Anti-MRSA Sesquiterpenes from the Semi-Mangrove Plant Myoporum bontioides A. Gray
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Anti-MRSA Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Hal, S.J.V.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386. [Google Scholar] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Ni, S.S.; Mao, F.; Chen, F.F.; Liu, Y.F.; Wei, H.W.; Chen, W.H.; Zhu, J.; Lan, L.F.; Li, J. Novel terminal bipheny-based diapophytoene desaturases (CrtN) inhibitors as anti-MRSA/VISR/LRSA agents with reduced hERG activity. J. Med. Chem. 2018, 61, 224–250. [Google Scholar] [CrossRef] [PubMed]
- Koyama, N.; Inokoshi, J.; Tomoda, H. Anti-infectious agents against MRSA. Molecules 2013, 18, 204–224. [Google Scholar] [CrossRef] [PubMed]
- Taubes, G. The bacteria fight back. Science 2008, 321, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Liu, W.E. Advances on mechanism of drug-resistance to MRSA and test method of molecular biology. Chin. J. Nosocomiol. 2007, 17, 356–358. [Google Scholar]
- GarcãA-Castellanos, R.; MallorquãFernã, G.; Marrero, A.; Potempa, J.; Coll, M.; Gomis-RuTh, F.X. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 2004, 279, 17888–17896. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Kim, S.B.; Kong, R.; Choi, J.G.; Kim, Y.C.; Shin, D.W.; Kang, O.H.; Kwon, D.Y. Curcumin reverse methicillin resistance in Satphylococcus aureus. Molecules 2014, 19, 18283–18295. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [PubMed]
- Bal, A.; David, M.; Garau, J.; Gottlieb, T.; Mazzei, T.; Scaglione, F.; Tattevin, P.; Gould, I. Future trends in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection: An in-depth review of newer antibiotics active against an enduring pathogen. J. Glob. Antimicrob. Resist. 2017, 10, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Vaneperen, A.S.; Segreti, J. Empirical therapy in methicillin-resistant Staphylococcus aureus infections: An up-to-date approach. J. Infect. Chemother. 2016, 22, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Archmer, A.W.K.; Levine, D.P.; Murray, B.E. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. J. Infect. Dis. 2011, 22, S178. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.M.; Peschel, A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol. Microbiol. 2011, 80, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populationsda review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Edelstein, P.H.; Lautenbach, E. Reduced vancomycin susceptibility and Staphylococcal cassette chromosome mec (SCCmec) type distribution in methicillin-resistant Staphylococcus aureus bacteraemia. J. Antimicrob. Chemoth. 2012, 67, 2346–2349. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.L.; Osakikiyan, P.; Haque, N.Z.; Perri, M.B.; Donabedian, S.; Zervos, M.J. Daptomycin versus vancomycin for bloodstream infections due to methicillinresistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: A case-control study. Clin. Infect. Dis. 2012, 54, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Pai, R.; Di, M.; Aiello, D.; Barnes, M.H.; Butler, M.M.; Tashjian, T.F.; Peet, N.P.; Bowlin, T.L.; Moir, D.T. Coumarin-based inhibitors of Bacillus anthracis and Staphylococcus aureus replicative DNA helicase: Chemical optimization, biological evaluation, and antibacterial activities. J. Med. Chem. 2012, 55, 10896–10908. [Google Scholar] [CrossRef] [PubMed]
