Discovery Methodology of Novel Conotoxins from Conus Species
Abstract
1. Introduction
2. Diversity of Conotoxins
3. Conotoxins Purified from Crude Venom
4. Gene Cloning to Discover New Conotoxins
5. Cone Snail Multi-Omics
5.1. Transcriptomics—A Useful Pathway to Identify Putative Conotoxins
5.2. Proteomics—An Effective Approach to Discovery Natural Conotoxins
5.3. Bioinformaics—An Efficient Tool for Massive Data Processing and Integrating
5.4. Multi-Omics Integration
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BLAST | Basic local alignment search tool |
CID | Collision induced dissociation |
ESI | Electrospray ionization |
ETD | Electron transfer dissociation |
EThcD | Electron transfer higher energy collision dissociation |
GPCRs | G protein-coupled receptors |
HPLC | High performance liquid chromatography |
LTQ-Orbitrap | Linear Trap Quatropole-Orbitrap |
MS | Mass spectrometry |
MALDI | Matrix-assisted laser desorption ionization |
nAChRs | Nicotinic acetylcholine receptors |
NCBI | National center of biotechnology information |
NMR | Nuclear magnetic resonance |
NMDA | N-methyl-d-aspartic acid receptor |
PAGE | Poly acrylamide gel electrophoresis |
PCR | Polymerase chain reaction |
RACE | Rapid amplification of cDNA ends |
SILAC | Stable isotope labeling by amino acids in cell culture |
SPPS | Solid phase peptide synthesis |
TOF | Time of flight |
References
- Prashanth, J.R.; Dutertre, S.; Jin, A.H.; Lavergne, V.; Hamilton, B.; Cardoso, F.C.; Griffin, J.; Venter, D.J.; Alewood, P.F.; Lewis, R.J. The role of defensive ecological interactions in the evolution of conotoxins. Mol. Ecol. 2016, 25, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Endean, R.; Duchemin, C. The venom apparatus of Conus magus. Toxicon 1967, 4, 275–284. [Google Scholar] [CrossRef]
- Dutertre, S.; Jin, A.H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun. 2014, 5, 3521. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Kelley, W.P.; Rubakhin, S.S.; Bingham, J.P.; Sweedler, J.V.; Gilly, W.F. Anatomical correlates of venom production in Conus californicus. Biol. Bull. 2002, 203, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, S.M.; Martin, G.G.; Kier, W.M.; Schulz, J.R. Venom kinematics during prey capture in Conus: The biomechanics of a rapid injection system. J. Exp. Biol. 2010, 213, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kohn, A.J. Cone Shell Stings. Recent Cases of Human Injury due to Venomous Marine Snails of the Genus Conus. Hawaii Med. J. 1958, 17, 528. [Google Scholar] [PubMed]
- Terlau, H.; Olivera, B.M. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef] [PubMed]
- Tosti, E.; Boni, R.; Gallo, A. µ-Conotoxins Modulating Sodium Currents in Pain Perception and Transmission: A Therapeutic Potential. Mar. Drugs 2017, 15, 295. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.; Mcarthur, J.R.; Adams, D.J. Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics? Toxins 2012, 4, 1236–1260. [Google Scholar] [CrossRef]
- Leipold, E.; Ullrich, F.; Thiele, M.; Tietze, A.A.; Terlau, H.; Imhof, D.; Heinemann, S.H. Subtype-specific block of voltage-gated K+ channels by μ-conopeptides. Biochem. Biophys. Res. Commun. 2017, 482, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, D.; Gonzalez, W.; Fissore, R.A.; Carvacho, I. Conotoxins as Tools to Understand the Physiological Function of Voltage-Gated Calcium (CaV) Channels. Mar. Drugs 2017, 15, 313. [Google Scholar] [CrossRef] [PubMed]
- Bourinet, E.; Zamponi, G.W. Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology 2017, 127, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, J.; Dutertre, S. α-Conotoxins to explore the molecular, physiological and pathophysiological functions of neuronal nicotinic acetylcholine receptors. Neurosci. Lett. 2018, 679, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Dutertre, S.; Nicke, A.; Tsetlin, V.I. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017, 127, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Azam, L.; Mcintosh, J.M. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol. Sin. 2009, 30, 771. [Google Scholar] [CrossRef] [PubMed]
- England, L.J.; Imperial, J.; Jacobsen, R.; Craig, A.G.; Gulyas, J.; Akhtar, M.; Rivier, J.; Julius, D.; Olivera, B.M. Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science 1998, 281, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.E.; White, H.S.; Wilcox, K.S. The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res. 2004, 59, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Harrington, A.M.; Garciacaraballo, S.; Maddern, J.; Grundy, L.; Zhang, J.; Page, G.; Miller, P.E.; Craik, D.J.; Adams, D.J. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut 2017, 66, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.T.; Clark, R.J. G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins 2017, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Rogge, G.; Hague, C.; Alewood, D.; Colless, B.; Lewis, R.J.; Minneman, K.P. Subtype-selective noncompetitive or competitive inhibition of human alpha1-adrenergic receptors by rho-TIA. J. Biol. Chem. 2004, 279, 35326–35333. