Mini- and Micro-Invasive Approaches in Cardiac Surgery: Current Techniques, Outcomes, and Future Perspectives
Abstract
1. Introduction
2. Minimally Invasive Cardiac Surgery (MICS): Techniques and Applications
2.1. Aortic Valve and Ascending Aorta Surgery
2.2. Mitral Valve Surgery
2.3. Coronary Artery Bypass Grafting (CABG)
2.4. Atrial Fibrillation
3. Micro-Invasive Procedures
4. Hybrid Techniques
5. Discussion
5.1. Clinical Outcomes and Evidence
5.2. Patient Selection
5.3. Future Perspectives
5.4. Telesurgery and Emerging Robotic Systems
5.5. Clinical Implications and Future Directions
5.6. Limitations and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miceli, A.; Murzi, M.; Gilmanov, D.; Fugà, R.; Ferrarini, M.; Solinas, M.; Glauber, M. Minimally invasive aortic valve replacement using right minithoracotomy is associated with better outcomes than ministernotomy. J. Thorac. Cardiovasc. Surg. 2014, 148, 133–137. [Google Scholar] [CrossRef]
- Akowuah, E.F.; Maier, R.H.; Hancock, H.C.; Kharatikoopaei, E.; Vale, L.; Fernandez-Garcia, C.; Ogundimu, E.; Wagnild, J.; Mathias, A.; Walmsley, Z.; et al. Minithoracotomy vs Conventional Sternotomy for Mitral Valve Repair: A Randomized Clinical Trial. JAMA 2023, 329, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Acker, M.A.; Parides, M.K.; Perrault, L.P.; Moskowitz, A.J.; Gelijns, A.C.; Voisine, P.; Smith, P.K.; Hung, J.W.; Blackstone, E.H.; Puskas, J.D.; et al. Mitral-Valve Repair versus Replacement for Severe Ischemic Mitral Regurgitation. N. Engl. J. Med. 2014, 370, 23–32. [Google Scholar] [CrossRef]
- Magruder, J.T.; Holst, K.A.; Thourani, V.H. Small, Smaller, Smallest: Minimally Invasive Approaches to Aortic Valve Disease. Ann. Thorac. Surg. 2023, 116, 750. [Google Scholar] [CrossRef]
- Axtell, A.L.; Moonsamy, P.; Dal-Bianco, J.P.; Passeri, J.J.; Sundt, T.M.; Melnitchouk, S. Minimally Invasive Nonresectional Mitral Valve Repair Can Be Performed With Excellent Outcomes. Ann. Thorac. Surg. 2020, 109, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Marsan, N.A.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardiothorac. Surg. 2025, 67, ezaf276. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.K.; Ahmed, A.; Mathew, D.M.; Varghese, K.S.; Mathew, S.M.; Khaja, S.; Newell, P.C.; Okoh, A.K.; Hirji, S. Minimally invasive, surgical, and transcatheter aortic valve replacement: A network meta-analysis. J. Cardiol. 2024, 83, 177–183. [Google Scholar] [CrossRef]
- Abdelaal, S.A.; Abdelrahim, N.A.; Mamdouh, M.; Ahmed, N.; Ahmed, T.R.; Hefnawy, M.T.; Alaqori, L.K.; Abozaid, M. Comparative effects of minimally invasive approaches vs. conventional for obese patients undergoing aortic valve replacement: A systematic review and network meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 392. [Google Scholar] [CrossRef]
- Rao, P.N.; Kumar, A.S. Brief Communication Aortic Valve Replacement through Right Thoracotomy. Texas Heart Inst. J. 1993, 20, 307–308. [Google Scholar]
- Cosgrove, D.M.; Sabik, J.F. Minimally invasive approach for aortic valve operations. Ann. Thorac. Surg. 1996, 62, 596–597. [Google Scholar] [CrossRef]
- Jahangiri, M.; Hussain, A.; Akowuah, E. Minimally invasive surgical aortic valve replacement. Heart 2019, 105, S10–S15. [Google Scholar] [CrossRef]
- El-Andari, R.; Fialka, N.M.; Shan, S.; White, A.; Manikala, V.K.; Wang, S. Aortic Valve Replacement: Is Minimally Invasive Really Better? A Contemporary Systematic Review and Meta-Analysis. Cardiol. Rev. 2024, 32, 217–242. [Google Scholar] [CrossRef]
- Pollari, F.; Fischlein, T. Minimally invasive sutureless and rapid deployment aortic valve replacement: The new benchmark for aortic valve surgery? Ann. Cardiothorac. Surg. 2020, 9, 328. [Google Scholar] [CrossRef]
