Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation of Actinobacteria from the Chukchi Shelf Marine Sediment
2.2. Phylogenetic Diversity
Genus | Isolate | The Closest Type Strain (% Identity) | Seawater Requirement | Biosynthetic Genes | Antimicrobial Activities * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PKS I | PKS II | NRPS | phzE | dTGD | Halo | CYP | B. subtilis | C. albicans | ||||
Brevibacteriaceae | ||||||||||||
Brevibacterium | y49 | Brevibacterium casei NCDO 2048T (99.3) | − | + | − | + | − | + | + | − | − | − |
y51 | Brevibacterium casei NCDO 2048T (99.4) | − | + | − | + | − | + | − | − | − | − | |
Dietziaceae | ||||||||||||
Dietzia | y250 | Dietzia cercidiphylli YIM 65002T (99.6) | + | + | − | + | − | − | + | − | − | − |
Intrasporangiaceae | ||||||||||||
Arsenicicoccus | y63 | Arsenicicoccus bolidensis CCUG 47306T (99.8) | − | − | − | − | − | + | + | − | − | − |
Janibacter | y46 | Janibacter melonis CM2104T (99.5) | − | + | + | − | − | + | − | − | − | − |
y273 | Janibacter limosus DSM 11140T (99.7) | − | + | − | + | − | + | + | + | − | − | |
Microbacteriaceae | ||||||||||||
Agrococcus | y27 | Agrococcus jenensis DSM 9580T (99.7) | − † | − | + | − | − | + | − | − | − | − |
Salinibacterium | y182 | Salinibacterium amurskyense KMM 3673T (99.0) | − | + | − | − | + | + | − | + | − | − |
y358 | Salinibacterium amurskyense KMM 3673T (99.7) | − † | + | − | − | − | + | − | − | − | − | |
Micrococcaceae | ||||||||||||
Arthrobacter | y12 | Arthrobacter agilis DSM 20550T (99.5) | − | + | − | + | − | + | − | − | − | − |
y24 | Arthrobacter agilis DSM 20550T (99.3) | − † | + | − | − | − | + | − | + | − | − | |
y41 | Arthrobacter agilis DSM 20550T (99.2) | − † | + | + | − | − | − | + | + | − | − | |
Citricoccus | y29 | Citricoccus muralis 4-0T (99.7) | − † | + | − | − | − | + | + | + | − | − |
Kocuria | y9 | Kocuria rosea DSM 20447T (99.7) | + | + | − | − | − | − | + | − | − | − |
y456 | Kocuria rosea DSM 20447T (99.7) | − | + | − | + | − | + | + | − | − | − | |
y10 | Kocuria gwangalliensis SJ2T (99.4) | − † | + | − | − | − | − | + | − | − | − | |
y213 | Kocuria marina KMM 3905T (99.9) | − | + | − | − | + | − | − | − | − | − | |
Nocardioidaceae | ||||||||||||
Nocardioides | y25 | Nocardioides kribbensis KSL-2T (97.8) | + | − | − | − | − | + | + | − | − | − |
Nocardiopsaceae | ||||||||||||
Nocardiopsis | y4 | Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (ABUI01000017) | + | − | + | + | + | + | − | − | + | − |
y17 | Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (99.7) | − † | − | + | + | − | + | + | − | + | + | |
y18 | Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (99.8) | + | − | + | + | + | + | − | − | + | + | |
y47 | Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (99.9) | − † | − | + | − | + | + | − | − | + | − | |
y64 | Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (99.8) | − † | − | + | − | − | + | − | − | + | + | |
Propionibacteriaceae | ||||||||||||
Microlunatus | y400 | Microlunatus aurantiacus YIM 45721T (99.2) | − | + | − | − | − | + | + | + | + | − |
Pseudonocardiaceae | ||||||||||||
Saccharopolyspora | y284 | Saccharopolyspora gregorii NCIMB 12823T (97.8) | − | − | + | − | − | + | − | − | − | − |
Streptomycetaceae | ||||||||||||