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, I.A.; Gehrmann, J.; Loughnan, M.L.; Thomas, L.; Adams, D.A.; Atkins, A.; Palant, E.; Craik, D.J.; Adams, D.J.; Alewood, P.F. Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat. Neurosci. 2001, 4, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Möller, C.; Marí, F. A vasopressin/oxytocin-related conopeptide with gamma-carboxyglutamate at position 8. Biochem. J. 2007, 404, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Zhang, L.; Smith, M.D.; Walewska, A.; Vellore, N.A.; Baron, R.; Mcintosh, J.M.; White, H.S.; Olivera, B.M.; Bulaj, G. A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: Uncovering structural determinants of desensitization properties. Front. Pharmacol. 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Paczkowski, F.A.; Sharpe, I.A.; Dutertre, S.; Lewis, R.J. chi-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J. Biol. Chem. 2007, 282, 17837. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.K.; Christensen, S.B.; Di Cesare Mannelli, L.; Gajewiak, J.; Ramachandra, R.; Elmslie, K.S.; Vetter, D.E.; Ghelardini, C.; Iadonato, S.P.; Mercado, J.L.; et al. Inhibition of alpha9alpha10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc. Natl. Acad. Sci. USA 2017, 114, E1825–E1832. [Google Scholar] [CrossRef] [PubMed]
- Hannon, H.E.; Atchison, W.D. Omega-Conotoxins as Experimental Tools and Therapeutics in Pain Management. Mar. Drugs 2013, 11, 680. [Google Scholar] [CrossRef] [PubMed]
- Crooks, P.A.; Bardo, M.T.; Dwoskin, L.P. Nicotinic receptor antagonists as treatments for nicotine abuse. Adv. Pharmacol. 2014, 69, 513–551. [Google Scholar] [CrossRef] [PubMed]
- Gandini, M.A.; Sandoval, A.; Felix, R. Toxins targeting voltage-activated Ca2+ channels and their potential biomedical applications. Curr. Top. Med. Chem. 2015, 15, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Irasema, O.P.; Mario, N.; Cervantes-Luevano, K.E.; Carolina, Á.-D.; Guy, S.; Sanchez-Campos, L.N.; Licea-Navarro, A.F. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins 2016, 8, 38. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Y.; Hou, X.; Fan, Y.; Li, J.; Chen, M.; Wang, Y.; Zhang, X.; Zhang, M. MAPKs-mediated modulation of the myocyte voltage-gated K+ channels is involved in ethanol-induced rat coronary arterial contraction. Eur. J. Pharmacol. 2018, 834, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Dendorfer, A.; Finolurdaneta, R.K.; Terlau, H.; Olivera, B.M. Biochemical Characterization of κM-RIIIJ, a Kv1.2 Channel Blocker. J. Biol. Chem. 2010, 285, 14882–14889. [Google Scholar] [CrossRef] [PubMed]
- Vetter, I.; Lewis, R.J. Therapeutic potential of cone snail venom peptides (conopeptides). Curr. Top. Med. Chem. 2012, 12, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus venom peptide pharmacology. Pharmacol. Rev. 2012, 64, 259. [Google Scholar] [CrossRef] [PubMed]
- Layer, R.T.; Mcintosh, J.M. Conotoxins: Therapeutic Potential and Application. Mar. Drugs 2006, 4, 119–142. [Google Scholar] [CrossRef]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure: Activity relationships of conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Peng, C.; Yang, J.; Yi, Y.; Zhang, J.; Shi, Q. Cone Snails: A Big Store of Conotoxins for Novel Drug Discovery. Toxins 2017, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, J.R.; Brust, A.; Jin, A.H.; Alewood, P.F.; Dutertre, S.; Lewis, R.J. Cone snail venomics: From novel biology to novel therapeutics. Future Med. Chem. 2014, 6, 1659–1675. [Google Scholar] [CrossRef] [PubMed]
- Halai, R.; Craik, D.J. Conotoxins: Natural product drug leads. Nat. Prod. Rep. 2009, 26, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Miljanich, G.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.E.; Deer, T.R. Ziconotide: A clinical update and pharmacologic review. Expert Opin. Pharmacother. 2013, 14, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Obata, H.; Conklin, D.; Eisenach, J.C. Spinal noradrenaline transporter inhibition by reboxetine and Xen2174 reduces tactile hypersensitivity after surgery in rats. Pain 2005, 113, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, N.L.; Campbell, T.J.; Polakowski, J.S.; Bulaj, G.; Layer, R.T.; Moore, J.; Gross, G.J.; Cox, B.F. Postischemic administration of CGX-1051, a peptide from cone snail venom, reduces infarct size in both rat and dog models of myocardial ischemia and reperfusion. J. Cardiovasc. Pharm. 2005, 46, 141–146. [Google Scholar] [CrossRef]
- Clark, R.J.; Fischer, H.; Nevin, S.T.; Adams, D.J.; Craik, D.J. The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J. Biol. Chem. 2006, 281, 23254–23263. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Allen, J.; Wagstaff, J.S.; Yaksh, T. The pharmacokinetics of the conopeptide contulakin-G (CGX-1160) after intrathecal administration: An analysis of data from studies in beagles. Anesth. Analg. 2007, 104, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.J.; Zhang, M.M.; Azam, L.; Olivera, B.M.; Bulaj, G.; Yoshikami, D. Navβ subunits modulate the inhibition of Nav1.8 by the analgesic gating modifier μO-conotoxin MrVIB. J. Pharmacol. Exp. Ther. 2011, 338, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Hieble, J.P.; Robert, R.R., Jr. The use of alpha-adrenoceptor antagonists in the pharmacological management of benign prostatic hypertrophy: An overview. Pharmacol. Res. 1996, 33, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Brust, A.; Palant, E.; Croker, D.E.; Colless, B.; Drinkwater, R.; Patterson, B.; Schroeder, C.I.; Wilson, D.; Nielsen, C.K.; Smith, M.T. chi-Conopeptide pharmacophore development: Toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J. Med. Chem. 2009, 52, 6991–7002. [Google Scholar] [CrossRef] [PubMed]
