From Inflammation to Thrombosis: The Prothrombotic State and Cardiovascular Risk in Inflammatory Bowel Disease
Abstract
1. Introduction
2. Literature Search
3. Epidemiology and Magnitude of Risk
4. The Prothrombotic State in IBD: Phenotype and Mechanisms
5. Cardiovascular Manifestations and Risk Beyond VTE
6. Impact of Treatment on Thrombotic and Cardiovascular Risk
7. Clinical Management and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 5-ASA | 5-aminosalicylates |
| ACE | angiotensin-converting enzyme |
| AF | atrial fibrillation |
| CD | Crohn’s disease |
| CI | confidence interval |
| DOACs | direct oral anticoagulants |
| DR3 | death receptor 3 |
| ECCO | European Crohn’s and Colitis Organisation |
| F VII | coagulation factor VII |
| F VIIa | activated coagulation factor VII |
| HR | hazard ratio |
| IBD | inflammatory bowel disease |
| IFN-γ | interferon gamma |
| IL-1β | interleukin 1 beta |
| IL-6 | interleukin 6 |
| IL-17 | interleukin 17 |
| IRR | incidence rate ratio |
| JAK | Janus kinase |
| LPS | lipopolysaccharide(s) |
| LMWH | low-molecular-weight heparin |
| MACE | major adverse cardiovascular events |
| MI | myocardial infarction |
| NETs | neutrophil extracellular traps |
| NO | nitric oxide |
| OCTAVE | Oral Clinical Trials for Tofacitinib in Ulcerative Colitis (trial program) |
| OR | odds ratio |
| PAD | peripheral artery disease |
| PAD4 | peptidyl arginine deiminase 4 |
| PAI-1 | plasminogen activator inhibitor-1 |
| PE | pulmonary embolism |
| RA | rheumatoid arthritis |
| ROS | reactive oxygen species |
| RR | relative risk |
| TF | tissue factor |
| Th17 | T helper 17 |
| TL1A | TNF-like ligand 1A |
| TLR4 | Toll-like receptor 4 |
| tPA | tissue plasminogen activator |
| TMAO | trimethylamine-N-oxide |
| TNF-α | tumor necrosis factor alpha |
| UC | ulcerative colitis |
| VTE | venous thromboembolism |
| α4β7 | alpha-4 beta-7 integrin |
References
- Baumgart, D.C.; Carding, S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007, 369, 1627–1640. [Google Scholar] [CrossRef]
- Windsor, J.W.; Kaplan, G.G. Evolving Epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef]
- Lee, S.H.; Kwon, J.E.; Cho, M.L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res. 2018, 16, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Olivera, P.A.; Zuily, S.; Kotze, P.G.; Regnault, V.; Al Awadhi, S.; Bossuyt, P.; Gearry, R.B.; Ghosh, S.; Kobayashi, T.; Lacolley, P.; et al. International consensus on the prevention of venous and arterial thrombotic events in patients with inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 857–873. [Google Scholar] [CrossRef]
- Yuhara, H.; Steinmaus, C.; Corley, D.; Koike, J.; Igarashi, M.; Suzuki, T.; Mine, T. Meta-analysis: The risk of venous thromboembolism in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 37, 953–962. [Google Scholar] [CrossRef]
- Lentz, S.R. Thrombosis in the setting of obesity or inflammatory bowel disease. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 180–187. [Google Scholar] [CrossRef]
- Grainge, M.J.; West, J.; Card, T.R. Venous thromboembolism during active disease and remission in inflammatory bowel disease: A cohort study. Lancet 2010, 375, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, M.; Hao, H.; Hill, M.A.; Xu, C.; Liu, Z. Endothelial Dysfunction and Arterial Stiffness in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3179. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Loftus, E.V., Jr.; Pardi, D.S. Risk of cerebrovascular accidents and ischemic heart disease in patients with inflammatory bowel disease: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2014, 12, 382–393.e1. [Google Scholar] [CrossRef]
