Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp.
Abstract
:1. Introduction
2. Results
Genes | Primers |
---|---|
Beta-Keto acyl synthase (BKAS) | 5′-CAGGCCTTCGAGCATTTCTG-3′ 3′-GCGTCATATCAGGCGACAGC-5′ |
Delta-5-desaturase (Δ5D) | 5′-TGGACGTTGGACATTGTAGGC-3′ 3′-CATTGTCATGCAGATTTGTGTACG-5′ |
Delta-6-elongase (Δ6E) | 5′-CACCTACTACCTGCTTGCTGCC-3′ 3′-CTGGAACATTGTCAGGTAATGCC-5′ |
Acyl-CoA-synthase (ACSase) | 5′-CACGTTGCTGTGCTTAATCTGC-3′ 3′-CGAGTGCAACCCTGAGGATATG-5′ |
Delta-5-elongase (Δ5E) | 5′-TGAGGAAATGGTGCCAGCAG-3′ 3′-ACAAGTTCATCGAGTACCTCGACAC-5′ |
Glycerol-3-phosphate dehydrogenase (D3PDH) | 5′-TCGTACCGCATCCACAAAGG-3′ 3′-GCTAAGGTGAAAGACAACGAGTCC-5′ |
Glucose-6-phosphate isomerase (G6Pi) | 5′-GGGACAGCAGGTTATTGTGGAC-3′ 3′-TGCGCACCTTATCGGAGAAG-5′ |
Sodium ATPase (PyKPA) | 5′-AAGGAAGCTGCGGATATGATTCTC-3′ 3′-TCAAGTTGTCAAAAATCAGACGACC-5′ |
Phosphate transporter (PHO) | 5′-GACTTGGCACCCTTGAAGATAATG-3′ 3′-CTTACGCTCGCTCTTGGTGG-5′ |
3-ketoacyl-ACP reductase (KAR) | 5′-CGGAGGAGATGTTAATGATGCG-3′ 3′-ATCAACCTCACCGGCGTCTT-5′ |
Delta-8-desaturase (Δ8D) | 5′-GTCCGTAAAGGCTCCACTTCG-3′ 3′-GTATTTGACAAGACCACGCAGTTG-5′ |
Enoyl-ACP reductase (ENR) | 5′-CTCCTTGACCTCAGTTGGGACA-3′ 3′-CTCAAACGGGTCCTTAATGGAGT-5′ |
Phosphatidic acid phosphatase (PP) | 5′-TGTGGTCGGAGATCACATACGATA-3′ 3′-CAGTAGAGCGAGAACGACACCAG-5′ |
Delta-9-desaturase (Δ9D) | 5′-GATATGAAAGCGTATGCCGAG-3′ 3′-GTAGCTCTAGCCGCCCCCTT-5′ |
Diacyl glycerol acyl transferase (DGAT) | 5′-ATCAGAGGAACCTGTCCCATCA-3′ 3′-CTGCCATTTTTCACGAGCTAATG-5′ |
Beta-actin | 5′-GCCTCAGAATCCCAAGACCAA-3′ 3′-GGCCTGGATCTGAACGTACATG-5′ |
Salinity (ppt) | Growth Rate (μ) | Doubling Time (dt) |
---|---|---|
5 | 0.414 ± 0.049 | 1.689 ± 0.207 |
10 | 0.487 ± 0.087 | 1.457 ± 0.287 |
30 | 0.532 ± 0.016 | 1.303 ± 0.038 |
40 | 0.695 ± 0.064 * | 1.003 ± 0.088 |
50 | 0.644 ± 0.063 * | 1.083 ± 0.105 |
Salinity | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acids | 5 ppt | 10 ppt | 30 ppt | 40 ppt | 50 ppt | ||||||||||
2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 | |
C12:0 | 0.19 ± 0.07 | 0.23 ± 0.39 | 0.26 ±0.40 | 0.11 ± 0.05 | 0.11 ± 0.09 | 0.08 ± 0.09 | 0.15 ± 0.10 | - | 0.01 ± 0.01 | 0.06 ± 0.02 | - | 0.04 ± 0.07 | 0.09 ± 0.06 | 0.22 ± 0.21 | 0.05 ± 0.06 |
C14:0 | 0.38 ± 0.02 | 0.15 ± 0.27 | 0.32 ± 0.30 | 0.30 ± 0.01 | 0.23 ± 0.01 | 0.19 ± 0.09 | 0.23 ± 0.17 | 0.14 ± 0.04 | 0.17 ± 0.05 | 0.19 ± 0.06 | 0.11 ± 0.1 | 0.08 ± 0.07 | 0.24 ± 0.07 | 0.25 ± 0.22 | 0.17 ± 0.15 |
C14:1 | 1.22 ± 0.01 | 0.76 ± 0.10 | 0.72 ± 0.09 | 1.45 ± 0.05 | 1.11 ± 0.10 | 0.77± 0.16 | 1.67 ± 0.08 | 1.27 ±0.23 | 1.01 ± 0.16 | 1.66 ± 0.06 | 1.00 ± 0.48 | 0.65 ± 0.56 | 1.69 ± 0.05 | 1.27 ± 0.38 | 0.98 ± 0.28 |
C16:0 | 19.38 ± 0.01 | 21.22 ± 1.95 | 22.79 ± 1.36 | 18.14 ± 0.10 | 21.81 ± 0.58 | 22.73 ± 0.52 | 19.37 ± 0.90 | 22.15 ± 1.24 | 23.29 ± 1.00 | 18.38 ± 0.30 | 19.44 ± 1.88 | 20.99 ± 1.24 | 17.76 ± 1.21 | 18.70 ± 0.20 | 20.51 ± 1.83 |
C16:1 | 1.56 ± 0.11 | 1.31 ± 0.13 | 2.20 ± 1.29 | 3.63 ± 0.27 | 1.90 ± 0.07 | 1.627 ± 0.22 | 4.71 ± 0.76 | 2.36 ± 0.30 | 1.96 ± 0.32 | 4.26 ± 0.80 | 2.06 ± 0.80 | 1.72 ± 0.58 | 4.64 ± 0.55 | 2.72 ± 0.60 | 2.43 ±0.35 |