- Puillandre1, N.; Duda, T.F.; Meyer, C.; Olivera, B.M.; Bouchet, P. One, four or 100 genera? A new classification of the cone snails. J. Molluscan Stud. 2015, 81, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Dutertre, S.; Jin, A.H.; Kaas, Q.; Jones, A.; Alewood, P.F.; Lewis, R.J. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell. Proteom. 2013, 12, 312–329. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, V.; Harliwong, I.; Jones, A.; Miller, D.; Taft, R.J.; Alewood, P.F. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks. Proc. Natl. Acad. Sci. USA 2015, 112, E3782. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Jones, A.; Lewis, R.J. Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 2009, 30, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Woodward, S.R.; Cruz, L.J.; Olivera, B.M.; Hillyard, D.R. Constant and hypervariable regions in conotoxin propeptides. EMBO J. 1990, 9, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Yang, L.; Xu, S.; Wang, C. Various Conotoxin Diversifications Revealed by a Venomic Study of Conus flavidus. Mol. Cell. Proteom. 2014, 13, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.H.; Dutertre, S.; Kaas, Q.; Lavergne, V.; Kubala, P.; Lewis, R.J.; Alewood, P.F. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol. Cell. Proteom. 2013, 12, 3824–3833. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, J.A.; Kelley, W.P.; Sweedler, J.V. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: An important component of conotoxin discovery. Toxicon 2006, 47, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Riveraortiz, J.A.; Cano, H.; Marí, F. Intraspecies variability and conopeptide profiling of the injected venom of Conus ermineus. Peptides 2011, 32, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.J.; Gray, W.R.; Olivera, B.M. Purification and properties of a myotoxin from Conus geographus venom. Arch. Biochem. Biophys. 1978, 190, 539–548. [Google Scholar] [CrossRef]
- Edman, P.; Begg, G. A Protein Sequenator. FEBS J. 1967, 1, 80–91. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Pi, C.; Zeng, X.; Zhou, M.; Jiang, X.; Chen, S.; Ren, Z.; Xu, A. Identification of a novel M-superfamily conotoxin with the ability to enhance tetrodotoxin sensitive sodium currents. Arch. Toxicol. 2009, 83, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Van, D.H.A.; Peigneur, S.; Dyubankova, N.; Möller, C.; Marí, F.; Diego-García, E.; Naudé, R.; Lescrinier, E.; Herdewijn, P.; Tytgat, J. Pc16a, the first characterized peptide from Conus pictus venom, shows a novel disulfide connectivity. Peptides 2012, 34, 106–113. [Google Scholar] [CrossRef]
- Bernáldez, J.; Romángonzález, S.A.; Martínez, O.; Jiménez, S.; Vivas, O.; Arenas, I.; Corzo, G.; Arreguín, R.; García, D.E.; Possani, L.D. A Conus regularis Conotoxin with a Novel Eight-Cysteine Framework Inhibits CaV2.2 Channels and Displays an Anti-Nociceptive Activity. Mar. Drugs 2013, 11, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Lebbe, E.K.; Peigneur, S.; Maiti, M.; Mille, B.G.; Devi, P.; Ravichandran, S.; Lescrinier, E.; Waelkens, E.; D’Souza, L.; Herdewijn, P. Discovery of a new subclass of α-conotoxins in the venom of Conus australis. Toxicon 2014, 91, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Lebbe, E.K.M.; Peigneur, S.; Maiti, M.; Devi, P.; Ravichandran, S.; Lescrinier, E.; Ulens, C.; Waelkens, E.; D’Souza, L.; Herdewijn, P. Structure-Function Elucidation of a New α-Conotoxin, Lo1a, from Conus longurionis. J. Biol. Chem. 2014, 91, 170–171. [Google Scholar] [CrossRef]
- Nguyen, B.; Le, C.J.; Aráoz, R.; Thai, R.; Lamthanh, H.; Benoit, E.; Molgó, J. Isolation, purification and functional characterization of alpha-BnIA from Conus bandanus venom. Toxicon 2014, 91, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, T.; Kompella, S.N.; Yan, M.; Lu, A.; Wang, Y.; Shao, X.; Chi, C.; Adams, D.J.; Ding, J.; et al. Conotoxin alphaD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors. Sci. Rep. 2015, 5, 14261. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Liu, J.; Ren, Z.; Yu, C.; Xu, A. Discovery of two P-superfamily conotoxins, lt9a and lt9b, with different modifications on voltage-sensitive sodium channels. Toxicon 2017, 134, 6–13. [Google Scholar] [CrossRef]
- Jiang, S.; Tae, H.S.; Xu, S.; Shao, X.; Adams, D.J.; Wang, C. Identification of a Novel O-Conotoxin Reveals an Unusual and Potent Inhibitor of the Human α9α10 Nicotinic Acetylcholine Receptor. Mar. Drugs 2017, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.D.; Liu, L.; Shao, X.X.; Peng, C.; Chi, C.W.; Guo, Z.Y. New conotoxins define the novel I3-superfamily. Peptides 2009, 30, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Chen, F.; Cai, H.; Xiao, A.; You, Q.; Lu, Y. Isolation and Characterization of Conotoxin bt5a from Conus betulinus. Chin. J. Nat. Med. 2010, 8, 132–136. [Google Scholar] [CrossRef]