Streptomyces | y2 * | Streptomyces somaliensis NBRC 12916T (99.9) | − | + | − | + | − | + | − | + | + | + |
y23 | Streptomyces somaliensis NBRC 12916T (99.7) | − | + | − | + | − | − | − | + | + | + | |
y146 * | Streptomyces somaliensis NBRC 12916T (99.9) | − | + | − | − | + | + | − | + | + | + | |
y222 | Streptomyces albidoflavus DSM 40455T (99.5) | − | + | + | + | − | + | − | + | + | + | |
y481 | Streptomyces sedi YIM 65188T (99.4) | + | + | + | + | − | + | − | − | + | − |
2.3. Antimicrobial Activities and Detection of Biosynthetic Genes
3. Experimental Section
3.1. Sediments Sample
Samples | Water Depth (m) | Color | Composition | Benthos |
---|---|---|---|---|
CC1 | 45 | Light grey | Silty clay | Bivalves |
C02 | 41 | Grey | Clay | Conch |
C05 | 26 | Cinerous | Fine sand | Crab, conch, sand dollar, Polychaeta |
SR01 | 41.5 | Cinerous | Silty sand | Conch, bivalve |
SR03 | 50.7 | Cinerous | Clay | Polychaeta, conch, sipunculoid |
SR04 | 48 | Grey | Silty clay | None |
SR05 | 46.7 | Cinerous | Silty clay | Conch |
SR07 | 29.7 | Cinerous | Silty mud | None |
R09 | 43.5 | Grey | Mud soil | None |
SR10 | 69.6 | Cinerous | Silty clay | Sea star, conch |
3.2. Isolation of Actinobacterial Strains
3.3. Dereplication by Rep-Polymerase Chain Reaction (PCR)
3.4. Seawater Requirements
3.5. 16S rRNA Gene Amplification and Phylogenetic Analysis
3.6. Antimicrobial Activity Testing by Agar Diffusion (Inhibition Zones)
3.7. Amplification of Biosynthetic Gene Fragments
Gene | Primer | Length (bp) | Reference |
---|---|---|---|
PKS I (KSMA-F, KSMB-R) | 5′-TSGCSATGGACCCSCAGCAG-3′ 5′-CCSGTSCCGTGSGCCTCSAC-3′ | 700 | [47] |
PKS II (540F, 1100R) | 5′-GGITGCACSTCIGGIMTSGAC-3′ 5′-CCGATSGCICCSAGIGAGTG-3′ | 554 | [48] |
NRPS (A3F, A7R) | 5′-GCSTACSYSATSTACACSTCSGG-3′ 5′-SASGTCVCCSGTSCGGTAS-3′ | 700 | [49] |
PhzE (phzEf, phzEr) | 5′-GAAGGCGCCAACTTCGTYATCAA-3′ 5′-GCCYTCGATGAAGTACTCGGTGTG-3′ | 450 | [50] |
Halo (FW, RV) | 5′-TTCCCSCGSTACCASATCGGSGAG-3′ 5′-GSGGGATSWMCCAGWACCASCC-3′ | 500 | [32] |
dTGD (dTGD-1, dTGD-2) | 5′-GSGGSGSSGCSGGSTTCATSGG-3′ 5′-GGGWRCTGGYRSGGSCCGTAGTTG-3′ | 600 | [51] |
CYP (PEH-1, PEH-2) | 5′-TGGATCGGCGACGACCGSVYCGT-3′ 5′-CCGWASAGSAYSCCGTCGTACTT-3′ | 350 | [34] |
4. Conclusions
Abbreviations
DDC | Dispersion and Differential Centrifugation |
BSA | Albumin from Bovine Serum |
NCBI | National Center of Biotechnology Information |
BLASTN | Basic Local Alignment Search Tool of Nucleic acid |
PKS | PolyKetide Synthase |
NRPS | Nonribosomal Peptide Synthase |
phzE | aminodeoxyisochorismate synthase |
dTGD | dTDP-Glucose-4, 6-Dehydratase |
Halo | Halogenase |
CYP | Cytochrome P450 hydroxylase |
FADH | Flavin Adenine Dinucleotide Hydrogen carrier |
Acknowledgments
Conflicts of Interest
References
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef]
- Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef]
- Fiedler, H.-P.; Bruntner, C.; Bull, A.T.; Ward, A.C.; Goodfellow, M.; Potterat, O.; Puder, C.; Mihm, G. Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 2005, 87, 37–42. [Google Scholar] [CrossRef]
- Lam, K.S. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol. 2006, 9, 245–251. [Google Scholar] [CrossRef]