- Bröms, G.; Forss, A.; Eriksson, J.; Askling, J.; Eriksson, C.; Halfvarson, J.; Linder, M.; Sun, J.; Westerlund, E.; Ludvigsson, J.F.; et al. Adult-onset inflammatory bowel disease and the risk of venous thromboembolism—A Swedish nationwide cohort study 2007–2021. Scand. J. Gastroenterol. 2025, 60, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Heo, C.M.; Kim, T.J.; Kim, E.R.; Hong, S.N.; Chang, D.K.; Yang, M.; Kim, S.; Kim, Y.H. Risk of venous thromboembolism in Asian patients with inflammatory bowel disease: A nationwide cohort study. Sci Rep. 2021, 11, 2025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernstein, C.N.; Nugent, Z.; Singh, H. Persistently High Rate of Venous Thromboembolic Disease in Inflammatory Bowel Disease: A Population-Based Study. Am. J. Gastroenterol. 2021, 116, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- Kappelman, M.D.; Horvath-Puho, E.; Sandler, R.S.; Rubin, D.T.; Ullman, T.A.; Pedersen, L.; Baron, J.A.; Sørensen, H.T. Thromboembolic risk among Danish children and adults with inflammatory bowel diseases: A population-based nationwide study. Gut 2011, 60, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X. Risk Factors of Venous Thromboembolism in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 693927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novacek, G.; Weltermann, A.; Sobala, A.; Tilg, H.; Petritsch, W.; Reinisch, W.; Mayer, A.; Haas, T.; Kaser, A.; Feichtenschlager, T.; et al. Inflammatory bowel disease is a risk factor for recurrent venous thromboembolism. Gastroenterology 2010, 139, 779–787.e1. [Google Scholar] [CrossRef] [PubMed]
- Gozdzik, M.; Unninayar, D.; Siegal, D.M.; Sarker, A.K.; Kim, E.; Murthy, S.; Benchimol, E.I.; Nguyen, G.C.; McCurdy, J.D. Risk Factors for Venous Thromboembolism in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis by Phase of Care. Inflamm. Bowel Dis. 2025, 31, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, S.L.; Ahlehoff, O.; Lindhardsen, J.; Erichsen, R.; Jensen, G.V.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.H.; Hansen, P.R. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death—A Danish nationwide cohort study. PLoS ONE 2013, 8, e56944. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Lindhardsen, J.; Ahlehoff, O.; Erichsen, R.; Lamberts, M.; Khalid, U.; Torp-Pedersen, C.; Nielsen, O.H.; Gislason, G.H.; Hansen, P.R. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: A nationwide study. Europace 2014, 16, 477–484. [Google Scholar] [CrossRef]
- Sarlos, P.; Szemes, K.; Hegyi, P.; Garami, A.; Szabo, I.; Illes, A.; Solymar, M.; Petervari, E.; Vincze, A.; Par, G.; et al. Steroid but not Biological Therapy Elevates the risk of Venous Thromboembolic Events in Inflammatory Bowel Disease: A Meta-Analysis. J. Crohn’s Colitis 2018, 12, 489–498. [Google Scholar] [CrossRef] [PubMed]
- deFonseka, A.M.; Tuskey, A.; Conaway, M.R.; Behm, B.W. Antitumor Necrosis Factor-α Therapy Is Associated with Reduced Risk of Thromboembolic Events in Hospitalized Patients with Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2016, 50, 578–583. [Google Scholar] [CrossRef]
- Higgins, P.D.; Skup, M.; Mulani, P.M.; Lin, J.; Chao, J. Increased risk of venous thromboembolic events with corticosteroid vs. biologic therapy for inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2015, 13, 316–321. [Google Scholar] [CrossRef]
- Orsi, F.A.; Lijfering, W.M.; Geersing, G.J.; Rosendaal, F.R.; Dekkers, O.M.; le Cessie, S.; Cannegieter, S.C. Glucocorticoid use and risk of first and recurrent venous thromboembolism: Self-controlled case-series and cohort study. Br. J. Haematol. 2021, 193, 1194–1202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Danese, S.; Papa, A.; Saibeni, S.; Repici, A.; Malesci, A.; Vecchi, M. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am. J. Gastroenterol. 2007, 102, 174–186. [Google Scholar] [CrossRef]
- Pastorelli, L.; Dozio, E.; Pisani, L.F.; Boscolo-Anzoletti, M.; Vianello, E.; Munizio, N.; Spina, L.; Tontini, G.E.; Peyvandi, F.; Corsi Romanelli, M.M.; et al. Procoagulatory state in inflammatory bowel diseases is promoted by impaired intestinal barrier function. Gastroenterol. Res. Pract. 2015, 2015, 189341. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Li, D.; Su, Y.; Chen, L.; Cheng, X.; Zheng, X.; Mao, J. Bio-Active Peptides from Marine Sources: Mechanistic Insights into Immune Regulation, Microbiota Modulation, and Intestinal Barrier Protection. Int. J. Mol. Sci. 2025, 26, 10508. [Google Scholar] [CrossRef]