C16:3 | 6.51 ± 0.55 | 6.80 ± 0.77 | 5.89 ± 0.76 | 5.69 ± 0.18 | 5.58 ± 0.12 | 4.73 ± 0.33 | 4.33 ± 0.37 | 4.25 ± 0.09 | 3.44 ± 0.18 | 4.24 ± 0.25 | 4.70 ± 0.16 | 3.70 ± 0.12 | 3.94 ± 0.16 | 5.38 ± 0.14 | 4.68 ± 0.64 |
C16:4 | 16.54 ± 0.53 | 17.37 ± 4.48 | 13.80 ± 3.49 | 17.82 ± 0.01 | 15.02 ± 0.50 | 16.42 ± 1.61 | 19.01 ± 1.51 | 17.51 ± 1.36 | 17.16 ± 1.57 | 19.37 ± 0.17 | 22.26 ± 9.65 | 20.66 ± 4.87 | 19.47 ± 0.98 | 18.81 ± 4.11 | 18.37 ± 5.18 |
C18:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
C18:1 | 10.29 ± 0.38 | 11.94 ± 3.63 | 16.25 ± 2.80 | 7.54 ± 0.12 | 11.87 ± 0.78 | 13.30 ± 0.65 | 7.15 ± 0.79 | 10.49 ± 0.38 | 12.11 ± 0.32 | 6.36± 0.18 | 7.92 ± 3.44 | 7.12 ± 6.18 | 6.22 ± 0.36 | 8.65 ± 1.71 | 10.50 ± 1.72 |
C18:2 | 13.86 ± 1.40 | 15.15 ±0.88 | 14.39 ± 0.62 | 13.07 ± 0.27 | 15.55 ± 0.18 | 14.34 ± 0.19 | 11.37 ± 0.43 | 13.43 ± 0.46 | 12.81 ± 0.57 | 10.90 ± 0.45 | 13.20 ± 1.37 | 13.39 ± 0.34 | 9.81 ± 0.80 | 13.15 ± 0.16 | 13.01 ± 1.10 |
C18:3 (GLA) | 0.61 ± 0.03 | 0.39 ± 0.10 | 0.79 ± 0.09 | 0.51 ± 0.01 | 0.631±0.040 | 0.81 ± 0.08 | 0.30 ± 0.18 | 0.47 ± 0.05 | 0.74 ± 0.06 | 0.32 ± 0.05 | 0.39 ± 0.34 | 0.74 ± 0.17 | 0.35 ± 0.05 | 0.49 ± 0.33 | 0.75 ± 0.14 |
C18:3 (ALA) | 17.39 ± 1.31 | 14.35 ± 1.37 | 11.25 ± 0.79 | 18.76 ± 0.12 | 14.219±0.572 | 12.44 ± 0.37 | 18.77 ± 0.10 | 15.15 ± 0.52 | 13.99 ± 0.40 | 20.53 ± 0.30 | 16.19 ± 0.71 | 16.00 ± 2.21 | 20.51 ± 0.16 | 16.34 ± 0.60 | 14.69 ± 0.44 |
C18:4 | 2.26 ± 0.31 | 1.64 ± 0.37 | 1.41 ± 0.21 | 4.04 ± 0.18 | 2.99 ± 0.29 | 2.58 ± 0.21 | 4.84 ± 0.17 | 4.08 ± 0.08 | 3.62 ± 0.05 | 5.41 ± 0.33 | 4.90 ± 0.35 | 4.61 ± 0.84 | 5.95 ± 0.80 | 5.21 ± 0.09 | 4.33 ± 0.54 |
C20:0 | - | - | - | 0.46 ± 0.65 | - | - | - | - | - | - | - | - | - | - | - |
C20:1 | 1.67 ± 0.18 | 1.12 ± 0.21 | 1.38 ± 0.27 | 1.30 ± 0.03 | 1.21 ± 0.03 | 1.12 ±0.12 | 2.02 ± 0.26 | 1.64 ± 0.12 | 1.50 ± 0.05 | 2.08 ± 0.26 | 1.36 ± 0.60 | 1.12 ± 0.52 | 2.55 ± 0.36 | 1.90 ± 0.24 | 1.59 ± 0.10 |
C20:2 | 0.19 ± 0.26 | 0.33 ± 0.07 | 0.27 ± 0.24 | 0.18 ± 0.25 | 0.24 ± 0.03 | 0.31 ± 0.05 | 0.15 ± 0.14 | 0.29 ± 0.03 | 0.21 ± 0.18 | 0.21 ± 0.06 | 0.15 ± 0.13 | 0.18 ± 0.09 | 0.15 ± 0.14 | 0.33 ± 0.10 | 0.29 ± 0.02 |
C20:3 | 0.14 ± 0.09 | - | - | 0.10 ± 0.02 | - | - | 0.06 ± 0.10 | - | - | - | - | - | 0.05 ± 0.04 | 0.03 ± 0.04 | - |
C20:4 | 2.12 ± 0.16 | 2.15 ± 0.26 | 2.75 ± 0.24 | 1.63 ± 0.02 | 1.92 ± 0.04 | 2.20 ± 0.06 | 0.94 ± 0.30 | 1.18 ± 0.16 | 1.65 ± 0.12 | 1.06 ± 0.04 | 1.03 ± 0.67 | 1.73 ± 0.10 | 1.08 ± 0.07 | 1.17 ± 0.41 | 1.46 ± 0.29 |
C20:5 | 5.04 ± 0.11 | 5.06 ± 0.36 | 5.49 ± 0.32 | 4.91 ± 0.04 | 5.61 ± 0.10 | 6.13 ± 0.09 | 4.02 ± 0.43 | 5.01 ± 0.69 | 6.10 ± 0.49 | 4.44 ± 0.15 | 5.12 ± 0.91 | 7.18 ± 1.46 | 4.72 ± 0.44 | 5.29 ± 0.38 | 5.96 ± 0.30 |
SFA | 19.96 ± 0.06 | 21.60 ± 2.59 | 23.37 ± 2.03 | 19.01 ± 0.79 | 22.15 ± 0.48 | 23.00 ± 0.53 | 19.76 ± 0.70 | 22.29 ± 1.26 | 23.46 ± 1.01 | 16.64 ± 0.24 | 19.55 ± 1.98 | 21.11 ± 1.34 | 18.09 ± 1.12 | 19.17 ± 0.36 | 20.74 ± 2.03 |