- Bull, A.T.; Stach, J.E.M. Marine actinobacteria: New opportunities for natural product search and discovery. Trends Microbiol. 2007, 15, 491–499. [Google Scholar] [CrossRef]
- Stach, J.E.M.; Bull, A.T. Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 2005, 87, 3–9. [Google Scholar] [CrossRef]
- Goodfellow, M.; Fiedler, H.-P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010, 98, 119–142. [Google Scholar] [CrossRef]
- Fenical1, W.; Jensen, P.R. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat. Chem. Biol. 2006, 2, 666–673. [Google Scholar] [CrossRef]
- Olano, C.; Méndez, C.; Salas, J.A. Antitumor compounds from marine actinomycetes. Mar. Drugs 2009, 7, 210–248. [Google Scholar] [CrossRef]
- Fattorusso, E.; Taglialatela-Scafati, O. Marine antimalarials. Mar. Drugs 2009, 7, 130–152. [Google Scholar] [CrossRef]
- Rahman, H.; Austin, B.; Mitchell, W.J.; Morris, P.C.; Jamieson, D.J.; Adams, D.R.; Spragg, A.M.; Schweizer, M. Novel anti-infective compounds from marine bacteria. Mar. Drugs 2010, 8, 498–518. [Google Scholar] [CrossRef]
- Xiong, Z.-Q.; Wang, J.-F.; Hao, Y.-Y.; Wang, Y. Recent advances in the discovery and development of marine microbial natural products. Mar. Drugs 2013, 11, 700–717. [Google Scholar] [CrossRef]
- Weyland, H. Distribution of Actinomycetes on the Sea Floor. In Actinomycetes: Proceedings of the Fourth International Symposium on Actinomycete Biology, Cologne, 3–7 September 1979; Gustav Fischer Verlag: Stuttgart, Germany, 1981; pp. 185–193. [Google Scholar]
- Yu, Y.; Li, H.; Zeng, Y.; Chen, B. Isolation and phylogenetic assignation of actinomycetes in the marine sediments from the Arctic Ocean. Acta Oceanol. Sin. 2005, 24, 135–142. [Google Scholar]
- Bredholdt, H.; Galatenko, O.A.; Engelhardt, K.; Tjaervik, E.; Terekhova, L.P.; Zotchev, S.B. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: Isolation, diversity and biological activity. Environ. Microbiol. 2007, 9, 2756–2764. [Google Scholar] [CrossRef]
- Bredholdt, H.; Tjaervik, E.; Johnsen, G.; Zotchev, S.B. Actinomycetes from sediments in the Trondheim fjord, Norway: Diversity and biological activity. Mar. Drugs 2008, 6, 12–24. [Google Scholar] [CrossRef]
- Jørgensen, H.; Fjærvik, E.; Hakvåg, S.; Bruheim, P.; Bredholt, H.; Klinkenberg, G.; Ellingsen, T.E.; Zotchev, S.B. Candicidin biosynthesis gene cluster is widely distributed among Streptomyces spp. isolated from the sediments and the neuston layer of the Trondheim fjord, Norway. Appl. Environ. Microbiol. 2009, 75, 3296–3303. [Google Scholar] [CrossRef]
- Jørgensen, H.; Degnes, K.F.; Dikiy, A.; Fjærvik, E.; Klinkenberg, G.; Zotchev, S.B. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl. Environ. Microbiol. 2010, 76, 283–293. [Google Scholar] [CrossRef]
- Engelhardt, K.; Degnes, K.F.; Kemmler, M.; Bredholt, H.; Fjærvik, E.; Klinkenberg, G.; Sletta, H.; Ellingsen, T.E.; Zotchev, S.B. Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis sspecies. Appl. Environ. Microbiol. 2010, 76, 4969–4976. [Google Scholar] [CrossRef] [Green Version]
- Hakvåg, S.; Fjærvik, E.; Josefsen, K.D.; Ian, E.; Ellingsen, T.E.; Zotchev, S.B. Characterization of Streptomyces spp. isolated from the sea surface microlayer in the Trondheim fjord, Norway. Mar. Drugs 2008, 6, 620–635. [Google Scholar] [CrossRef]