- Violi, F.; Cammisotto, V.; Bartimoccia, S.; Pignatelli, P.; Carnevale, R.; Nocella, C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 24–37. [Google Scholar] [CrossRef]
- Papa, A.; Santini, P.; De Lucia, S.S.; Maresca, R.; Porfidia, A.; Pignatelli, P.; Gasbarrini, A.; Violi, F.; Pola, R. Gut dysbiosis-related thrombosis in inflammatory bowel disease: Potential disease mechanisms and emerging therapeutic strategies. Thromb. Res. 2023, 232, 77–88. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ni, Y.; Zhou, S.; Peng, H.; Cao, Y.; Zhu, Y.; Gong, J.; Lu, Q.; Han, Z.; Lin, Y.; et al. Effects of choline metabolite-trimethylamine N-oxide on immunometabolism in inflammatory bowel disease. Front. Immunol. 2025, 16, 1591151. [Google Scholar] [CrossRef]
- Bode, M.; Mackman, N. Regulation of tissue factor gene expression in monocytes and endothelial cells: Thromboxane A2 as a new player. Vasc. Pharmacol. 2014, 62, 57–62. [Google Scholar] [CrossRef]
- Palkovits, J.; Novacek, G.; Kollars, M.; Hron, G.; Osterode, W.; Quehenberger, P.; Kyrle, P.A.; Vogelsang, H.; Reinisch, W.; Papay, P.; et al. Tissue factor exposing microparticles in inflammatory bowel disease. J. Crohn’s Colitis 2013, 7, 222–229. [Google Scholar] [CrossRef]
- Leon, G.; Klavina, P.A.; Rehill, A.M.; Cooper, S.E.J.; Dominik, A.; Basavarajappa, S.C.; O’Donnell, J.S.; Hussey, S.; Walsh, P.T.; Preston, R.J.S. Tissue factor-dependent colitogenic CD4+ T cell thrombogenicity is regulated by activated protein C signalling. Nat. Commun. 2025, 16, 1677. [Google Scholar] [CrossRef]
- Senchenkova, E.; Seifert, H.; Granger, D.N. Hypercoagulability and Platelet Abnormalities in Inflammatory Bowel Disease. Semin. Thromb. Hemost. 2015, 41, 582–589. [Google Scholar] [CrossRef]
- Kim, D.S.; Moon, W. Coagulopathy and platelet abnormalities in patients with inflammatory bowel disease. Korean J. Intern. Med. 2025, 40, 866–875. [Google Scholar] [CrossRef]
- Ding, N.; Chen, G.; Hoffman, R.; Loughran, P.A.; Sodhi, C.P.; Hackam, D.J.; Billiar, T.R.; Neal, M.D. Toll-like receptor 4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ. Cardiovasc. Genet. 2014, 7, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Koutroubakis, I.E.; Sfiridaki, A.; Tsiolakidou, G.; Coucoutsi, C.; Theodoropoulou, A.; Kouroumalis, E.A. Plasma thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 levels in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2008, 20, 912–916. [Google Scholar] [CrossRef]
- Comer-Calder, H.; Morad, H.O.J. The Paradox of NET Involvement in the Pathogenesis of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2025, 32, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Su, X.; Pan, P.; Zhang, L.; Hu, Y.; Tan, H.; Wu, D.; Liu, B.; Li, H.; Li, H.; et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci. Rep. 2016, 6, 37252. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Rother, N.; Yanginlar, C.; Hilbrands, L.B.; van der Vlag, J. Neutrophils Discriminate between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps. Front. Immunol. 2016, 7, 484. [Google Scholar] [CrossRef]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- Thomas, D.R.; Huangfu, G.; Yeaman, F.; Sukudom, S.; Lan, N.S.R.; Dwivedi, G.; Thin, L. Association between inflammatory bowel disease, current therapies, and cardiovascular events: A review and meta-analysis of data from 2.2 million individuals. J. Crohn’s Colitis 2025, 19, jjaf078. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yao, J.; Olén, O.; Halfvarson, J.; Bergman, D.; Ebrahimi, F.; Rosengren, A.; Sundström, J.; Ludvigsson, J.F. Risk of heart failure in inflammatory bowel disease: A Swedish population-based study. Eur. Heart J. 2024, 45, 2493–2504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, J.; Roelstraete, B.; Svennberg, E.; Halfvarson, J.; Sundström, J.; Forss, A.; Olén, O.; Ludvigsson, J.F. Long-term risk of arrhythmias in patients with inflammatory bowel disease: A population-based, sibling-controlled cohort study. PLoS Med. 2023, 20, e1004305. [Google Scholar] [CrossRef] [PubMed Central]