- Möller, C.; Marí, F. 9.3 KDa components of the injected venom of Conus purpurascens define a new five-disulfide conotoxin framework. Biopolymers 2011, 96, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.B.; Zugasti-Cruz, A.; Falcón, A.; Batista, C.V.F.; Olivera, B.M.; Cotera, E.P.H.D.L. A novel arrangement of Cys residues in a paralytic peptide of Conus cancellatus (jr. syn.: Conus austini), a worm-hunting snail from the Gulf of Mexico. Peptides 2013, 41, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Heghinian, M.D.; Mejia, M.; Adams, D.J.; Godenschwege, T.A.; Marí, F. Inhibition of cholinergic pathways in Drosophila melanogaster by α-conotoxins. FASEB J. 2015, 29, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ye, M.; Wang, Y.; Shao, X.; Yuan, D.; Liu, J.; Hawrot, E.; Wang, C.; Chi, C. A new subfamily of conotoxins belonging to the A-superfamily. Peptides 2010, 31, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.B.; Bandyopadhyay, P.K.; Olivera, B.M.; McIntosh, J.M. αS-conotoxin GVIIIB potently and selectively blocks α9α10 nicotinic acetylcholine receptors. Biochem. Pharmacol. 2015, 96, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Espino, S.S.; Dilanyan, T.; Imperial, J.S.; Aguilar, M.B.; Teichert, R.W.; Bandyopadhyay, P.; Olivera, B.M. Glycine-rich Conotoxins from the Virgiconus clade. Toxicon 2016, 113, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lebbe, E.K.; Ghequire, M.G.; Peigneur, S.; Mille, B.G.; Devi, P.; Ravichandran, S.; Waelkens, E.; D’Souza, L.; De, M.R.; Tytgat, J. Novel Conopeptides of Largely Unexplored Indo Pacific Conus sp. Mar. Drugs 2016, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Echterbille, J.; Gilles, N.; Araóz, R.; Mourier, G.; Amar, M.; Servent, D.; Pauw, E.D.; Quinton, L. Discovery and characterization of EII B, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry. Toxicon 2017, 130, 1. [Google Scholar] [CrossRef] [PubMed]
- Hoggard, M.F.; Rodriguez, A.M.; Cano, H.; Clark, E.; Tae, H.S.; Adams, D.J.; Godenschwege, T.A.; Marí, F. In vivo and in vitro testing of native α-conotoxins from the injected venom of Conus purpurascens. Neuropharmacology 2017, 127, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Kauferstein, S.; Kendel, Y.; Nicke, A.; Coronas, F.I.V.; Possani, L.D.; Favreau, P.; Krizaj, I.; Wunder, C.; Kauert, G.; Mebs, D. New conopeptides of the D-superfamily selectively inhibiting neuronal nicotinic acetylcholine receptors. Toxicon 2009, 54, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, E.C.; Olivera, B.M. Divergent M- and O-superfamily peptides from venom of fish-hunting Conus parius. Peptides 2010, 31, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Hong, J.; Zhou, M.; Huang, L.; Shao, X.; Yang, Y.; Sigworth, F.J.; Chi, C.; Lin, D.; Wang, C. A novel conotoxin, qc16a, with a unique cysteine framework and folding. Peptides 2011, 32, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Khoo, K.K.; Xu, S.; Zhou, M.; Boonyalai, N.; Perugini, M.A.; Shao, X.; Chi, C.; Galea, C.A.; Wang, C. A helical conotoxin from Conus imperialis has a novel cysteine framework and defines a new superfamily. J. Biol. Chem. 2012, 287, 14973–14983. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shao, X.; Yan, M.; Chi, C.; Lu, A.; Wang, C. Identification of Two Novel O2-Conotoxins from Conus generalis. Int. J. Pept. Res. Ther. 2015, 21, 81–89. [Google Scholar] [CrossRef]
- Vetter, I.; Dekan, Z.; Knapp, O.; Adams, D.J.; Alewood, P.F.; Lewis, R.J. Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochem. Pharmacol. 2012, 84, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Inserra, M.C.; Kompella, S.N.; Vetter, I.; Brust, A.; Daly, N.L.; Cuny, H.; Craik, D.J.; Alewood, P.F.; Adams, D.J.; Lewis, R.J. Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochem. Pharmacol. 2013, 86, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Kompella, S.N.; Akondi, K.B.; Melaun, C.; Daly, N.L.; Luetje, C.W.; Alewood, P.F.; Craik, D.J.; Adams, D.J.; Mari, F. RegIIA: An alpha 4/7-conotoxin from the venom of Conus regius that potently blocks alpha 3 beta 4 nAChRs. Biochem. Pharmacol. 2012, 83, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.C.; Nery, A.A.; Ulrich, H.; Konno, K.; Sciani, J.M.; Pimenta, D.C. α-RgIB: A Novel Antagonist Peptide of Neuronal Acetylcholine Receptor Isolated from Conus regius Venom. Int. J. Pept. 2013, 2013, 543028. [Google Scholar] [CrossRef] [PubMed]