- Wayne, L.G.; Brenner, D.J.; Colwell, R.R.; Grimont, P.A.D.; Kandler, O.; Krichevsky, M.I.; Moore, L.H.; Moore, W.E.C.; Murray, R.G.E.; Stackebrandt, E.; et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Wang, Y.X.; Cai, M.; Zhi, X.Y.; Zhang, Y.Q.; Tang, S.K.; Xu, L.H.; Cui, X.L.; Li, W.J. Microlunatus aurantiacus sp. nov., a novel actinobacterium isolated from a rhizosphere soil sample. Int. J. Syst. Evol. Microbiol. 2008, 58, 1873–1877. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.U.; Xue, Y.F. Characterization of an alkaliphilic biosurfactant- producing strain of Dietzia. Microbiol. China 2012, 39, 1573–1579. [Google Scholar]
- Ratnakar, N.A.; Dirk, S.; Rolf, H.; Siegmund, L.; Irene, W.D.; Hartmut, L. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel 1+. J. Antibiot. 2004, 57, 17–23. [Google Scholar] [CrossRef]
- Rojas, J.L; Martín, J.; Tormo, J.R.; Vicente, F.; Brunati, M.; Ciciliato, I.; Losi, D.; Van, T.S.; Mergaert, J.; Swings, J.; et al. Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar. Genomics 2009, 2, 33–41. [Google Scholar] [CrossRef]
- Fu, P.; Liu, P.; Gong, Q.H.; Wang, Y.; Wang, P.; Zhu, W.M. α-Pyrones from the marine-derived actinomycete Nocardiopsis dassonvillei subsp. dassonvillei XG-8-1. RSC Adv. 2013, 3, 20726–20731. [Google Scholar]
- Augustine, S.K.; Bhavsar, S.P.; Kapadnis, B.P. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23. J. Biosci. 2005, 30, 201–211. [Google Scholar] [CrossRef]
- Yan, L.L.; Han, N.N.; Zhang, Y.Q.; Yu, L.Y.; Chen, J.; Wei, Y.Z.; Li, Q.P.; Tao, L.; Zheng, G.H.; Yang, S.E.; et al. Antimycin A18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J. Antibiot. 2010, 63, 259–261. [Google Scholar] [CrossRef]
- Yuan, M.; Dong, N.; Li, H.R.; Yu, Y. Sequence-based analysis of secondary-metabolite biosynthesis in actinobacteria isolated from Chukchi shelf marine sediments. Adv. Polar Sci. 2014. submitted for publication. [Google Scholar]
- Hornung, A.; Bertazzo, M.; Dziarnowski, A.; Schneider, K.; Welzel, K.; Wohlert, S.E.; Holzenkämpfer, M.; Nicholson, G.J.; Bechthold, A.; Süssmuth, R.D.; et al. A Genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chembiochem 2007, 8, 757–766. [Google Scholar] [CrossRef]
- Stockmann, M.; Piepersberg, W. Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes. FEMS Microbiol. Lett. 1992, 90, 185–189. [Google Scholar] [CrossRef]
- Lee, M.Y.; Myeong, J.S.; Park, H.J.; Han, K.; Kim, E.S. Isolation and partial characterization of a cryptic polyene gene cluster in Pseudonocardia autotrophica. J. Ind. Microbiol. Biotechnol. 2006, 33, 84–87. [Google Scholar] [CrossRef]
- Dairi, T.; Hamano, Y.; Igarashi, Y.; Furumai, T.; Oki, T. Cloning and nucleotide sequence of the putative polyketide synthase genes for pradimicin biosynthesis from Actinomadura hibisca. Biosci. Biotechnol. Biochem. 1997, 61, 1445–1453. [Google Scholar] [CrossRef]
- Kallifidas, D.; Kang, H.S.; Brady, S.F. Tetarimycin A, an MRSA-Active antibiotic identified through induced expression of environmental DNA gene clusters. J. Am. Chem. Soc. 2012, 134, 19552–19555. [Google Scholar] [CrossRef]
- Clardy, J.M.; Fischbach, A.; Walsh, C.T. New antibiotics from bacterial natural products. Nat. Biotechnol. 2006, 24, 1541–1550. [Google Scholar] [CrossRef]