- Goyal, A.; Jain, H.; Maheshwari, S.; Jain, J.; Odat, R.M.; Saeed, H.; Daoud, M.; Mahalwar, G.; Bansal, K. Association between inflammatory bowel disease and atrial fibrillation: A systematic review and meta-analysis. Int. J. Cardiol. Heart Vasc. 2024, 53, 101456. [Google Scholar] [CrossRef]
- Konstantinou, C.S.; Korantzopoulos, P.; Fousekis, F.S.; Katsanos, K.H. Inflammatory bowel disease and atrial fibrillation: A contemporary overview. Eur. J. Gastroenterol. Hepatol. 2023, 35, 695–701. [Google Scholar] [CrossRef]
- Can, G.; Ekmen, N.; Can, H.; Bayraktar, M.F.; Demirkol, M.E.; Kayhan, M.A.; Sasani, H. Is there any link between atrial arrhythmias and inflammatory bowel disease? Saudi J. Gastroenterol. 2021, 27, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Chen, G.; Cai, D.; Zhao, S.; Cheng, J.; Shen, H. Inflammatory bowel disease and risk of ischemic heart disease: An updated meta-analysis of cohort studies. J. Am. Heart Assoc. 2017, 6, e005892. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Mahtta, D.; Chen, L.; Hussain, A.; Al Rifai, M.; Sinh, P.; Khalid, U.; Nasir, K.; Ballantyne, C.M.; Petersen, L.A.; et al. Premature atherosclerotic cardiovascular disease risk among patients with inflammatory bowel disease. Am. J. Med. 2021, 134, 1047–1051.e2. [Google Scholar] [CrossRef] [PubMed]
- Dregan, A.; Charlton, J.; Chowienczyk, P.; Gulliford, M.C. Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: A population-based cohort study. Circulation 2014, 130, 837–844. [Google Scholar] [CrossRef]
- Huang, W.S.; Tseng, C.H.; Chen, P.C.; Tsai, C.H.; Lin, C.L.; Sung, F.C.; Kao, C.H. Inflammatory bowel diseases increase future ischemic stroke risk: A Taiwanese population-based retrospective cohort study. Eur. J. Intern. Med. 2014, 25, 561–565. [Google Scholar] [CrossRef]
- Luo, C.; Liu, L.; Zhu, D.; Ge, Z.; Chen, Y.; Chen, F. Risk of stroke in patients with inflammatory bowel disease: A systematic review and meta-analysis. BMC Gastroenterol. 2025, 25, 114. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chen, Y.G.; Lin, C.L.; Huang, W.S.; Kao, C.H. Inflammatory bowel disease increases the risk of peripheral arterial disease: A nationwide cohort study. Medicine 2015, 94, e2381. [Google Scholar] [CrossRef] [PubMed]
- Székely, H.; Tóth, L.M.; Rancz, A.; Walter, A.; Farkas, N.; Sárközi, M.D.; Váncsa, S.; Erőss, B.; Hegyi, P.; Miheller, P. Anti-tumor Necrosis Factor Alpha versus corticosteroids: A 3-fold difference in the occurrence of venous thromboembolism in inflammatory bowel disease—A systematic review and meta-analysis. J. Crohn’s Colitis 2024, 18, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Panés, J.; Sands, B.E.; Reinisch, W.; Su, C.; Lawendy, N.; Koram, N.; Fan, H.; Jones, T.V.; Modesto, I.; et al. Venous thromboembolic events in the tofacitinib ulcerative colitis clinical development programme. Aliment. Pharmacol. Ther. 2019, 50, 1068–1076. [Google Scholar] [CrossRef]
- Carty, E.; MacEy, M.; Rampton, D.S. Inhibition of platelet activation by 5-aminosalicylic acid in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2000, 14, 1169–1179. [Google Scholar] [CrossRef]
- Rungoe, C.; Basit, S.; Ranthe, M.F.; Wohlfahrt, J.; Langholz, E.; Jess, T. Risk of ischaemic heart disease in patients with inflammatory bowel disease: A nationwide Danish cohort study. Gut 2013, 62, 689–694. [Google Scholar] [CrossRef]
- Johannesdottir, S.A.; Horváth-Puhó, E.; Dekkers, O.M.; Cannegieter, S.C.; Jørgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sørensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef]
- Savas, M.; Muka, T.; Wester, V.L.; van den Akker, E.L.T.; Visser, J.A.; Braunstahl, G.J.; Slagter, S.N.; Wolffenbuttel, B.H.R.; Franco, O.H.; van Rossum, E.F.C. Associations between systemic and local corticosteroid use with metabolic syndrome and body mass index. J. Clin. Endocrinol. Metab. 2017, 102, 3765–3774. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Małyszko, J.S.; Takada, A.; Myśliwiec, M. Effects of immunosuppressive drugs on platelet aggregation in vitro. Ann. Transplant. 2002, 7, 55–68. [Google Scholar]