- Di Bacco, L.; Miceli, A.; Glauber, M. Minimally invasive aortic valve surgery. J. Thorac. Dis. 2021, 13, 1945–1959. [Google Scholar] [CrossRef]
- Paparella, D.; Fattouch, K.; Moscarelli, M.; Santarpino, G.; Nasso, G.; Guida, P.; Margari, V.; Martinelli, L.; Coppola, R.; Albertini, A.; et al. Current trends in mitral valve surgery: A multicenter national comparison between full-sternotomy and minimally-invasive approach. Int. J. Cardiol. 2020, 306, 147–151. [Google Scholar] [CrossRef]
- Speziale, G.; Moscarelli, M.; Di Bari, N.; Bonifazi, R.; Salardino, M.; De Donatis, T.; Nasso, G. A Simplified Technique for Complex Mitral Valve Regurgitation by a Minimally Invasive Approach. Ann. Thorac. Surg. 2018, 106, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Moscarelli, M.; Fattouch, K.; Gaudino, M.; Nasso, G.; Paparella, D.; Punjabi, P.; Athanasiou, T.; Benedetto, U.; Angelini, G.D.; Santarpino, G.; et al. Minimal Access Versus Sternotomy for Complex Mitral Valve Repair: A Meta-Analysis. Ann. Thorac. Surg. 2020, 109, 737–744. [Google Scholar] [CrossRef]
- Moscarelli, M.; Fattouch, K.; Casula, R.; Speziale, G.; Lancellotti, P.; Athanasiou, T. What is the role of minimally invasive mitral valve surgery in high-risk patients? a meta-analysis of observational studies. Ann. Thorac. Surg. 2016, 101, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Jahanian, S.; Arghami, A.; Wittwer, E.D.; King, K.S.; Daly, R.C.; Dearani, J.A.; Rowse, P.G.; Crestanello, J.A.; Schaff, H.V. Does Minimally Invasive Mitral Valve Repair Mean Less Postoperative Pain? Ann. Thorac. Surg. 2023, 115, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Feirer, N.; Kornyeva, A.; Lang, M.; Sideris, K.; Voss, B.; Krane, M.; Lange, R.; Vitanova, K. Non-robotic minimally invasive mitral valve repair: A 20-year single-centre experience. Eur. J. Cardiothorac. Surg. 2022, 62, ezac223. [Google Scholar] [CrossRef]
- Sündermann, S.H.; Czerny, M.; Falk, V. Open vs. Minimally Invasive Mitral Valve Surgery: Surgical Technique, Indications and Results. Cardiovasc. Eng. Technol. 2015, 6, 160–166. [Google Scholar] [CrossRef]
- Navarra, E.; Mastrobuoni, S.; De Kerchove, L.; Glineur, D.; Watremez, C.; Van Dyck, M.; El Khoury, G.; Noirhomme, P. Robotic mitral valve repair: A European single-centre experience. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.L.; Eranki, A.; Mamo, A.; Wilson-Smith, A.; Hwang, B.; Sugunesegran, R.; Yan, T.; Navarra, E.; Guy, T.S.; Bonatti, J. Systematic review and meta-analysis of mid-term survival, reoperation, and recurrent mitral regurgitation for robotic-assisted mitral valve repair. Ann. Cardiothorac. Surg. 2022, 11, 553–563. [Google Scholar] [CrossRef]
- Klepper, M.; Noirhomme, P.; de Kerchove, L.; Mastrobuoni, S.; Spadaccio, C.; Lemaire, G.; El Khoury, G.; Navarra, E. Robotic mitral valve repair: A single center experience over a 7-year period. J. Card. Surg. 2022, 37, 2266–2277. [Google Scholar] [CrossRef]
- Lehr, E.J.; Sloane Guy, T.; Smith, R.L.; Grossi, E.A.; Shemin, R.J.; Rodriguez, E.; Ailawadi, G.; Agnihotri, A.K.; Fayers, T.M.; Clark Hargrove, W.; et al. Minimally Invasive Mitral Valve Surgery III: Training and Robotic-Assisted Approaches. Innovations 2016, 11, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Marin Cuartas, M.; Javadikasgari, H.; Pfannmueller, B.; Seeburger, J.; Gillinov, A.M.; Suri, R.M.; Borger, M.A. Mitral valve repair: Robotic and other minimally invasive approaches. Prog. Cardiovasc. Dis. 2017, 60, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.J.; Chitwood, W.R. Minimally invasive and robotic approaches to mitral valve surgery: Transthoracic aortic crossclamping is optimal. JTCVS Tech. 2021, 10, 84–88. [Google Scholar] [CrossRef]