- Hopkins, D.W.; McNaughton, S.J.; O’Donnell, A.G. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol. Biochem. 1991, 23, 217–225. [Google Scholar] [CrossRef]
- Versalovic, J.; Schneider, M.; de Bruijn, F.J.; Lupski, J.R. Genomic fingerprinting of bacteria using repetitive sequencebased polymerase chain reaction. Methods Mol. Cell. Biol. 1994, 5, 24–40. [Google Scholar]
- Rademaker, J.L.W.; Hoste, B.; Louws, F.J.; Kersters, K.; Swings, J.; Vauterin, L.; Vauterin, P.; de Bruijn, F.J. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA–DNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol. 2000, 50, 665–677. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: Chichester, UK, 1991; pp. 115–175. [Google Scholar]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef]
- EzTaxon Server. version 2.1. Available online: http://eztaxon-e ezbiocloud.net (accessed on 1 November 2013).
- NCBI database. Available online: http://www.ncbi.nlm.nlh.gov (accessed on 1 November 2013).
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 10, 2731–2739. [Google Scholar]
- Schneemann, I.; Nagel, K.; Kajahn, I.; Labes, A.; Wiese, J.; Imhoff, J.F. Comprehensive investigation of marine actinobacteria associated with the sponge Halichondria panacea. Appl. Environ. Microbiol. 2010, 76, 3702–3714. [Google Scholar] [CrossRef] [Green Version]
- Izumikawa, M.; Murata, M.; Tachibana, K.; Ebizuka, Y.; Fujii, I. Cloning of modular type I polyketide synthase genes from salinomycin producing strain of Streptomyces albus. Bioorg. Med. Chem. 2003, 11, 3401–3405. [Google Scholar] [CrossRef]
- Wawrik, B.; Kerkhof, L.; Zylstra, G.J.; Kukor, J.J. Identification of unique type II polyketide synthase genes in soil. Appl. Environ. Microbiol. 2005, 71, 2232–2238. [Google Scholar] [CrossRef]
- Ayuso-Sacido, A.; Genilloud, O. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 2005, 49, 10–24. [Google Scholar] [CrossRef]
- Schneemann, I.; Wiese, J.; Kunz, A.L.; Imhoff, J.F. Genetic approach for the fast discovery of phenazine producing bacteria. Mar. Drugs 2011, 9, 772–789. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Li, T.; Wang, Y.G.; Xia, H. Identification and functional analysis of dTDP-glucose-4, 6-dehydratase gene and its linked gene cluster in an aminoglycoside antibiotics producer of Streptomyces tenebrarius H6. Curr. Microbiol. 2004, 49, 99–107. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yuan, M.; Yu, Y.; Li, H.-R.; Dong, N.; Zhang, X.-H. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean. Mar. Drugs 2014, 12, 1281-1297. https://doi.org/10.3390/md12031281
Yuan M, Yu Y, Li H-R, Dong N, Zhang X-H. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean. Marine Drugs. 2014; 12(3):1281-1297. https://doi.org/10.3390/md12031281
Chicago/Turabian StyleYuan, Meng, Yong Yu, Hui-Rong Li, Ning Dong, and Xiao-Hua Zhang. 2014. "Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean" Marine Drugs 12, no. 3: 1281-1297. https://doi.org/10.3390/md12031281
APA StyleYuan, M., Yu, Y., Li, H. -R., Dong, N., & Zhang, X. -H. (2014). Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean. Marine Drugs, 12(3), 1281-1297. https://doi.org/10.3390/md12031281