- Chaparro, M.; Ordás, I.; Cabré, E.; Garcia-Sanchez, V.; Bastida, G.; Peñalva, M.; Gomollón, F.; García-Planella, E.; Merino, O.; Gutiérrez, A.; et al. Safety of thiopurine therapy in inflammatory bowel disease: Long-term follow-up study of 3931 patients. Inflamm. Bowel Dis. 2013, 19, 1404–1410. [Google Scholar] [CrossRef]
- Macaluso, F.S.; Renna, S.; Maida, M.; Dimarco, M.; Sapienza, C.; Affronti, M.; Orlando, E.; Rizzuto, G.; Orlando, R.; Ventimiglia, M.; et al. Tolerability profile of thiopurines in inflammatory bowel disease: A prospective experience. Scand. J. Gastroenterol. 2017, 52, 981–987. [Google Scholar] [CrossRef]
- Seinen, M.L.; Ponsioen, C.Y.; de Boer, N.K.; Oldenburg, B.; Bouma, G.; Mulder, C.J.; van Bodegraven, A.A. Sustained clinical benefit and tolerability of methotrexate monotherapy after thiopurine therapy in patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2013, 11, 667–672. [Google Scholar] [CrossRef]
- Bollen, L.; Vande Casteele, N.; Peeters, M.; Bessonov, K.; Van Steen, K.; Rutgeerts, P.; Ferrante, M.; Hoylaerts, M.F.; Vermeire, S.; Gils, A. Short-term effect of infliximab is reflected in the clot lysis profile of patients with inflammatory bowel disease: A prospective study. Inflamm. Bowel Dis. 2015, 21, 570–578. [Google Scholar] [CrossRef]
- Colombel, J.F.; Sands, B.E.; Rutgeerts, P.; Sandborn, W.; Danese, S.; D’Haens, G.; Panaccione, R.; Loftus, E.V., Jr.; Sankoh, S.; Fox, I.; et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut 2017, 66, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Peerani, F.; Meserve, J.; Kochhar, G.; Chaudrey, K.; Hartke, J.; Chilukuri, P.; Koliani-Pace, J.; Winters, A.; Katta, L.; et al. Vedolizumab for ulcerative colitis: Treatment outcomes from the VICTORY consortium. Am. J. Gastroenterol. 2018, 113, 1345. [Google Scholar] [CrossRef]
- Tursi, A.; Mocci, G.; Faggiani, R.; Allegretta, L.; Valle, N.D.; Medici, A.; Forti, G.; Franceschi, M.; Ferronato, A.; Gallina, S.; et al. Vedolizumab is effective and safe in real-life treatment of inflammatory bowel diseases outpatients: A multicenter, observational study in primary inflammatory bowel disease centers. Eur. J. Intern. Med. 2019, 66, 85–91. [Google Scholar] [CrossRef]
- Nishida, Y.; Hosomi, S.; Fujimoto, K.; Kobayashi, Y.; Nakata, R.; Maruyama, H.; Ominami, M.; Nadatani, Y.; Fukunaga, S.; Otani, K.; et al. Thromboembolic Risk in Ulcerative Colitis Patients on Advanced Therapy: A Real-World Data Analysis. Inflamm. Bowel Dis. 2025, izaf302. [Google Scholar] [CrossRef]
- Louis, E.; Sebastian, S.; Siegmund, B.; Bossuyt, P.; Danese, S.; de Boer, N.; Loftus, E.V., Jr.; Moum, B.; Peyrin-Biroulet, L.; Schreiber, S.; et al. Long-Term Safety of Vedolizumab in Patients with Ulcerative Colitis/Crohn’s Disease: A Prospective Observational Study. Clin. Gastroenterol. Hepatol. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Iversen, A.T.; Allin, K.H.; Jess, T. Comparative Outcomes and Safety of Vedolizumab vs Tumor Necrosis Factor Antagonists for Older Adults with Inflammatory Bowel Diseases. JAMA Netw. Open 2022, 5, e2234200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsai, S.Y.; Ananthakrishnan, A.N.; Winter, H.S.; Ma, K.S. Vedolizumab versus other biologics and the risk of venous thromboembolism in patients with pediatric-onset inflammatory bowel diseases: A target trial emulation study. Paediatr. Drugs 2025, 27, 761–770. [Google Scholar] [CrossRef]
- Ghosh, S.; Feagan, B.G.; Ott, E.; Gasink, C.; Godwin, B.; Marano, C.; Miao, Y.; Ma, T.; Loftus, E.V., Jr.; Sandborn, W.J.; et al. Safety of ustekinumab in inflammatory bowel disease: Pooled safety analysis through 5 years in Crohn’s disease and 4 years in ulcerative colitis. J. Crohn’s Colitis 2024, 18, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Center for Drug Evaluation Research. FDA Approves Boxed Warning about Increased Risk of Blood Clots Death with Higher Dose of Arthritis Ulcerative Colitis Medicine Tofacitinib (Xeljanz Xeljanz XR). U.S. Food and Drug Administration; 2019. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and (accessed on 5 September 2025).
