. 2008, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Tian, W.; Ijaz, M.; Wang, F. Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells. Biomed. Pharmacother. 2017, 95, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Cheng, Y.; Zhao, N.; Li, L.; Shi, Y.; Zong, A.; Wang, F. Sulfated polysaccharide of Sepiella Maindroni ink inhibits the migration, invasion and matrix metalloproteinase-2 expression through suppressing EGFR-mediated p38/MAPK and PI3K/Akt/mTOR signaling pathways in SKOV-3 cells. Int. J. Bio. Macromol. 2018, 107, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.Z.; Zhao, T.; Zhang, Y.; Song, X.L.; Shi, Y.K.; Cao, H.Z.; Liu, C.H.; Cheng, Y.N.; Qu, X.J.; Cao, J.C.; et al. Anti-metastatic and anti-angiogenic activities of sulfated polysaccharide of Sepiella maindroni ink. Carbohyd. Polym. 2013, 91, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Zong, A.Z.; Liu, Y.H.; Zhang, Y.; Song, X.; Shi, Y.K.; Cao, H.Z.; Liu, C.H.; Cheng, Y.; Jiang, W.J.; Du, F.L.; et al. Anti-tumor activity and the mechanism of SIP-S: A sulfated polysaccharide with anti-metastatic effect. Carbohyd. Polym. 2015, 129, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, H.Z.; Le, X.Y.; Du, H.; Kang, X.H. Squid ink polysaccharide prevents chemotherapy induced injury in the testes of reproducing mice. Pak. J. Pharm. Sci. 2018, 31, 25–29. [Google Scholar] [PubMed]
- Le, X.Y.; Luo, P.; Gu, Y.P.; Tao, Y.X.; Liu, H.Z. Interventional effects of squid ink polysaccharide on cyclophosphamide-associated testicular damage in mice. Bratislava Med. J. 2015, 5, 334–339. [Google Scholar] [CrossRef]
- Le, X.Y.; Luo, P.; Gu, Y.P.; Tao, Y.X.; Liu, H.Z. Squid ink polysaccharide reduces cyclophosphamide-induced testicular damage via Nrf2/ARE activation pathway in mice. Iran. J. Basic Med. Sci. 2015, 18, 827–831. [Google Scholar] [PubMed]
- Gu, Y.P.; Yang, X.M.; Duan, Z.H.; Luo, P.; Shang, J.H.; Xiao, W.; Tao, Y.X.; Zhang, D.Y.; Zhang, Y.B.; Liu, H.Z. Inhibition of chemotherapy-induced apoptosis of testicular cells by squid ink polysaccharide. Exp. Ther. Med. 2017, 14, 5889–5895. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gu, Y.P.; Yang, X.M.; Duan, Z.H.; Shang, J.H.; Luo, P.; Xiao, W.; Zhang, D.Y.; Liu, H.Z. Squid ink polysaccharide prevents autophagy and oxidative stress affected by cyclophosphamide in Leydig cells of mice: A pilot study. Iran. J. Basic Med. Sci. 2017, 20, 1194–1199. [Google Scholar] [PubMed]
- Gu, Y.P.; Yang, X.M.; Luo, P.; Li, Y.Q.; Tao, Y.X.; Duan, Z.H.; Xiao, W.; Zhang, D.Y.; Liu, H.Z. Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells. Carbohyd. Polym. 2017, 163, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Wang, G.; Wu, J.L.; Shi, L.S.; Zhong, J.P.; Pan, J.Q. Amelioration of sepia ink polysaccharides on internal organs injured by cyclophosphamide in mice. Chin. J. Mod. Appl. Pharm. 2012, 29, 89–93. [Google Scholar]
- Wu, J.L.; Wang, G.; Shi, L.S.; Zhong, J.P.; Pan, J.Q.; Liu, H.Z. Sepia ink polysaccharide preparation attenuates cyclophosphamide toxicity in mice. Chin. J. Mar. Drugs 2012, 31, 49–51. [Google Scholar]
- Wang, G.; Zhong, J.P.; Liu, H.Z. Amelioration of sepia ink polysaccharides on functional inhibition of bone marrow by cyclophosphamide in rats. Sci. Technol. Food Ind. 2012, 33, 365–367. [Google Scholar]
- Cao, S.Q.; Liu, L.; Zhu, M.F.; Chen, Q.P.; Qi, X.Y.; Yang, H. Preparation of polysaccharide from sepia ink and its effects on B16F10 cells. J. Nucl. Agric. Sci. 2017, 31, 906–912. [Google Scholar]
- Liu, H.Z.; Xiao, W.; Gu, Y.P.; Tao, Y.X.; Zhang, D.Y.; Du, H.; Shang, J.H. Polysaccharide from Sepia esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells. Iran. J. Basic Med. Sci. 2016, 19, 1292–1298. [Google Scholar] [PubMed]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, S.; Yogeeta, S.K.; Subashini, R.; Devaki, T. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem. Biol. Interact. 2006, 3, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, E.; Prahalathan, C.; Sudharsan, P.T.; Varalakshmi, P. Protective effect of lipoic acid on cyclophosphamide-induced testicular toxicity. Clin. Chim. Acta 2006, 7, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.M.K.; Sadik, N.A.H.; Refaat, A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem. Toxicol. 2010, 48, 2326–2336. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Mahecha, A.; Hales, B.F.; Robaire, B. Effects of acute and chronic cyclophosphamide treatment on meiotic progression and the induction of DNA double-strand breaks in rat spermatocytes. Biol. Reprod. 2005, 72, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, N.; Chiou, T.J.; Tzeng, W.F.; Chu, S.T. Cyclophosphamide treatment causes impairment of sperm and its fertilizing ability in mice. Toxicology 2006, 222, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, H.Z. Antioxidant ability of squid ink polysaccharides as well as their protective effects on DNA damage in vitro. Afr. J. Pharm. Pharmacol. 2013, 7, 1382–1388. [Google Scholar] [CrossRef]
- Yang, J.; Liu, K.X.; Qu, J.M.; Wang, X.D. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur. J. Pharmacol. 2013, 714, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Huang, Y.K. Chemotherapeutics impairment on intestinal mucosal barrier and the prevention and treatment. Med. Recapitul. 2012, 18, 1325–1327. [Google Scholar]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, Y.L.; Chen, D.H. Effects of chitin and sepia ink hybrid hemostatic sponge on the blood parameters of mice. Mar. Drugs 2014, 12, 2269–2281. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Lin, J.; Li, S.; Deng, Y.; Kong, S.; Hong, P.; Yang, P.; Liao, M.; Hu, Z. Preparation and evaluation of squid ink polysaccharide-chitosan as a wound-healing sponge. Mat. Sci. Eng. C Mater. 2018, 82, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.A. Structure-activity relationship of antithrombotic polysaccharide derivatives. Int. J. Bio. Macromol. 1995, 17, 311–314. [Google Scholar] [CrossRef]
Species | Monosaccharides (Molar Ratio) | Primary Structure | Sulphate (Molar Ratio: Sulphate/Monsaccharides) | Literature |
---|---|---|---|---|
Illex argentinus | GlcA, GalNAc, Fuc (1:1:1) | (-3GlcAβ1-4(GalNAcα1-3)Fucα1-)n | 1/3 | [25,26] |
Ommastrephes bartrami | no | [27] | ||
Sepiella maindroni | Fuc, GalNAc, GlcA, Man (2:2:1:1) | (-4Fucβ1-4Fucβ1-4GalNAcα1-6 (GlcAα1-3)Manα1-4GalNAcα1-)n | unknown | [28] |
Sepia esculenta | GalN, Ara, Fuc (5:5:1) | unknown | unknown | [29] |
Species | Polysaccharides | Monosaccharides | Properties |
---|---|---|---|
Marine plants | alginate | l-guluronate, d-mannuronate | antibacterial, tissue regeneration |
carrageenan | d-galactose, d/l-galactose | anticoagulant, antitumour, immunomodulatory, antihyperlipidemic, antioxidant, antibacterial, antifungal, antiviral | |
fucoidan | l-fucose | antitumour, anticoagulant, anti-adhensive, antiviral | |
Marine animals | chitosan | d-glucosamine | antimicrobial, antitumour, anti-inflammatory |
chondroitin sulphate | glucuronic, N-acetyl-galactosamine | Improving function and elasticity of the articular cartilage, hemostasis and anti-inflammation, regulation of cell development, cell adhesion, cell proliferation, cell differentiation, anticoagulation | |
hyaluronan | N-acetyl-d-glucosamine, d-glucuronic acid | tissue regeneration, cell prolifernation, cell differentiation, cell migration |
Species | Sulfation | Properties | Targets | Literature |
---|---|---|---|---|
Illex argentinus | no | no antitumouractivity | Meth-A | [33] |
Ommastrephes bartrami | no | chemoprevention | intestinal tract (mice) | [34,35,36,37,38,39,40] |
yes | antitumour | HepG2 | [41] | |
anticoagulant | blood (in vitro experiment) | [42] | ||
Sepiella maindroni | yes | antitumour | SKOV-3, KB, HT-29, S180, B16F10 | [43,44,45,46,47] |
Sepia esculenta | no | chemoprevention | testis, ovary, spleen, kidney, liver, lung, heart, bone marrow (mice) | [29,48,49,50,51,52,53,54,55,56] |
antitumour | B16F10, MDA-MB-231 | [57,58] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Luo, P.; Liu, H. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Mar. Drugs 2018, 16, 106. https://doi.org/10.3390/md16040106
Li F, Luo P, Liu H. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Marine Drugs. 2018; 16(4):106. https://doi.org/10.3390/md16040106
Chicago/Turabian StyleLi, Fangping, Ping Luo, and Huazhong Liu. 2018. "A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides" Marine Drugs 16, no. 4: 106. https://doi.org/10.3390/md16040106
APA StyleLi, F., Luo, P., & Liu, H. (2018). A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides. Marine Drugs, 16(4), 106. https://doi.org/10.3390/md16040106