- Favreau, P.; Benoit, E.; Hocking, H.G.; Carlier, L.; Hoedt, D.D.; Leipold, E.; Markgraf, R.; Schlumberger, S.; Córdova, M.A.; Gaertner, H. A novel µ-conopeptide, CnIIIC, exerts potent and preferential inhibition of NaV1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. Br. J. Pharmacol. 2012, 166, 1654–1668. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Caer, J.P.; Mourier, G.; Thai, R.; Lamthanh, H.; Servent, D.; Benoit, E.; Molgó, J. Characterization of a Novel Conus bandanus Conopeptide Belonging to the M-Superfamily Containing Bromotryptophan. Mar. Drugs 2014, 12, 3449–3465. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.; Miyashita, M.; Kitanaka, A.; Juichi, H.; Sarhan, M.; Fouda, M.; Abdel-Rahman, M.; Saber, S.; Nakagawa, Y. Characterization of the venom of the vermivorous cone snail Conus fulgetrum. Biosci. Biotechnol. Biochem. 2016, 80, 1879–1882. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Du, T.; Liu, Z.; Wu, Q.; Feng, G.; Dong, M.; Zhou, X.; Jiang, L.; Dai, Q. Im10A, a short conopeptide isolated from Conus imperialis and possesses two highly concentrated disulfide bridges and analgesic activity. Peptides 2016, 81, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Johanna, B.; Samanta, J.; Javier, G.L.; Noda, F.J.; Enrique, S.; Emilio, S.; Daniela, C.; Aguilar, M.B.; Alexei, L.N. A New Member of Gamma-Conotoxin Family Isolated from Conus princeps Displays a Novel Molecular Target. Toxins 2016, 8, 39. [Google Scholar] [CrossRef]
- Han, T.S.; Teichert, R.W.; Olivera, B.M.; Bulaj, G. Conus venoms—A rich source of peptide-based therapeutics. Curr. Pharm. Des. 2008, 14, 2462–2479. [Google Scholar] [CrossRef] [PubMed]
- Shon, K.J.; Grilley, M.M.; Marsh, M.; Yoshikami, D.; Hall, A.R.; Kurz, B.; Gray, W.R.; Imperial, J.S.; Hillyard, D.R.; Olivera, B.M. Purification, characterization, synthesis, and cloning of the lockjaw peptide from Conus purpurascens venom. Biochemistry 1995, 34, 4913–4918. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.D.; Mcintosh, J.M.; Hillyard, D.R.; Cruz, L.J.; Olivera, B.M. The A-superfamily of conotoxins: Structural and functional divergence. J. Biol. Chem. 2004, 279, 17596–17606. [Google Scholar] [CrossRef] [PubMed]
- Mcintosh, J.M.; Plazas, P.V.; Watkins, M.; Gomezcasati, M.E.; Olivera, B.M.; Elgoyhen, A.B. A Novel α-Conotoxin, PeIA, Cloned from Conus pergrandis, Discriminates between Rat α9α10 and α7 Nicotinic Cholinergic Receptors. J. Biol. Chem. 2005, 280, 30107–30112. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.D.; Han, Y.H.; Wang, C.G.; Chi, C.W. From the identification of gene organization of conotoxins to the cloning of novel toxins. Toxicon 2007, 49, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, H.; Han, Y.H.; Yuan, D.D.; Chi, C.W. Two different groups of signal sequence in M-superfamily conotoxins. Toxicon 2008, 51, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Liu, L.; Shao, X.; Chi, C.; Wang, C. Identification of a novel class of conotoxins defined as V-conotoxins with a unique cysteine pattern and signal peptide sequence. Peptides 2008, 29, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.D.; Liu, L.; Shao, X.X.; Peng, C.; Chi, C.W.; Guo, Z.Y. Isolation and cloning of a conotoxin with a novel cysteine pattern from Conus caracteristicus. Peptides 2008, 29, 1521–1525. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Nielsen, H.; Von, H.G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Harvey, P.J.; Kass, Q.; Wu, Y.; Zhu, X.; Hu, Y.; Li, X.; Tsetlin, V.I.; Christensen, S. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist. Proc. Natl. Acad. Sci. USA 2015, 112, E4026. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; Mcintyre, M.; Christensen, S.; Akcan, M.; Craik, D.J.; Mcintosh, J.M. Characterization of a Novel α-Conotoxin from Conus textile that Selectively Targets α6/α3β2β3 Nicotinic Acetylcholine Receptors. J. Biol. Chem. 2013, 288, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Zhu, X.; Wu, Y.; Hu, Y.; Christensen, S.; Harvey, P.J.; Akcan, M.; Craik, D.J.; Mcintosh, J.M. Characterization of a Novel Alpha-Conotoxin TxID from Conus textile that Potently Blocks rat Alpha3beta4 Nicotinic Acetylcholine Receptors. J. Med. Chem. 2013, 56, 9655–9663. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhangsun, D.; Schroeder, C.I.; Zhu, X.; Hu, Y.; Wu, Y.; Weltzin, M.M.; Eberhard, S.; Kaas, Q.; Craik, D.J.; et al. A novel α4/7-conotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB J. 2014, 28, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, L.; Ning, H.; Cai, F.; Liu, Z.; Zhang, L.; Zhou, L.; Dai, Q. Cloning, Synthesis and Functional Characterization of a Novel α-Conotoxin Lt1.3. Mar. Drugs 2018, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhangsun, D.; Luo, S.; Wu, Y.; Zhu, X.; Hu, Y.; Xie, L. Novel O-superfamily conotoxins identified by cDNA cloning from three vermivorous Conus species. Chem. Biol. Drug Des. 2010, 68, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Swa, H.; Lewis, R.J. Venomics-Accelerated Cone Snail Venom Peptide Discovery. Int. J. Mol. Sci. 2018, 19, 788. [Google Scholar] [CrossRef]