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Anexa I: Rezumatul Caracteristicilor Produsului [Annex I: Summary of Product Characteristics] (XELJANZ). Community Register of Medicinal Products for Human Use. 2021. Available online: https://ec.europa.eu/health/documents/community-register/2021/20211115153854/anx_153854_ro.pdf (accessed on 14 January 2026).
- Yang, H.; An, T.; Zhao, Y.; Shi, X.; Wang, B.; Zhang, Q. Cardiovascular safety of Janus kinase inhibitors in inflammatory bowel disease: A systematic review and network meta-analysis. Ann Med. 2025, 57, 2455536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Solitano, V.; Fiorino, G.; D’Amico, F.; Peyrin-Biroulet, L.; Danese, S. Thrombosis in IBD in the era of JAK inhibition. Curr. Drug Targets 2021, 22, 126–136. [Google Scholar] [CrossRef]
- Puca, P.; Coppola, G.; Parello, S.; Capobianco, I.; Colantuono, S.; Scaldaferri, F.; Papa, A. Atherosclerotic cardiovascular disease and inflammatory bowel disease: Epidemiology, pathogenesis and risk assessment. Best Pract. Res. Clin. Gastroenterol. 2025, 78, 102056. [Google Scholar] [CrossRef] [PubMed]
- Gala, D.; Newsome, T.; Roberson, N.; Lee, S.M.; Thekkanal, M.; Shah, M.; Kumar, V.; Bandaru, P.; Gayam, V. Thromboembolic events in patients with inflammatory bowel disease: A comprehensive overview. Diseases 2022, 10, 73. [Google Scholar] [CrossRef]
- Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; Barreiro-de Acosta, M.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on extraintestinal manifestations in inflammatory bowel disease. J. Crohn’s Colitis 2024, 18, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.W.; Gordon, M.; Sinopolou, V.; Radford, S.J.; Darie, A.M.; Vuyyuru, S.K.; Alrubaiy, L.; Arebi, N.; Blackwell, J.; Butler, T.D.; et al. British Society of Gastroenterology guidelines on inflammatory bowel disease in adults: 2025. Gut 2025, 74, s1–s101. [Google Scholar] [CrossRef]
- Marín-Jiménez, I.; Carpio, D.; Hernández, V.; Muñoz, F.; Zatarain-Nicolás, E.; Zabana, Y.; Mañosa, M.; Rodríguez-Moranta, F.; Barreiro-de Acosta, M.; Gutiérrez Casbas, A. Spanish Working Group in Crohn’s Disease and Ulcerative Colitis (GETECCU) position paper on cardiovascular disease in patients with inflammatory bowel disease. Gastroenterol. Hepatol. 2025, 48, 502314. [Google Scholar] [CrossRef]
- Ohta, Y.; Arai, M.; Nakagawa, T.; Akizue, N.; Ishikawa, K.; Hamanaka, S.; Koseki, H.; Taida, T.; Okimoto, K.; Saito, K.; et al. Comparison of a novel predictor of venous thromboembolic complications in inflammatory bowel disease with current predictors. J. Gastroenterol. Hepatol. 2019, 34, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.C.; Wu, H.; Gulamhusein, A.; Rosenberg, M.; Thanabalan, R.; Yeo, E.L.; Bernstein, C.N.; Steinhart, A.H.; Margolis, M. The utility of screening for asymptomatic lower extremity deep venous thrombosis during inflammatory bowel disease flares: A pilot study. Inflamm. Bowel Dis. 2013, 19, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Da Rio, L.; Spadaccini, M.; Parigi, T.L.; Gabbiadini, R.; Dal Buono, A.; Busacca, A.; Maselli, R.; Fugazza, A.; Colombo, M.; Carrara, S.; et al. Artificial intelligence and inflammatory bowel disease: Where are we going? World J. Gastroenterol. 2023, 29, 508–520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Organ, C.L.; Li, Z.; Sharp, T.E., 3rd; Polhemus, D.J.; Gupta, N.; Goodchild, T.T.; Tang, W.H.W.; Hazen, S.L.; Lefer, D.J. Nonlethal inhibition of gut microbial trimethylamine N-oxide production improves cardiac function and remodeling in a murine model of heart failure. J. Am. Heart Assoc. 2020, 9, e016223. [Google Scholar] [CrossRef]
- Zhang, W.; Miikeda, A.; Zuckerman, J.; Jia, X.; Charugundla, S.; Zhou, Z.; Kaczor-Urbanowicz, K.E.; Magyar, C.; Guo, F.; Wang, Z.; et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice. Sci. Rep. 2021, 11, 518. [Google Scholar] [CrossRef]
