Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities
Abstract
:1. Introduction
2. Production of EPSs from Paenibacillus spp.
2.1. Influence of Carbon/Nitrogen (C/N) Sources, pH and Temperature
Bacteria Source | Fermentation Conditions | EPS Yield (g/L) | References | ||||
---|---|---|---|---|---|---|---|
Medium Composition | Temperature (°C) | pH | Culture Vessel | Period (Days) | |||
Paenibacillus sp. TKU023 | 1.5% SPP, 0.1% K2HPO4, and 0.05% MgSO4·7H2O | 37 | 7.23 | 50 mL in a 250 mL flask at 150 rpm | 5 | 4.55 | [31] |
10% SPP, 0.1% K2HPO4, and 0.05% MgSO4·7H2O | 37 | 7.23 | 50 mL in a 250 mL flask at 150 rpm | 5 | 41.25 | ||
P. macerans TKU029 | 2% SPP, 0.1% K2HPO4, and 0.05% MgSO4·7H2O | 30 | 7.21 | 100 mL in a 250 mL flask at 150 rpm | 4 | 3.46 | [32] |
10% SPP, 0.1% K2HPO4, and 0.05% MgSO4·7H2O | 30 | 7.21 | 100 mL in a 250 mL flask at 150 rpm | 4 | 35.75 | ||
P. polymyxa SQR-21 | Galactose 48.5 g/L, Fe3+ 242 µM and Ca2+ 441 µM | 30 | 6.5 | 250 mL in a 1 L flask | 4 | 3.44 | [7] |
P. polymyxa DSM 365 | 5 g/L yeast extract | 30–40 | 1 L in 2 L Jar fermenter: agitation speed, 500 rpm | [22] | |||
P. polymyxa EJS-3 | Sucrose 188.2 g/L, yeast extract 25.8 g/L, K2HPO4 5 g/L, CaCl2 0.34 g/L | 24 | 8 | 200 mL in a 1 L flask | 2.5 | 35.26 | [23,24,25,29] |
P. jamilae CP-38 | 80% olive mill wastewaters (OMW) | 30 | 7 | 2 L bioreactor at 150 rpm | 3 | 4.2 | [26] |
P. elgii B69 | Sucrose 51.35 g/L, peptone 6.78 g/L and yeast extract 0.47 g/L | 30 | 7.2 | 100 mL in a 250 mL flask at 220 rpm | 4 | 25.63 | [27] |
P. polymyxa ATCC 21830 | Glucose 100 g/L, yeast extract 3 g/L | 50 | 7 | 400 mL in a 1 L flask at 150 rpm | 4 | 6.89 | [6] |
P. polymyxa | Sucrose 20 g/L, yeast extract 0.2 g/L, K2HPO4 0.25 g/L, MgSO4 ·7H2O 0.1 g/L, NaCl 0.05 g/L, agar 15 g/L | 30 | Petri dishes of 90 mm of diameter | 5 | [28] | ||
P. polymyxa JB115 | MSM broth containing 10% sucrose | 30 | 1 L medium at 180 rpm | 3 | 10 | [30] |
2.2. Fermentation Techniques
3. Isolation and Purification of EPS
4. Physicochemical Characterization
4.1. Molecular-Weight Distribution of EPS from Paenibacillus spp.
4.2. Monosaccharide Composition
Microorganisms | Chemical Composition of EPSs | References |
---|---|---|
Paenibacillus sp. TKU023 | glucose and maltose | [31] |
P. polymyxa KCTC 8648P | Glucose, galactose, mannose, fucose and glucuronic acid | [37] |
P. polymyxa NCIB 11429 | Glucose, mannose, galactose, glucuronic acid and pyruvate | [49] |
P. polymyxa NRRL B-18475 | β-(2-6) linked fructan | [33] |
P. elgii B69 | Glucose:glucuronic acid:xylose:mannose = 1:0.53:1.15:0.46 | [27] |
P. polymyxa ATCC 21830 | linear glucan interconnected by β-(1→3) glucosidic linkages | [6] |
P. polymyxa JB115 | glucan having β-(1,3) and β-(1,6) linkages | [30] |
P. polymyxa EJS-3 | Mannose, fructose and glucose | [23] |
P. polymyxa SQR-21 | Mannose, glucose, fructose and glucuronic acid | [7] |
5. Bioactivities and Application of Paenibacillus spp. EPSs
Microorganisms | EPSs | Applications | References |
---|---|---|---|
Paenibacillus sp. TKU023 | Antioxidant | [31] | |
P. macerans TKU029 | Improvement of human skin hydration | [32] | |
P. polymyxa EJS-3 | Levan and its derivatives | Antioxidant Antitumor | [23,24,25] |
P. jamilae CP-38 | Reduction in the toxicity of olive mill wastewaters Heavy metal biosorption capacity | [26] | |
P. elgii B69 | Bioflocculant | [27] | |
P. polymyxa ATCC 21830 | Curdlan | Drug-delivery carriers for the sustained release of drugs and a support matrix for immobilization of enzymes | [6] |
P. polymyxa | Removal of cadmium | [28] | |
P. polymyxa SQR-21 | Antioxidant Bioflocculant Metal chelating capacity | [7] | |
P. polymyxa JB115 | Glucan | Animal feed additive for the purpose of enhancing immunity | [30] |
5.1. Antioxidant and Antitumor Activity
5.2. Improvement of Skin Hydration
5.3. Bioremediation of Wastewater
5.4. Other Bioactivities
6. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sutherland, I.W. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 1998, 16, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Roller, S.; Dea, I.C.M. Biotechnology in the production and modification of biopolymers for foods. Crit. Rev. Biotechnol. 1992, 12, 261–277. [Google Scholar] [CrossRef]