- Utkin, Y.N. Modern trends in animal venom research—Omics and nanomaterials. World J. Biol. Chem. 2017, 8, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Utkin, Y.N. Animal venom studies: Current benefits and future developments. World J. Biol. Chem. 2015, 6, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Yao, G.; Gao, B.M.; Fan, C.X.; Bian, C.; Wang, J.; Cao, Y.; Wen, B.; Zhu, Y.; Ruan, Z. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing. Gigascience 2016, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Mardis, E.R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 2013, 6, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Quail, M.A.; Miriam, S.; Paul, C.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Anna, B.; Swerdlow, H.P.; Yong, G. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Safavi-Hemami, H.; Young, N.D.; Williamson, N.A.; Purcell, A.W. Proteomic interrogation of venom delivery in marine cone snails: Novel insights into the role of the venom bulb. J. Proteome Res. 2010, 9, 5610–5619. [Google Scholar] [CrossRef] [PubMed]
- Himaya, S.W.; Jin, A.H.; Dutertre, S.; Giacomotto, J.; Mohialdeen, H.; Vetter, I.; Alewood, P.F.; Lewis, R.J. Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus. J. Proteome Res. 2015, 14, 4372–4381. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N.; Concepcion, G.P.; Olivera, B.M.; Lluisma, A.O. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes. Genome Biol. Evol. 2015, 7, 1797–1814. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; Von, G.H.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Lavergne, V.; Dutertre, S.; Jin, A.H.; Lewis, R.J.; Taft, R.J.; Alewood, P.F. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genom. 2013, 14, 708. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.D.; Safavihemami, H.; Mcintosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of Conotoxin Gene Superfamilies in the Venomous Snail, Conus victoriae. PLoS ONE 2014, 9, e87648. [Google Scholar] [CrossRef] [PubMed]
- Kaas, Q.; Westermann, J.C.; Halai, R.; Wang, C.K.L.; Craik, D.J. ConoServer, a database for conopeptide sequences and structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Kaas, Q.; Yu, R.; Jin, A.H.; Dutertre, S.; Craik, D.J. ConoServer: Updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef] [PubMed]
- Magrane, M.; Martin, M.J.; O’Donovan, C.; Apweiler, R. Protein Sequence Databases. Curr. Opin. Chem. Biol. 2004, 8, 76–80. [Google Scholar] [CrossRef]
- Consortium, U.P. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Holford, M.; Zhang, M.M.; Gowd, K.H.; Azam, L.; Green, B.R.; Watkins, M.; Ownby, J.P.; Yoshikami, D.; Bulaj, G.; Olivera, B.M. Pruning nature: Biodiversity-derived discovery of novel sodium channel blocking conotoxins from Conus bullatus. Toxicon 2009, 53, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Gilly, W.F.; Richmond, T.A.; Duda, T.F., Jr.; Elliger, C.; Lebaric, Z.; Schulz, J.; Bingham, J.P.; Sweedler, J.V. A diverse family of novel peptide toxins from an unusual cone snail, Conus californicus. J. Exp. Biol. 2011, 214, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Helena, S.H.; Lu, A.; Li, Q.; Fedosov, A.E.; Jason, B.; Patrice, S.C.; Jon, S.; Mark, Y.; Olivera, B.M. Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa. Mol. Biol. Evol. 2016, 33, 2924–2934. [Google Scholar] [CrossRef]
- Gao, B.; Peng, C.; Lin, B.; Chen, Q.; Zhang, J.; Shi, Q. Screening and Validation of Highly-Efficient Insecticidal Conotoxins from a Transcriptome-Based Dataset of Chinese Tubular Cone Snail. Toxins 2017, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Tayo, L.L.; Lu, B.; Cruz, L.J.; Rd, Y.J. Proteomic analysis provides insights on venom processing in Conus textile. J. Proteome Res. 2010, 9, 2292. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Bandyopadhyay, P.K.; Olivera, B.M.; Yandell, M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genom. 2011, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Terrat, Y.; Biass, D.; Dutertre, S.; Favreau, P.; Remm, M.; Stöcklin, R.; Piquemal, D.; Ducancel, F. High-resolution picture of a venom gland transcriptome: Case study with the marine snail Conus consors. Toxicon 2012, 59, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Lluisma, A.O.; Milash, B.A.; Moore, B.; Olivera, B.M.; Bandyopadhyay, P.K. Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome. Mar. Genom. 2012, 5, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N.; Concepcion, G.P.; Olivera, B.M.; Lluisma, A.O. High Conopeptide Diversity in Conus tribblei Revealed Through Analysis of Venom Duct Transcriptome Using Two High-Throughput Sequencing Platforms. Mar. Biotechnol. 2015, 17, 81. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.H.; Vetter, I.; Himaya, S.W.A.; Alewood, P.F.; Lewis, R.J.; Dutertre, S. Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom. Proteomics 2015, 15, 4030–4040. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.D.; Li, Q.; Lu, A.; Bandyopadhyay, P.K.; Yandell, M.; Olivera, B.M.; Safavihemami, H. The Venom Repertoire of Conus gloriamaris (Chemnitz, 1777), the Glory of the Sea. Mar. Drugs 2017, 15, 145. [Google Scholar] [CrossRef] [PubMed]
- Domon, B.; Aebersold, R. Mass spectrometry and protein analysis. Science 2006, 312, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Ueberheide, B.M.; Fenyö, D.; Alewood, P.F.; Chait, B.T. Rapid sensitive analysis of cysteine rich peptide venom components. Proc. Natl. Acad. Sci. USA 2009, 106, 6910–6915. [Google Scholar] [CrossRef] [PubMed]
- Phuong, M.A.; Mahardika, G.N.; Alfaro, M.E. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347. [Google Scholar] [CrossRef] [PubMed]