- Moise, P.A.; Amodio-Groton, M.; Rashid, M.; Lamp, K.C.; Hoffman-Roberts, H.L.; Sakoulas, G.; Yoon, M.J.; Schweitzer, S.; Rastogi, A. Multicenter evaluation of the clinical outcomes of daptomycin with and without concomitant β-lactams in patients with Staphylococcus aureus bacteremia and mild to moderate renal impairment. Antimicrob. Agents Chemother. 2013, 57, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Hatusima, S. Flora of Ryukyus, Added and Corrected; The Biological Society of Okinawa: Naha, Japan, 1975; p. 565. [Google Scholar]
- Li, H.L. Myoporaceae. In Flora of Taiwan; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1998; pp. 731–732. [Google Scholar]
- Sun, J.; Xu, H.M.; Zhou, R.C.; Fan, Q.; Meng, K.K.; Zan, Q.J.; Chen, S.F.; Liao, W.B. Genetic diversity and population structure of Myoporum bontioides, (Myoporaceae) in China revealed by AFLP analysis. Aquat. Bot. 2017, 138, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.G.; Ma, C.L.; Zhai, J.J. Furanoeudesmane-B, a new eudesmane sesquiterpenoid from Myoporum bontioides. Acta. Crystallogr. 2000, 56, e569. [Google Scholar]
- Kanemoto, M.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Ishigaki, C.; Takeda, Y. Chlorine-containing iridoid and iridoid glucoside, and other glucosides from leaves of Myoporum bontioides. Phytochemistry 2008, 69, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Li, J.W.; Ni, C.L.; Gu, W.X.; Li, C.Y. Isolation, crystal structure and inhibitory activity against Magnaporthe grisea of (2R,3R)-3,5,7-trihydroxyflavanone 3-acetate from Myoporum bontioides A. Gray. Chin. J. Struct. Chem. 2011, 30, 1298–1304. [Google Scholar]
- Weng, J.R.; Bai, L.Y.; Chiu, C.F.; Lin, W.Y.; Chiu, C.F.; Chen, Y.C.; Chao, S.W.; Feng, C.H. A flavone constituent from Myoporum bontioides induces M-phase cell cycle arrest of MCF-7 breast cancer cells. Molecules 2017, 22, 472. [Google Scholar] [CrossRef] [PubMed]
- He, Y.B.; Gu, W.X.; Pang, X.F. Bioactivity of several flavonoids against Plutella xylostella (L.). Chin. J. Trop. Agric. 2003, 23, 19–25. [Google Scholar]
- Li, X.Z.; Li, C.Y.; Gu, W.X.; Wu, Z.X. Isolation, identification and bioassay of myoporone from the volatile oil of Myoporum bontioides. Guangdong Chem. Ind. 2010, 37, 9–10. [Google Scholar]
- Li, X.Z.; Li, C.Y.; Wu, L.X.; Yang, F.B.; Gu, W.X. Chemical constituents from leaves of Myoporum bontioides. Chin. Tradit. Herb. Drug. 2011, 42, 2204–2207. [Google Scholar]
- Dai, H.; Huang, L.L.; Guo, Y.H.; Gu, W.X. Flavonoids from leaves of Myoporum bontioides. J. Trop. Subtrop. Bot. 2013, 21, 266–272. [Google Scholar]
- Ye, H.J.; Dai, H.; Wu, L.X.; Guo, Y.H.; Gu, W.X. Chemical constituents from leaves of Myoporum bontioides and their bacteriostatic activities. J. Trop. Subtrop. Bot. 2014, 22, 307–313. [Google Scholar]
- Ma, W.X.; Guo, Y.H.; Lu, T.; Cheng, Q.E.; Gu, W.X. Discussion on technique for purification of Myoporum bontioides A. Gray flavonoid by AB-8 macroporous resin. Guangdong Agric. Sci. 2014, 41, 97–100. [Google Scholar]
- Chinnock, R.J.; Ghisalberti, E.L.; Jefferies, P.R. (−)-Epingaione from Bontia daphnoides. Phytochemistry 1987, 26, 1202–1203. [Google Scholar] [CrossRef]
- Deng, Y.C.; Yang, Z.; Yu, Y.Z.; Bi, X.L. Inhibitory activity against plant pathogenic fungi of extracts from Myoporum bontioides A. Gray and indentification of active ingredients. Pest Manag. Sci. 2008, 64, 203–207. [Google Scholar]