- Byrom, D. Polymer synthesis by micro-organisms: Technology and economics. Trends Biotechnol. 1987, 5, 246–250. [Google Scholar] [CrossRef]
- Johns, M.R.; Noor, E. Recovery and purification of polysaccharides from microbial broth. Aust. J. Biotechnol. 1991, 5, 73–77. [Google Scholar] [PubMed]
- Shih, I.L. Microbial exo-polysaccharides for biomedical applications. Mini Rev. Med. Chem. 2010, 10, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Rafigh, S.M.; Yazdi, A.V.; Vossoughi, M.; Safekordi, A.A.; Ardjmand, M. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN. Int. J. Biol. Macromol. 2014, 70, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Raza, W.; Makeen, K.; Wang, Y.; Xu, Y.; Qirong, S. Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21. Bioresour. Technol. 2011, 102, 6095–6103. [Google Scholar] [CrossRef] [PubMed]
- Dziezak, J.D. Special report: A focus on gums. Food Technol. 1991, 45, 116–132. [Google Scholar]
- Kumar, A.S.; Mody, K.; Jha, B. Bacterial exopolysaccharides–A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Alves, V.D.; Pais, J.; Costa, N.; Oliveira, C.; Mafra, L.; Hilliou, L.; Oliveir, R.; Reis, M.A.M. Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour. Technol. 2009, 100, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.C.; Johns, M.R. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 1997, 63, 2759–2764. [Google Scholar] [PubMed]
- Shih, I.L.; Yu, Y.T.; Shieh, C.J.; Hsieh, C.Y. Selective production and characterization of levan by Bacillus subtilis (natto) Takahashi. J. Agric. Food Chem. 2005, 53, 8211–8215. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W. Levan production by Bacillus polymyxa. J. Ind. Microbiol. 1989, 4, 447–452. [Google Scholar] [CrossRef]
- Youssef, F.; Roukas, T.; Biliaderis, C.G. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 1999, 34, 355–366. [Google Scholar] [CrossRef]
- Qader, S.A.U.; Iqbal, L.; Aman, F.; Shireen, E.; Azhar, A. Production of dextran by newly isolated strains of Leuconostoc mesenteroides PCSIR-3 and PCSIR-9. Turk. J. Biochem. 2005, 31, 21–26. [Google Scholar]
- Jana, A.K.; Ghosh, P. Stimulation of xanthan production by Xanthomonas campestris using citric acid. World J. Microbiol. Biotechnol. 1997, 13, 261–264. [Google Scholar] [CrossRef]
- Manna, B.; Gambhir, A.; Ghosh, P. Production and rheological characteristics of the microbial polysaccharide gellan. Lett. Appl. Microbiol. 1996, 23, 141–145. [Google Scholar] [CrossRef]
- Espevik, T.; Skjåk-Bræk, G. Application of alginate gels in biotechnology and biomedicine. Carbohydr. Eur. 1996, 14, 19–25. [Google Scholar]
- Krystynowicz, A.; Czaja, W.; Wiktorowska-Jezierska, A.; Goncalves-Miśkiewicz, M.; Turkiewicz, M.; Bielecki, S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 2002, 29, 189–195. [Google Scholar] [CrossRef]
- Lee, I.Y.; Kim, M.K.; Lee, J.H.; Seo, W.T.; Jung, J.K.; Lee, H.W.; Park, Y.H. Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Eng. 1999, 20, 283–287. [Google Scholar]
- Ash, C.; Priest, F.G.; Collins, M.D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993, 64, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Häßler, T.; Schieder, D.; Pfaller, R.; Faulstich, M.; Sieber, V. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour. Technol. 2012, 124, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z.; Zeng, X. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2009, 78, 275–281. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z.; Zeng, X. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2010, 82, 1278–1283. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Ye, H.; Zeng, X. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol. 2012, 50, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, M.; Quesada, M.T.; del Águila, V.G.; Morillo, J.A.; Rivadeneyra, M.A.; Ramos-Cormenzana, A.; Monteoliva-Sánchez, M. Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresour. Technol. 2008, 99, 5640–5644. [Google Scholar] [CrossRef] [PubMed]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.M.; Qian, C.D.; Jiang, X.H.; Wu, X.C. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Mokaddem, H.; Sadaoui, Z.; Boukhelata, N.; Azouaou, N.; Kaci, Y. Removal of Cadmium from aqueous solution by polysaccharide produced from Paenibacillus polymyxa. J. Hazard. Mater. 2009, 172, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, J.; Ye, H.; Sun, Y.; Lu, Z.; Zeng, X. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 2010, 79, 206–213. [Google Scholar] [CrossRef]