- Tam, J.S.Y.; Coller, J.K.; Hughes, P.A.; Prestidge, C.A.; Bowen, J.M. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian J. Gastroenterol. 2021, 40, 5–21. [Google Scholar] [CrossRef]
- Zalghout, S.; Martinod, K. Therapeutic potential of DNases in immunothrombosis: Promising succor or uncertain future? J. Thromb. Haemost. 2025, 23, 760–778. [Google Scholar] [CrossRef]
- Xie, K.; Hunter, J.; Lee, A.; Ahmad, G.; Witting, P.K.; Ortiz-Cerda, T. The PAD4 inhibitor GSK484 diminishes neutrophil extracellular trap in the colon mucosa but fails to improve inflammatory biomarkers in experimental colitis. Biosci. Rep. 2025, 45, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Tettoni, E.; Gabbiadini, R.; Dal Buono, A.; Privitera, G.; Vadalà, V.; Migliorisi, G.; Bertoli, P.; Quadarella, A.; Bezzio, C.; Armuzzi, A. TL1A as a target in inflammatory bowel disease: Exploring mechanisms and therapeutic potential. Int. J. Mol. Sci. 2025, 26, 5017. [Google Scholar] [CrossRef]
- Jin, S.; Chin, J.; Seeber, S.; Niewoehner, J.; Weiser, B.; Beaucamp, N.; Woods, J.; Murphy, C.; Fanning, A.; Shanahan, F.; et al. TL1A/TNFSF15 directly induces proinflammatory cytokines, including TNFα, from CD3+CD161+ T cells to exacerbate gut inflammation. Mucosal Immunol. 2013, 6, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Solitano, V.; Estevinho, M.M.; Ungaro, F.; Magro, F.; Danese, S.; Jairath, V. TL1A inhibition in inflammatory bowel disease: A pipeline review. BioDrugs 2025, 39, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Feagan, B.G.; Peyrin-Biroulet, L.; Danese, S.; Rubin, D.T.; Laurent, O.; Luo, A.; Nguyen, D.D.; Lu, J.; Yen, M.; et al. Phase 2 trial of anti-TL1A monoclonal antibody tulisokibart for ulcerative colitis. N. Engl. J. Med. 2024, 391, 1119–1129. [Google Scholar] [CrossRef]
- Danese, S.; Allegretti, J.R.; Schreiber, S.; Peyrin-Biroulet, L.; Jairath, V.; D’Haens, G.; Kierkuś, J.; Leong, R.W.; Yarur, A.J.; Vincent, M.S.; et al. Anti-TL1A antibody, afimkibart, in moderately-to-severely active ulcerative colitis (TUSCANY-2): A multicentre, double-blind, treat-through, multi-dose, randomised, placebo-controlled, phase 2b trial. Lancet Gastroenterol. Hepatol. 2025, 10, 882–895. [Google Scholar] [CrossRef]
- Petronio, L.; Dal Buono, A.; Gabbiadini, R.; Migliorisi, G.; Privitera, G.; Ferraris, M.; Loy, L.; Bezzio, C.; Armuzzi, A. Drug Development in Inflammatory Bowel Diseases: What Is Next? Pharmaceuticals 2025, 18, 190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Author (Year) | Evidence Type (Number of Patients) | Cardiovascular Outcome | Key Findings |
|---|---|---|---|
| Thomas et al. (2025) [42] | Meta-analysis (2.2 million individuals) | Myocardial infarction | HR 1.29 (1.07–1.56); higher risk during flares and with active disease |
| Ischemic heart disease | HR 1.16 (1.01–1.33); higher risk in women and with corticosteroid use | ||
| Stroke | HR 1.15 (1.09–1.20); higher risk in CD, women, and during flares; excess risk persists ≥ 25 years | ||
| MACE | HR 1.19 (1.09–1.30); risk increases with active disease | ||
| Sun et al. [43] | Population-based cohort (81.749 IBD patients) | Heart failure | aHR 1.19 (1.15–1.23); risk increases with histologic inflammation and corticosteroid use; excess risk persists ≥ 20 years |
| Sun et al. [44] | Population-based, sibling-controlled cohort (83.877 IBD patients) | Arrhythmias | aHR 1.15–1.30 across IBD subtypes; excess risk persists ≥ 25 years |
| Therapeutic Agent | Thrombotic or CV Risk | Quality of Evidence |
|---|---|---|
| Aminosalicylates (5-ASA) | VTE: no consistent increase CV: no consistent increase, potential long-term use associated with lower IHD risk in observational data, potentially confounded by disease severity/treatment selection | Moderate (mechanistic, observational, meta-analyses) |
| Corticosteroids | VTE: increased risk, dose- and context-dependent CV: potentially increased, correlated with prolonged and repeated use by indirect hypertension, dyslipidemia and insulin resistance | Moderate to high (large observational cohorts, meta-analyses) |