MUFA | 14.74 ± 0.31 | 15.12 ± 3.98 | 20.55 ± 3.62 | 13.93 ± 0.23 | 16.10 ± 0.66 | 16.82 ± 0.96 | 15.56 ± 0.44 | 15.77 ± 0.61 | 16.58 ± 0.71 | 14.35 ± 0.56 | 12.34 ± 5.32 | 10.60 ± 7.83 | 15.11 ± 0.57 | 14.54 ± 2.88 | 15.50 ± 2.38 |
PUFA | 64.66 ± 0.32 | 63.25 ± 6.52 | 56.04 ± 5.09 | 66.71 ± 0.07 | 61.76 ± 1.10 | 59.97 ± 1.48 | 63.68 ± 0.24 | 61.38 ± 2.00 | 59.74 ± 1.53 | 66.49 ± 0.41 | 67.95 ± 7.44 | 68.18 ± 9.24 | 66.02 ± 1.35 | 66.21 ± 3.18 | 63.55 ± 4.46 |
ω-3 | 26.81 ± 1.35 | 23.21 ± 1.66 | 20.89 ± 0.79 | 29.34 ± 0.25 | 24.73 ± 0.87 | 23.35 ± 0.65 | 28.57 ± 0.79 | 25.43 ± 1.14 | 25.37 ± 0.73 | 31.44 ± 0.22 | 27.24 ± 0.53 | 29.51 ± 4.40 | 32.25 ± 1.13 | 28.02 ± 0.75 | 26.44 ± 0.08 |
3. Discussion
4. Methods
4.1. Algae Culture and Cultivation Conditions
4.2. Culture Media Nutrient Analysis
4.3. Fatty Acid Analysis
4.4. Total RNA Extraction and cDNA Synthesis
4.5. Real-Time Quantitative Reverse Transcriptase PCR
4.6. Statistical Analyses
5. Conclusion
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, J.H.; O’Keefe, J.H.; Lavie, C.J.; Harris, W.S. Omega-3 fatty acids: Cardiovascular benefits, sources and sustainability. Nat. Rev. Cardiol. 2009, 6, 753–758. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Bazán, N.G.; Karger, S. Omega-3 Fatty Acids, the Brain and Retina; Karger: Basel, Switzerland, 2009. [Google Scholar]
- Damude, H.G.; Kinney, A.J. Enhancing plant seed oils for human nutrition. Plant Physiol. 2008, 147, 962–968. [Google Scholar] [CrossRef]
- Ruiz-López, N.; Haslam, R.P.; Venegas-Calerón, M.; Li, T.; Bauer, J.; Napier, J.A.; Sayanova, O. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res. 2012, 21, 1233–1243. [Google Scholar]
- Adarme-Vega, T.C.; Lim, D.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; de Diego, S.M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Schenk, P.M.; Thomas-Hall, S.R.; Stephens, E.; Marx, U.C.; Mussgnug, J.H.; Posten, C.; Kruse, O.; Hankamer, B. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenerg. Res. 2008, 1, 20–43. [Google Scholar] [CrossRef]
- Fabregas, J.; Abalde, J.; Herrero, C.; Cabezas, B.; Veiga, M. Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 1984, 42, 207–215. [Google Scholar] [CrossRef]
- Roessler, P.G. Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research directions. J. Phycol. 1990, 26, 393–399. [Google Scholar]
- de Castro Araujo, S.; Garcia, V.M.T. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii Brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 2005, 246, 405–412. [Google Scholar] [CrossRef]
- Brown, M.R.; Jeffrey, S.W.; Garland, C.D. Nutritional Aspects of Microalgae Used in Mariculture: A literature Review; CSIRO: Hobart, Austrilia, 1989. [Google Scholar]
- Richmond, A. CRC Hhandbook of Microalgal Mass Culture; Richmond, A., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 69–99. [Google Scholar]
- Hu, H.; Gao, K. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 2006, 28, 987–992. [Google Scholar] [CrossRef]