- Jung, H.K.; Hong, J.H.; Park, S.C.; Park, B.K.; Nam, D.H.; Kim, S.D. Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol. Bioprocess Eng. 2007, 12, 713–719. [Google Scholar] [CrossRef]
- Wang, C.L.; Huang, T.H.; Liang, T.W.; Fang, C.Y.; Wang, S.L. Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp.TKU023. N. Biotechnol. 2011, 28, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.W.; Wu, C.C.; Cheng, W.T.; Chen, Y.C.; Wang, C.L.; Wang, I.L.; Wang, S.L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W.; Clarke, M.A. Production and characterization of microbial levan. J. Agric. Food Chem. 1990, 38, 393–396. [Google Scholar] [CrossRef]
- Jiang, L.F. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Int. J. Biol. Macromol. 2013, 52, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Park, N.H.; Choi, H.J.; Oh, D.K. Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol. Lett. 2005, 27, 495–497. [Google Scholar] [CrossRef] [PubMed]
- Gauri, S.S.; Mandal, S.M.; Mondal, K.C.; Dey, S.; Pati, B.R. Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81. Bioresour. Technol. 2009, 100, 4240–4243. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.Y.; Seo, W.T.; Kim, G.J.; Kim, M.K.; Ahn, S.G.; Kwon, G.S.; Park, Y.H. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng. 1997, 16, 71–75. [Google Scholar] [CrossRef]
- Wang, S.L.; Lin, C.L.; Liang, T.W.; Liu, K.C.; Kuo, Y.H. Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresour. Technol. 2009, 100, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.W.; Huang, C.T.; Nguyen, A.D.; Wang, S.L. Squid pen chitin chitooligomers as food colorants absorbers. Mar. Drugs 2015, 13, 681–696. [Google Scholar] [CrossRef] [PubMed]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Staub, A.M. Removal of protein-Sevag method. Methods Carbohydr. Chem. 1965, 5, 5–6. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Huang, Q.L.; Siu, K.C.; Wang, W.Q.; Cheung, Y.C.; Wu, J.Y. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem. 2013, 48, 380–386. [Google Scholar] [CrossRef]
- Yan, J.K.; Wang, W.Q.; Li, L.; Wu, J.Y. Physiochemical properties and antitumour activities of two a-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr. Polym. 2011, 85, 753–758. [Google Scholar] [CrossRef]
- Boukari, I.; Putaux, J.L.; Cathala, B.; Barakat, A.; Saake, B.; Rémond, C.; O’Donohue, M.; Chabbert, B. In vitro model assemblies to study the impact of lignin-carbohydrate interactions on the enzymatic conversion of xylan. Biomacromolecules 2009, 10, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Hilliou, L.; Freitas, F.; Oliveira, R.; Reis, M.A.M.; Lespineux, D.; Grandfils, C.; Alves, V.D. Solution properties of an exopolysaccharide from a Pseudomonas strain obtained using glycerol as sole carbon source. Carbohydr. Polym. 2009, 78, 526–532. [Google Scholar] [CrossRef]
- Panagiotopoulos, C.; Sempéré, R.; Lafont, R.; Kerhervé, P. Sub-ambient temperature effects on the separation of monosaccharide by high-performance anion-exchange chromatography with pulse amperometric detection: Application to marine chemistry. J. Chromatogr. A 2001, 920, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Siu, K.C.; Wang, W.Q.; Liu, X.X.; Wu, J.Y. Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydr. Polym. 2013, 94, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Madden, J.K.; Dea, I.C.M.; Steer, D.C. Structural and rheological properties of the extracellular polysaccharides from Bacillus polymyxa. Carbohydr. Polym. 1986, 6, 51–73. [Google Scholar] [CrossRef]