| Immunomodulators | VTE: overall neutral, no consistent increase reported CV: no consistent increase reported | Moderate (observational cohorts) |
| Anti-TNFα | VTE: lower than corticosteroids CV: no consistent increase reported Net effect likely favorable due to inflammatory control | Moderate to high (RCTs, large cohorts, meta-analyses) |
| Anti-integrin antagonists (Vedolizumab) | VTE: overall low signal, comparative estimates heterogeneous confounding by severity/steroids CV: no consistent increase reported Recommendation: VTE prophylaxis in high-risk periods | Moderate (trial safety, observational cohorts) |
| IL-12/23 Inhibitors (Ustekinumab) | VTE: overall neutral, no consistent increase reported CV: overall neutral, no consistent increase reported Better safety profile in pediatric populations | Moderate (trial safety, observational cohorts) |
| JAK inhibitors (Tofacitinib) | VTE and CV: regulatory warnings due to increased risk, dose- and patient-dependent UC-specific analyses show an absolute low Tofacitinib: approved for moderate-to-severe UC unresponsive to anti-TNFα therapy Recommendation: use the lowest effective dose; avoid prolonged high-dose maintenance when alternatives exist | Moderate (RCTs for UC, post-marketing and regulatory safety data, RA safety signal) |
| Clinical Setting | Risk Factors | Recommendation |
|---|---|---|
| Hospitalized IBD * | Active moderate–severe inflammation, immobility, dehydration, infection, systemic corticosteroids, prior VTE, cancer, obesity, older age | Pharmacologic thromboprophylaxis for all hospitalized IBD patients unless contraindicated; LMWH prophylaxis preferred over UFH in acutely/critically ill patients |
| Perioperative (major IBD-related surgery) | Major abdominal surgery, active inflammation, systemic corticosteroids, prolonged immobility, infection/SIRS, prior VTE, cancer | In-hospital LMWH prophylaxis + early mobilization; consider extended post-discharge prophylaxis in selected high-risk patients after major surgery |
| Ambulatory flare | Moderate–severe activity plus additional risk factors: prior VTE, immobility, dehydration, systemic corticosteroids, cancer | Not routinely recommended; consider temporary LMWH in very high-risk outpatients until clinical improvement |
| Pregnancy and postpartum | Active disease (especially late pregnancy), prior VTE/thrombophilia, obesity, immobility, systemic corticosteroids, caesarean delivery | Individualized LMWH prophylaxis in high-risk pregnancy settings; postpartum prophylaxis emphasized after caesarean section |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brata, V.D.; Crisan, D.A.; Cozma, A.; Gerdanovics, C.-A.; Popa, S.L.; Milaciu, M.V.; Orășan, O.H. From Inflammation to Thrombosis: The Prothrombotic State and Cardiovascular Risk in Inflammatory Bowel Disease. Medicina 2026, 62, 270. https://doi.org/10.3390/medicina62020270
Brata VD, Crisan DA, Cozma A, Gerdanovics C-A, Popa SL, Milaciu MV, Orășan OH. From Inflammation to Thrombosis: The Prothrombotic State and Cardiovascular Risk in Inflammatory Bowel Disease. Medicina. 2026; 62(2):270. https://doi.org/10.3390/medicina62020270
Chicago/Turabian StyleBrata, Vlad Dumitru, Dana Alina Crisan, Angela Cozma, Cezara-Andreea Gerdanovics, Stefan Lucian Popa, Mircea Vasile Milaciu, and Olga Hilda Orășan. 2026. "From Inflammation to Thrombosis: The Prothrombotic State and Cardiovascular Risk in Inflammatory Bowel Disease" Medicina 62, no. 2: 270. https://doi.org/10.3390/medicina62020270
APA StyleBrata, V. D., Crisan, D. A., Cozma, A., Gerdanovics, C.-A., Popa, S. L., Milaciu, M. V., & Orășan, O. H. (2026). From Inflammation to Thrombosis: The Prothrombotic State and Cardiovascular Risk in Inflammatory Bowel Disease. Medicina, 62(2), 270. https://doi.org/10.3390/medicina62020270