- Lee, Y.K.; Tan, H.M.; Low, C.S. Effect of salinity of medium on cellular fatty acid composition of marine alga Porphyridium cruentum (Rhodophyceae). J. Appl. Phycol. 1989, 1, 19–23. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Aura, A.M.; Kiesvaara, M.; Kauppinen, V. The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. J. Biotechnol. 1997, 55, 55–63. [Google Scholar] [CrossRef]
- Yongmanitchai, W.; Ward, O.P. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 1991, 57, 419–425. [Google Scholar]
- Pal, D.; Khozin-Goldberg, I.; Cohen, Z.; Boussiba, S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl. Microbiol. Biotechnol. 2011, 90, 1429–1441. [Google Scholar] [CrossRef]
- Takagi, M. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 2006, 101, 223–226. [Google Scholar]
- Sukenik, A. Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresour. Technol. 1991, 35, 263–269. [Google Scholar] [CrossRef]
- Venegas-Calerón, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progr. Lipid Res. 2010, 49, 108–119. [Google Scholar] [CrossRef]
- Meesapyodsuk, D.; Qiu, X. The front-end desaturase: Structure, function, evolution and biotechnological use. Lipids 2012, 47, 227–237. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Cohen, Z. Unraveling algal lipid metabolism: Recent advances in gene identification. Biochimie 2011, 93, 91–100. [Google Scholar] [CrossRef]
- Strizh, I.; Popova, L.; Balnokin, Y.V. Physiological aspects of adaptation of the marine microalga Tetraselmis (Platymonas) viridis to various medium salinity. Russ. J. Plant Physiol. 2004, 51, 176–182. [Google Scholar] [CrossRef]
- Pagis, L.Y.; Popova, L.G.; Andreev, I.M.; Balnokin, Y.V. Comparative characterization of the two primary pumps, H+ATPase and Na+ATPase, in the plasma membrane of the marine alga Tetraselmis viridis. Physiol. Plant. 2003, 118, 514–522. [Google Scholar] [CrossRef]
- Azachi, M.; Sadka, A.; Fisher, M.; Goldshlag, P.; Gokhman, I.; Zamir, A. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol. 2002, 129, 1320–1329. [Google Scholar] [CrossRef]
- Iwamoto, K.; Shiraiwa, Y. Salt-regulated mannitol metabolism in algae. Mar. Biotechnol. 2005, 7, 407–415. [Google Scholar] [CrossRef]
- Li, S.H.; Xia, B.B.; Zhang, C.; Cao, J.; Bai, L.H. Cloning and characterization of a phosphate transporter gene in Dunaliella salina. J. Basic Microbiol. 2012, 52, 429–436. [Google Scholar] [CrossRef]
- Arisz, S.A.; Munnik, T. The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid. J. Lipid Res. 2011, 52, 2012–2020. [Google Scholar] [CrossRef]
- Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Liu, Q.; Singh, S.P. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-coa δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Metab. Eng. 2010, 12, 233–240. [Google Scholar] [CrossRef]
- Qiu, X.; Hong, H.; MacKenzie, S.L. Identification of a δ4 fatty acid desaturase from thraustochytrium sp. Involved in the biosynthesis of docosahexanoic acid by heterologous expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 2001, 276, 31561–31566. [Google Scholar] [CrossRef]
