Next Article in Journal
Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1
Previous Article in Journal
Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(6), 185;

The Novel Mechanisms Concerning the Inhibitions of Palmitate-Induced Proinflammatory Factor Releases and Endogenous Cellular Stress with Astaxanthin on MIN6 β-Cells

Third Department of Internal Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
Author to whom correspondence should be addressed.
Received: 15 May 2017 / Revised: 10 June 2017 / Accepted: 14 June 2017 / Published: 20 June 2017
Full-Text   |   PDF [2993 KB, uploaded 23 June 2017]   |  


Astaxanthin, an antioxidant agent, can protect pancreatic β-cells of db/db mice from glucotoxicity and resolve chronic inflammation in adipose tissue. Nonetheless, the effects of astaxanthin on free-fatty-acid-induced inflammation and cellular stress in β-cells remain to be demonstrated. Meanwhile, palmitate enhances the secretion of pro-inflammatory adipokines monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF120). We therefore investigated the influence of astaxanthin on palmitate-stimulated MCP-1 and VEGF120 secretion in mouse insulinoma (MIN6) pancreatic β-cells. Furthermore, whether astaxanthin prevents cellular stress in MIN6 cells was also assessed. Pre-treatment with astaxanthin or with N-acetyl-cysteine (NAC) which is an antioxidant drug, significantly attenuated the palmitate-induced MCP-1 release through downregulation of phosphorylated c-Jun NH2-terminal protein kinase (JNK) pathways, and suppressed VEGF120 through the PI3K/Akt pathways relative to the cells stimulated with palmitate alone. In addition, palmitate significantly upregulated homologous protein (CHOP) and anti-glucose-regulated protein (GRP78), which are endoplasmic reticulum (ER) stress markers, in MIN6 cells. On the other hand, astaxanthin attenuated the increased CHOP content, but further up-regulated palmitate-stimulated GRP78 protein expression. By contrast, NAC had no effects on either CHOP or GRP78 enhancement induced by palmitate in MIN6 cells. In conclusion, astaxanthin diminishes the palmitate-stimulated increase in MCP-1 secretion via the downregulation of JNK pathways in MIN6 cells, and affects VEGF120 secretion through PI3K/Akt pathways. Moreover, astaxanthin can prevent not only oxidative stress caused endogenously by palmitate but also ER stress, which NAC fails to attenuate, via upregulation of GRP78, an ER chaperon. View Full-Text
Keywords: pancreatic β-cell; astaxanthin; palmitate pancreatic β-cell; astaxanthin; palmitate

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Kitahara, A.; Takahashi, K.; Morita, N.; Murashima, T.; Onuma, H.; Sumitani, Y.; Tanaka, T.; Kondo, T.; Hosaka, T.; Ishida, H. The Novel Mechanisms Concerning the Inhibitions of Palmitate-Induced Proinflammatory Factor Releases and Endogenous Cellular Stress with Astaxanthin on MIN6 β-Cells. Mar. Drugs 2017, 15, 185.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top