- Petras, D.; Heiss, P.; Süssmuth, R.D.; Calvete, J.J. Venom proteomics of Indonesian king cobra, Ophiophagus hannah: Integrating top-down and bottom-up approaches. J. Proteome Res. 2015, 14, 2539–2556. [Google Scholar] [CrossRef] [PubMed]
- Kaas, Q.; Craik, D.J. Bioinformatics-Aided Venomics. Toxins 2015, 7, 2159–2187. [Google Scholar] [CrossRef] [PubMed]
Target/Mode of Action | Conotoxin | Clinical Potential | Ref. | |
---|---|---|---|---|
Voltage-gated Ion Channels | Cav 2.2 inhibitor | MVIIA | Analgesia (On Market) | [40] |
Nav 1.8 inhibitor | MrVIB | Analgesia | [45] | |
Kv inhibitor | PVIIA | Cardiac reperfusion | [42] | |
Ligand-gated Ion Channels | α9α10 nAChRs inhibitor | Vc1.1 | Analgesia (Phase II) | [43] |
NMDA-R inhibitor | Conantokin G | Analgesia/anti-epileptic | [17] | |
5-HT3 inhibitor | GVIIIA | — | [16] | |
GPCRs | α1-adrenoceptor inhibitor | TIA | Cardiovascular/Benign Prostate Hyperplasia | [20,46] |
vasopressin receptor agonist | Conopressin-G | Cardiovascular/mood | [22] | |
neurotensin receptor agonist | Contulakin-G | Analgesia (Phase Ia) | [23] | |
Neurotransmitter Transporters | noradrenaline transporter | MrIA | Analgesia (Phase I) | [47] |
Name | Species | Super-Family | Cystine Pattern | Sequence | Target/IC50 | Year | Ref. |
---|---|---|---|---|---|---|---|
RegIIA | C. regius | A | I | GCCSHPACNVNNPHIC # | nAChR: α7/103 nM, α3β2/33 nM, α3β4/97 nM | 2011 | [60] |
α-LsIA | C. limpusi | - | I | SGCCSNPACRVNNPNIC | nAChRs: α3β2/10 nM, α3α5β2/31 nM, α7/10 nM | 2013 | [87] |
α-RgIB | C. regius | - | I | TWEECCKNPGCRNNHVDRCRGQV | α3β4 and/or α3β4α5 nAChRs | 2013 | [61] |
α-BruIB | C. brunneus | - | I | DYCCRROTCIPIC # | Dα7 nAChR | 2014 | [62] |
α-AusIA | C. australis | - | I | SCCARNPACRHNHPCV | α7 nAChR: 11.68 mM for AusIA (g), 9.67 mM for AusIA (r) | 2014 | [63] |
Lo1a | C. longurionis | A | I | EGCCSNPACRTNHPEVCD | α7 nAChR/3.24 μM | 2014 | [64] |
BnIA | C. bandanus | A | I | GCCSHPACSVNNPDIC # | α7 nAChR | 2014 | [65] |
Im10A | C. imperialis | T | I | NTICCEGCMCY # | unknown | 2016 | [91] |
α-EIIB | C. ermineus | - | I | ZTOGCCWHPACGKNRC # | nAChRs | 2017 | [66] |
PIC | C. purpurascens | A | I | SGCCKHPACGKNRC | rα1β1δε nAChR | 2017 | [67] |
PIC[O7] | SGCCKHOACGKNRC | ||||||
lt3a | C. litteratus | M | III | DγCCγOQWCDGACDCCS | unknown | 2009 | [68] |
κ-RIIIJ | C. radiates | M | III | LOSCCSLNLRLCOVOACKRNOCCT # | hKv1.2 channels/33 nM | 2010 | [69] |
pr3a | C. parius | M | III | CCNWPCSFGCIPCCY | unknown | 2010 | [70] |
pr3b | ERVCCGYOMSCKSRACKOSYCC # | ||||||
CnIIIC | C. consors | M | III | ZGCCNGPKGCSSKWCRDHARCC # | Nav1.4/1.3 nM α3β2 nAChR/450 nM | 2012 | [71] |
BnIIID | C. bandanus | M | III | CCDBγNCDHLCSCCD # | unknown | 2014 | [72] |
Asi3a | C. asiaticus | M | III | CCQWPCSHGCIPCCY # | unknown | 2016 | [91] |
bt5a | C. betulinus | T | V | SγCCIRNFLCC | unknown | 2010 | [73] |
pr6a | C. parius | O | VI/VII | TCLARDELCGASFLSNFLCCDGLCLLICV | unknown | 2010 | [70] |
pr6b | FGSFIOCAHKGEOCTICCROLRCHEEKTOTCV | ||||||
pr6c | DQCTYCGIYCCPPKFCTSSGCRSP | ||||||
pr6d | YGNFOTCSETGEDCSAMHCCRSMTCRNNICAD | ||||||
MfVIA | C. imperialis | O | VI/VII | RDCQEKWEYCIVPILGFVYCCPGLICGPFVCV | Nav1.8/95.9 nM, Nav1.4/81 nM | 2012 | [88] |
ge6b | C. geneis | O2O2 | VI/VII | ACGGGGAPCGSSLDCCYPFECSYNSCG | unknown | 2015 | [74] |
ge6c | VI/VII | ACGGGGAPCGSSLDCCYPFγCSYNSCG | |||||
PiVIIA | C. princeps | O2 | VI/VII | CDAOTHYCTNYWγCCSGYCγHSHCW | unknown | 2016 | [75] |
vi6a | C. virgo | O1 | VI/VII | DCGGQGEGCYTQOCCOGLRCRGGGTGGGVCQL | unknown | 2016 | [76] |
Lo6/7a | C. longurionis | - | VI/VII | DQCSYCGIYCCPPKFCTSAGCRSP # | unknown | 2016 | [91] |
Lo6/7b | SCLSSGALCGIDSNCCNGCNVPRNQCY # | ||||||
fu6a | C. fulgetrum | O | VI/VII | TCREKGEOCSVYVγCCSRICGYYACA | unknown | 2016 | [77] |
α-GVIIIB | C. geographus | S | VIII | SGSTCTCFTSTNCQGSCECLSPPGCYCSNNGIRQPGCSCTCPGT #G | α9α10 nAChR/9.8 nM | 2015 | [92] |
lt9a | C. litteratus | P | IX | IWFCASRTCSAPADCNPCTCESGVCVDWL | tetrodotoxin-sensi-tive sodium channels/300 nM | 2017 | [78] |
lt9b | IWFCASRTCSAOADCNOCTCγSGVCVDWL | tetrodotoxin-sensi-tive sodium channels/504 nM | |||||
Ca11a | C. caracteristicus | I | XI | AWPCGGVRASCSRHDDCCGSLCCFGTSTGCRVAVRPCW | unknown | 2009 | [79] |
Ca11b | ALLCGGTHARCNRDNDCCGSLCCFGTCISAFVPC | ||||||
ts14a | C. tessulatus | A | XIV | DGCPPHPVPGMHPCMCTNTC | unknown | 2010 | [80] |
Asi14a | C. asiaticus | - | XIV | SCGYPCSHCGIPGCYPG # | unknown | 2016 | [92] |
pc16a | C. pictus | M | XVI | SCSCKRNFLCC # | unknown | 2011 | [81] |
qc16a | C. quercinus | - | XVI | DCQPCGHNVCC | unknown | 2011 | [82] |
αD-Ms | C. mustelinus | D | XX | DVRECQVNTPGSKWGKCCMTRMCGTMCCARSGCTCVYHWRRGHGCSCPG | nAChR: α7/0.12 nM, α3β2/1.08 nM, α4β2/4.5 nM | 2009 | [31] |
αD-Cp | C. capitaneus | D | XX | EVQECQVDTPGSSWGKCCMTRMCGTMCCSRSVCTCVYHWRRGHGCSCPG | showed the same selectivity profile as αD-Ms, but has a lower potency | ||
α-GeXXA | C. generalis | D | XX | DVHRPCQSVRPGRVWGKCCLTRLCSTMCCARADCTCVYHTWRGHGCSCVM (dimer) | α9α10 nAChR | 2015 | [83] |
im23a | C. imperialis | K | XXIII | IPYCGQTGAECYSWCIKQDLSKDWCCDFVKDIRMNPPADKCP | unknown | 2012 | [84] |