- Van Praet, K.M.; Kempfert, J.; Jacobs, S.; Stamm, C.; Akansel, S.; Kofler, M.; Sündermann, S.H.; Nazari Shafti, T.Z.; Jakobs, K.; Holzendorf, S.; et al. Mitral valve surgery: Current status and future prospects of the minimally invasive approach. Expert. Rev. Med. Devices 2021, 18, 245–260. [Google Scholar] [CrossRef]
- Colli, A.; Manzan, E.; Zucchetta, F.; Bizzotto, E.; Besola, L.; Bagozzi, L.; Bellu, R.; Sarais, C.; Pittarello, D.; Gerosa, G. Transapical off-pump mitral valve repair with Neochord implantation: Early clinical results. Int. J. Cardiol. 2016, 204, 23–28. [Google Scholar] [CrossRef]
- Ahmed, A.; Abdel-Aziz, T.A.; AlAsaad, M.M.R.; Majthoob, M. Transapical off-pump mitral valve repair with NeoChord implantation: A systematic review. J. Card. Surg. 2021, 36, 1492–1498. [Google Scholar] [CrossRef]
- Gerosa, G.; Nadali, M.; Longinotti, L.; Ponzoni, M.; Caraffa, R.; Fiocco, A.; Pradegan, N.; Besola, L.; Onofrio, A.D.; Bizzotto, E.; et al. Transapical off-pump echo-guided mitral valve repair with neochordae implantation mid-term outcomes. Ann. Cardiothorac. Surg. 2021, 10, 131–140. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, A.; Fiocco, A.; Nadali, M.; Mastro, F.; Aruta, P.; Lorenzoni, G.; Pittarello, D.; Gerosa, G.; Evangelista, G.; Longinotti, L.; et al. Outcomes of transapical mitral valve repair with neochordae implantation. J. Thorac. Cardiovasc. Surg. 2023, 165, 1036–1046.e4. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Bao, W.; Qiu, S. MIDCAB versus off-pump CABG: Comparative study. Hell. J. Cardiol. 2020, 61, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Manuel, L.; Fong, L.S.; Betts, K.; Bassin, L.; Wolfenden, H. LIMA to LAD grafting returns patient survival to age-matched population: 20-year outcomes of MIDCAB surgery. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac243. [Google Scholar] [CrossRef]
- Verevkin, A.; Von Aspern, K.; Tolboom, H.; Gadelkarim, I.; Etz, C.; Misfeld, M.; Borger, M.A.; Davierwala, P.M. Total Arterial Multivessel Minimally Invasive Coronary Artery Bypass Surgery: 5-Year Outcomes. Ann. Thorac. Surg. 2024, 118, 1044–1051. [Google Scholar] [CrossRef]
- Gong, Y.; Ding, T.; Wang, X.; Cui, Z.; Zhao, H.; Wu, S.; Fu, Y.; Yang, H.; Ling, Y. Minimally Invasive vs Conventional Coronary Bypass Surgery for Multivessel Coronary Disease. Ann. Thorac. Surg. Short. Rep. 2025, 3, 402–407. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Q.; Zhang, S.; Liu, G.; Lian, B.; Chen, Y.; Shi, Y. Clinical outcomes of multivessel disease patients after off-pump minimally invasive coronary surgery. J. Cardiothorac. Surg. 2025, 20, 318. [Google Scholar] [CrossRef]
- Gofus, J.; Cerny, S.; Shahin, Y.; Sorm, Z.; Vobornik, M.; Smolak, P.; Sethi, A.; Marcinov, S.; Karalko, M.; Chek, J.; et al. Robot-assisted vs. conventional MIDCAB: A propensity-matched analysis. Front. Cardiovasc. Med. 2022, 9, 943076. [Google Scholar] [CrossRef]
- Pettinari, M.; Navarra, E.; Noirhomme, P.; Gutermann, H. The state of robotic cardiac surgery in Europe. Ann. Cardiothorac. Surg. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Pettinari, M.; Gianoli, M.; Palmen, M.; Cerny, S.; Onan, B.; Singh, S.; Segers, P.; Bolcal, C.; Alhan, C.; Navarra, E.; et al. Robotic coronary revascularization in Europe, state of art and future of EACTS-endorsed Robotic Cardiothoracic Surgery Taskforce. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac108. [Google Scholar] [CrossRef]
- Rufa, M.I.; Ursulescu, A.; Dippon, J.; Aktuerk, D.; Nagib, R.; Albert, M.; Franke, U.F.W. Is minimally invasive multi-vessel off-pump coronary surgery as safe and effective as MIDCAB? Front. Cardiovasc. Med. 2024, 11, 1385108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dilip, K.A.; Gleboff, A.; Nazem, A.; Green, G.R.; Cherney, A.; Lutz, C.J. Comparison of Robot-Assisted Multivessel Minimally Invasive Direct Coronary Artery Bypass and Hybrid Revascularization. Ann. Thorac. Surg. Short. Rep. 2024, 2, 226–230. [Google Scholar] [CrossRef]