- Cheng, B.; Wu, G.; Vrinten, P.; Falk, K.; Bauer, J.; Qiu, X. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: The effects of different host species, genes and promoters. Transgenic Res. 2010, 19, 221–229. [Google Scholar] [CrossRef]
- Serdar, S.; Lök, A.; Acarli, S.; Köse, A. The effect of two different culture media and five different salinities on growth of Tetraselmis suecica. Rapp. Comm. Int. Mer. Médit. 2007, 38, 394. [Google Scholar]
- Kumar, M.; Bijo, A.; Baghel, R.S.; Reddy, C.; Jha, B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem. 2012, 51, 129–138. [Google Scholar] [CrossRef]
- Sang, M.; Wang, M.; Liu, J.; Zhang, C.; Li, A. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. J. Ocean Univ. China 2012, 11, 181–186. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, X.; Ji, L.; Song, X.; Kuang, C. Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process. Biochem. 2007, 42, 210–214. [Google Scholar] [CrossRef]
- Msanne, J.; Xu, D.; Konda, A.R.; Casas-Mollano, J.A.; Awada, T.; Cahoon, E.B.; Cerutti, H. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 2012, 75, 50–59. [Google Scholar] [CrossRef]
- Hernández, M.L.; Padilla, M.N.; Sicardo, M.D.; Mancha, M.; Martínez-Rivas, J.M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 2011, 72, 178–187. [Google Scholar] [CrossRef]
- Schenk, P.M. Algae Biotechnology. Available online: http://www.algaebiotech.org (accessed on 1 September 2010).
- Guillard, R.R.; Ryther, J.H. Studies of Marine Planktonic Diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Canadian J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Timmins, M.; Zhou, W.; Rupprecht, J.; Lim, L.; Thomas-Hall, S.R.; Doebbe, A.; Kruse, O.; Hankamer, B.; Schenk, P.M. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J. Biol. Chem. 2009, 284, 23415–23425. [Google Scholar] [CrossRef]
- Lim, D.Y.K. Understanding Tetraselmis sp. lipid production: A new transcriptional profiling approach. 2014; Unpublished work. [Google Scholar]
- Team, R.D.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Adarme-Vega, T.C.; Thomas-Hall, S.R.; Lim, D.K.Y.; Schenk, P.M. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp. Mar. Drugs 2014, 12, 3381-3398. https://doi.org/10.3390/md12063381
Adarme-Vega TC, Thomas-Hall SR, Lim DKY, Schenk PM. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp. Marine Drugs. 2014; 12(6):3381-3398. https://doi.org/10.3390/md12063381
Chicago/Turabian StyleAdarme-Vega, T. Catalina, Skye R. Thomas-Hall, David K. Y. Lim, and Peer M. Schenk. 2014. "Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp." Marine Drugs 12, no. 6: 3381-3398. https://doi.org/10.3390/md12063381
APA StyleAdarme-Vega, T. C., Thomas-Hall, S. R., Lim, D. K. Y., & Schenk, P. M. (2014). Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp. Marine Drugs, 12(6), 3381-3398. https://doi.org/10.3390/md12063381