- Mahapatra, S.; Banerjee, D. Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int. J. Biol. Macromol. 2013, 53, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Liu, H.; Wu, S.; Pang, L.; Jia, M.; Fan, K.; Jia, S.; Jia, L. Production and in vitro antioxidant activity of exopolysaccharide by a mutant, Cordyceps militaris SU5-08. Int. J. Biol. Macromol. 2012, 51, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Confortin, F.G.; Marchetto, R.; Bettin, F.; Camassola, M.; Salvado, M.; Dillon, A.J. Production of Pleurotus sajor-caju strain PS-2001 biomass in submerged culture. J. Ind. Microbiol. Biotechnol. 2008, 35, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, Z.; Chen, S.F.; Li, Y.Q. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol. 2008, 99, 3187–3189. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.J.; Oh, J.Y.; Chang, H.Y.; Yun, J.W. Production of exopolysaccharidesby submerged mycelial culture of a mushroom Tremella fuciformis. J. Biotechnol. 2006, 127, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.O.; Lim, J.M.; Joo, J.H.; Kim, S.W.; Hwang, H.J.; Choi, J.W.; Yun, J.W. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour. Technol. 2005, 96, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Kim, S.W.; Hwang, H.J.; Joo, J.H.; Kim, H.O.; Choi, J.W.; Yun, J.W. Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculate. Appl. Biochem. Biotechnol. 2004, 119, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.H.; Chen, D.X.; Liu, J.W.; Liu, Z.L.; Wan, W.H.; Fang, N.; Xiao, Y.; Qi, Y.; Liang, Z.Q. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. J. Appl. Microbiol. 2004, 96, 1105–1116. [Google Scholar] [CrossRef]
- De Baets, S.; Du Laing, S.; Francois, C.; Vandamme, E.J. Optimization of exopolysaccharide production by Tremella mesenterica NRRL Y-6158 through implementation of fed-batch fermentation. J. Ind. Microbiol. Biotechnol. 2002, 29, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, S.; Palaninathan, V.; Chauhan, N.; Sakamoto, Y.; Yoshida, Y.; Maekawa, T.; Mohanan, P.V.; Kumar, D.S. In vitro evaluation of antioxidant defense mechanism and hemocompatibility of mauran. Carbohydr. Polym. 2013, 98, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Jin, M.M.; Meng, J.; Gao, S.M.; Lu, R.R. Exopolysaccharide from Lactobacillus planterum LP6: Antioxidation and the effect on oxidative stress. Carbohydr. Polym. 2013, 98, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Satish kumar, R.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Arul, V. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour. Technol. 2011, 102, 4827–4833. [Google Scholar] [CrossRef] [PubMed]
- Satpute, S.K.; Banat, I.M.; Dhakephalkar, P.K.; Banpurkar, A.G.; Chopade, B.A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010, 28, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Shih, I.; van, Y.; Yeh, L.; Lin, H.; Chang, Y. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 2001, 78, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, S.P.; Raichur, A.M. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int. J. Miner. Process 2002, 67, 199–210. [Google Scholar] [CrossRef]
- Acosta, M.P.; Valdman, E.; Leite, S.G.F.; Battaglini, F.; Ruzal, S.M. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J. Microbiol. Biotechnol. 2005, 21, 1157–1163. [Google Scholar] [CrossRef]
- Takeda-Hirokawa, N.; Neoh, L.P.; Akimoto, H.; Kaneko, H.; Hishikawa, T.; Sekigawa, I.; Hashimoto, H.; Hirose, S.I.; Murakami, T.; Yamamoto, N.; et al. Effect of curdlan sulfate on the production of β-chemokines and cytokines. Microbiol. Immunol. 1997, 41, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jung, I.; Kim, J.; Lee, J.H.; Lee, I.; Lee, K. Curdlan gels as protein drug delivery vehicles. Biotechnol. Lett. 2000, 22, 1127–1130. [Google Scholar] [CrossRef]
- Saudagar, P.S.; Singhal, R.S. Curdlan as a support matrix for immobilization of enzyme. Carbohydr. Polym. 2004, 56, 483–488. [Google Scholar] [CrossRef]
- Moon, C.J.; Lee, J.H. Use of curdlan and activated carbon composed adsorbents for heavy metal removal. Process Biochem. 2005, 40, 1279–1283. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, T.-W.; Wang, S.-L. Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Mar. Drugs 2015, 13, 1847-1863. https://doi.org/10.3390/md13041847
Liang T-W, Wang S-L. Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Marine Drugs. 2015; 13(4):1847-1863. https://doi.org/10.3390/md13041847
Chicago/Turabian StyleLiang, Tzu-Wen, and San-Lang Wang. 2015. "Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities" Marine Drugs 13, no. 4: 1847-1863. https://doi.org/10.3390/md13041847
APA StyleLiang, T. -W., & Wang, S. -L. (2015). Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Marine Drugs, 13(4), 1847-1863. https://doi.org/10.3390/md13041847