- Hamilton, W.D.; Park, R.J.; Perry, G.J.; Sutherland, M.D. Terpenoid chemistry. XXI. (–)-epingaione, (–)-dehydrongaione, (–)-dehydroepingaione, and (–)-deisopropylngaione, toxic furanoid sesquiterpenoid ketones from Myoporum deserti. Aust. J. Chem. 1973, 26, 375–387. [Google Scholar] [CrossRef]
- Blackburne, I.D.; Park, R.J.; Sutherland, M.D. Terpenoid chemistry. XX. Myoporone and dehydromyoporone, toxic furanoid ketones from Myoporum and Eremophila species. Aust. J. Chem. 1972, 25, 1787–1796. [Google Scholar] [CrossRef]
- Jakupovic, J.; Ganzer, U.; Pritschow, P.; Lehmann, L.; Bohlmann, F.; King, R.M. Sesquiterpene lactones and other constituents from Ursinia, species. Phytochemistry 1992, 31, 863–880. [Google Scholar] [CrossRef]
- Menut, C.; Cabalion, P.; Hnawia, E.; Agnaniet, H.; Waikedre, J.; Fruchieret, A. Two new furanosesquiterpenes from Myoporum crassifolium from New Caledonia. Flavour Fragr. J. 2005, 20, 621–625. [Google Scholar] [CrossRef]
- Dong, L.M.; Zhang, M.; Xu, Q.L.; Zhang, Q.; Luo, B.; Luo, Q.W.; Liu, W.B.; Tan, J.W. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 2017, 22, 592. [Google Scholar] [CrossRef] [PubMed]
H/C | 1 | 2 | ||
---|---|---|---|---|
δH (mult, J in Hz) | δC | δH (mult, J in Hz) | δC | |
1 | 4.00 (brs) | 47.7 (CH2) | 3.94 (d, 1.6) | 47.8 (CH2) |
2 | 5.97 (t, 1.5) | 121.1 (CH) | 6.94 (t, 1.5) | 140.6 (CH) |
3 | 163.8 (C) | 139.7 (C) | ||
4 | 4.78 (t, 7.3) | 76.1 (CH) | 2.26 (m) | 25.9 (CH2) |
5 | 1.88 (m) 2.24 (m) | 32.5 (CH2) | 1.77 (m) | 26.8 (CH2) |
6 | 1.94 (m) 2.09 (m) | 37.2 (CH2) | 2.23 (m) | 41.6 (CH2) |
7 | 82.6 (C) | 159.8 (C) | ||
8 | 2.67 (q, 15.3) | 53.4 (CH2) | 6.19 (q, 1.1) | 124.9 (CH) |
9 | 209.2 (C) | 203.7 (C) | ||
10 | 2.32 (dd, 6.9, 2.5) | 53.7 (CH2) | 2.31 (d, 7.0) | 54.3 (CH2) |
11 | 2.13 (m) | 24.5 (CH) | 1.71 (m) | 26.4 (CH) |
12 | 0.90 (d, 6.5) | 22.7 (CH3) | 0.92 (d, 6.6) | 22.9 (CH3) |
13 | 0.91 (d, 6.5) | 22.7 (CH3) | 0.92 (d, 6.6) | 22.9 (CH3) |
14 | 1.27 (s) | 27.6 (CH3) | 2.12 (d, 1.3) | 19.4 (CH3) |
15 | 174.9 (C) | 176.8 (C) |
Sample | MIC (μg/mL) | Sample | MIC (μg/mL) |
---|---|---|---|
Fraction F4 | 25 | 5 | 50 |
1 | 6.25 | 6 | 50 |
2 | 6.25 | 7 | >100 |
3 | 25 | 8 | >100 |
4 | 25 | Vancomycin | 0.78 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.-M.; Huang, L.-L.; Dai, H.; Xu, Q.-L.; Ouyang, J.-K.; Jia, X.-C.; Gu, W.-X.; Tan, J.-W. Anti-MRSA Sesquiterpenes from the Semi-Mangrove Plant Myoporum bontioides A. Gray. Mar. Drugs 2018, 16, 438. https://doi.org/10.3390/md16110438
Dong L-M, Huang L-L, Dai H, Xu Q-L, Ouyang J-K, Jia X-C, Gu W-X, Tan J-W. Anti-MRSA Sesquiterpenes from the Semi-Mangrove Plant Myoporum bontioides A. Gray. Marine Drugs. 2018; 16(11):438. https://doi.org/10.3390/md16110438
Chicago/Turabian StyleDong, Li-Mei, Li-Lan Huang, Hang Dai, Qiao-Lin Xu, Jin-Kui Ouyang, Xu-Chao Jia, Wen-Xiang Gu, and Jian-Wen Tan. 2018. "Anti-MRSA Sesquiterpenes from the Semi-Mangrove Plant Myoporum bontioides A. Gray" Marine Drugs 16, no. 11: 438. https://doi.org/10.3390/md16110438
APA StyleDong, L. -M., Huang, L. -L., Dai, H., Xu, Q. -L., Ouyang, J. -K., Jia, X. -C., Gu, W. -X., & Tan, J. -W. (2018). Anti-MRSA Sesquiterpenes from the Semi-Mangrove Plant Myoporum bontioides A. Gray. Marine Drugs, 16(11), 438. https://doi.org/10.3390/md16110438