im23b | IPYCGQTGAECYSWCIKQDLSKDWCCDFVKTIARLPPAHICSQ | ||||||
as25a | C. cancellatus | - | XXV | CKCPSCNFNDVTENCKCCIFRQP # | unknown | 2013 | [85] |
as25b | CKCOSCNFNDVTENCKCCIFRQO? | ||||||
RsXXIVA | C. regularis | - | XXVI | CKGQSCSSCSTKEFCLSKGSRLMYDCCTGSCCGVKTAGVT | Cav2.2 | 2013 | [89] |
GeXXVIIA | C. generalis | O | - | ALMSTGTNYRLLKTCRGSGRYCRSPYDCRRRYCRRISDACV | α9α10 nAChR/16.2 nM | 2017 | [93] |
p21a | C. purpurascens | - | - | FELLPSQDRSCCIQKTLECLENYOGQASQRAHYCQQDATTNCODTYYFGCCPGYATCMSINAGNNVRSAFDKCINRLCFDPGH # | unknown | 2011 | [86] |
Conotoxin | Super-Family | Primer | Sequence | Target (nAChRs)/IC50 | Ref. |
---|---|---|---|---|---|
Pu14.1 | A | signal sequence & 3′-UTR | MGMRMMFAVFLLVVLATTVVSFNSDRASDGRNAAANVKASDLMARVLEKDCPPHPVPGMHKCVCLKTC | rα1β1δε > rα6α3β2 > rα3β2 | [73] |
GeXIVA | O1 | signal sequence | MKLTCVLIITVLFLTACQLTTAVTYSRGEHKHRALMSTGTNYRLPKTCRSSGRYCRSPYDRRRRYCRRITDACV | rα9α10/4.6 nM | [102] |
TxIB | - | intron & 3′-UTR | FDGRNTSANNKATDLMALPVRGCCSDPPCRNKHPDLC # | rα6/α3β2β4/28 nM | [103] |
TxID | - | intron & 3′-UTR | FDGRNAAGNDKMSALMALTTRGCCSHPVCSAMSPIC | rα3β4/12.5 nM, rα6/α3β4/94 nM | [104] |
LvIA | - | intron & 3′-UTR | FRGRDAAAKASGLVGLTDRRGCCSHPACNVDHPEIC # | rα3β2 (8.7 nM) > rα6/α3β2β3 ≈ rα6/α3β4 ≈ rα3β4 > α7 | [105] |
Lt1.3 | - | intron & 3′-UTR | FDGRNAAPSDKASDLISLAVRGCCSHPACSGNNPYFC # | α3β2/44.8 nM | [106] |
VxXXIVA | B | cDNA sequencing | METLTLLWRASSSCLLVVLSHSLLRLLGVRCLEKSGAQPNKLFRPPCCQKGPSFARHSRCVYYTQSRE | rα9α10/1.2 μM, Mouse α1β1γδ/6.6 μM | [107] |
Species | Number of Precursors | Number of Gene Superfamily | Sequencing Platforms | Number of Confirmed Conotoxins by Proteomics | MS Instruments | Year | Ref. |
---|---|---|---|---|---|---|---|
C. textile | - | - | - | 31 | ESI-LTQ-Orbitrap | 2010 | [128] |
C. bullatus | 30 | 6 | Illumina, Roche 454 | - | - | 2011 | [129] |
C. consors | 53 | 11 | Roche 454 | - | - | 2012 | [130] |
C. pulicarius | 82 (79 new) | 14 | Roche 454 | - | - | 2012 | [131] |
C. marmoreus | 105 | 13 | Roche 454 | 2710–6254 | MALDI-TOF, ESI-Q-TOF | 2013 | [49] |
C. marmoreus | 158 | 13 new | Roche454 | 106 | ESI-MS/MS | 2013 | [118] |
C. miles | 662 | 16 (8 new) | Roche 454 | 48 | ESI-Q-TOF | 2013 | [54] |
C. flavidus | - | - | - | 31 | ESI-LTQ-Orbitrap | 2013 | [53] |
C. victoriae | 113 | 20 | Roche454 | - | - | 2014 | [119] |
C. geographus | 127 | 16 (4 new) | Roche454 | 43 | ESI-TripleTOF | 2014 | [3] |
C. catus | 104 | 11 | Roche 454 | 51 | ESI-Q-TOF | 2015 | [115] |
C. episcopatus | 3305 | 25 (16 new) | Illumina | 1,448 | ESI-MS/MS ESI-Q-TOF | 2015 | [50] |
C. tribblei | 136 | 30 (6 new) | Illumina, Roche 454 | - | - | 2015 | [132] |
C. tribblei C. lenavati | 100 (45 new) 132 | 39 40 | ABI 3730XL | - | - | 2015 | [116] |
C. planorbis | 182 | 25 | Roche 454 | 23 | ESI-TripleTOF | 2015 | [133] |
C. betulinus | 215 (183 new) | 9 new | Illumina | - | - | 2016 | [111] |
C. vexillum C. capitaneus | 220 | 19 (4 new) | Roche 454 | 24 | ESI-Q-TOF, MALDI-TOF | 2016 | [1] |
C. gloriamaris | 108 (98 new) | 31 | Illumina | - | - | 2017 | [134] |
Tool | Developer | Function |
---|---|---|
Tools for transcriptomics | ||
SignalP | Technical University of Denmark, Denmark | Predict and locate the signal peptides and their cleavage sites |
ConoPrec | The university of Queensland, Australia | Identify ORF and analyze contigs coding for conopeptide precursors, predict signal peptides and their cleavage site; Superfamily categorization |
ConoSorter | — | Identify and classify precursor conotoxins into gene superfamilies; Provide relevant information (frequency of protein sequences, length, number of cysteine residues, hydrophobicity rate of N-terminal region etc.) |
pHMMs | Technical University of Denmark, Denmark | Identify precursor peptides and classify the sequences into gene superfamily |
Tools for proteomics | ||
ConoMass | The university of Queensland, Australia | Match experimental proteomic mass list against the mass predicted from transcripts, mass spectrometry comparison; PTMs identification |
Mascot | Mascot science, UK | Peptide mass fingerprint; MS/MS database searches |
ProteinPilot | AB SCIEX, USA | Searching and identification of mass sequences; Identification of PTMs |
MaxQuant | Max Planck Institute of Biochemistry, Germany | Quantitative analysis of label-free and SILAC-based analysis; PTMs identification |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Li, C.; Dong, S.; Wu, Y.; Zhangsun, D.; Luo, S. Discovery Methodology of Novel Conotoxins from Conus Species. Mar. Drugs 2018, 16, 417. https://doi.org/10.3390/md16110417
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery Methodology of Novel Conotoxins from Conus Species. Marine Drugs. 2018; 16(11):417. https://doi.org/10.3390/md16110417
Chicago/Turabian StyleFu, Ying, Cheng Li, Shuai Dong, Yong Wu, Dongting Zhangsun, and Sulan Luo. 2018. "Discovery Methodology of Novel Conotoxins from Conus Species" Marine Drugs 16, no. 11: 417. https://doi.org/10.3390/md16110417
APA StyleFu, Y., Li, C., Dong, S., Wu, Y., Zhangsun, D., & Luo, S. (2018). Discovery Methodology of Novel Conotoxins from Conus Species. Marine Drugs, 16(11), 417. https://doi.org/10.3390/md16110417