- Hwang, B.; Ren, J.; Wang, K.; Williams, M.L.; Yan, T.D. Systematic review and meta-analysis of two decades of reported outcomes for robotic coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2024, 13, 311–325. [Google Scholar] [CrossRef]
- Leonard, J.R.; Rahouma, M.; Abouarab, A.A.; Schwann, A.N.; Scuderi, G.; Lau, C.; Guy, T.S.; Demetres, M.; Puskas, J.D.; Taggart, D.P.; et al. Totally endoscopic coronary artery bypass surgery: A meta-analysis of the current evidence. Int. J. Cardiol. 2018, 261, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Nisivaco, S.; Bhasin, R.; Kitahara, H.; Patel, B.; Coleman, C.; Grady, K.; Oh, W.H.; Balkhy, H.H. Bilateral internal thoracic artery grafting in robotic beating-heart totally endoscopic coronary artery bypass: 10-year outcomes. Ann. Cardiothorac. Surg. 2024, 13, 354–363. [Google Scholar] [CrossRef]
- Kofler, M.; Schachner, T.; Reinstadler, S.J.; Stastny, L.; Dumfarth, J.; Wiedemann, D.; Feuchtner, G.; Friedrich, G.; Bonatti, J.; Bonaros, N. Comparative Analysis of Perioperative and Mid-Term Results of TECAB and MIDCAB for Revascularization of Anterior Wall. Innovations 2017, 12, 207–213. [Google Scholar] [CrossRef]
- Deppe, A.C.; Liakopoulos, O.J.; Choi, Y.H.; Slottosch, I.; Kuhn, E.W.; Scherner, M.; Stange, S.; Wahlers, T. Endoscopic vein harvesting for coronary artery bypass grafting: A systematic review with meta-analysis of 27,789 patients. J. Surg. Res. 2013, 180, 114–124. [Google Scholar] [CrossRef]
- Ferdinand, F.D.; MacDonald, J.K.; Balkhy, H.H.; Bisleri, G.; Hwang, H.Y.; Northrup, P.; Trimlett, R.H.J.; Wei, L.; Kiaii, B.B. Endoscopic Conduit Harvest in Coronary Artery Bypass Grafting Surgery: An ISMICS Systematic Review and Consensus Conference Statements. Innovations 2017, 12, 301–319. [Google Scholar] [CrossRef]
- Williams, J.B.; Peterson, E.D.; Brennan, J.M.; Sedrakyan, A.; Tavris, D.; Alexander, J.H.; Lopes, R.D.; Dokholyan, R.S.; Zhao, Y.; O’Brien, S.M.; et al. Association between endoscopic vs open vein-graft harvesting and mortality, wound complications, and cardiovascular events in patients undergoing CABG surgery. JAMA 2012, 308, 475–484. [Google Scholar] [CrossRef]
- Rosati, F.; Rattenni, F.; Boldini, F.; Bacco LDi Redaelli, P.; Benussi, S. How I do it: Simplified Cox-Maze IV via right mini-thoracotomy. Ann. Cardiothorac. Surg. 2024, 13, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Muneretto, C.; Baudo, M.; Rosati, F.; Petruccelli, R.D.; Curnis, A.; Di Bacco, L.; Benussi, S. Thoracoscopic Surgical Ablation of Lone Atrial Fibrillation: Long-term Outcomes at 7 Years. Ann. Thorac. Surg. 2023, 116, 1292–1299. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Hørsted Thyregod, H.G.; Jørgensen, T.H.; Ihlemann, N.; Steinbrüchel, D.A.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; De Backer, O.; Olsen, P.S.; Søndergaard, L. Transcatheter or surgical aortic valve implantation: 10-year outcomes of the NOTION trial. Eur. Heart J. 2024, 45, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, S.; Seiffert, M.; Vonthein, R.; Baumgartner, H.; Bleiziffer, S.; Borger, M.A.; Choi, Y.-H.; Clemmensen, P.; Cremer, J.; Czerny, M.; et al. Transcatheter or Surgical Treatment of Aortic-Valve Stenosis. N. Engl. J. Med. 2024, 390, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Pibarot, P.; Hahn, R.T.; Genereux, P.; Kodali, S.K.; Kapadia, S.R.; Cohen, D.J.; Pocock, S.J.; et al. Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. N. Engl. J. Med. 2023, 389, 1949–1960. [Google Scholar] [CrossRef]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Muller, D.W.M.; Farivar, R.S.; Jansz, P.; Bae, R.; Walters, D.; Clarke, A.; Grayburn, P.A.; Stoler, R.C.; Dahle, G.; Rein, K.A.; et al. Transcatheter Mitral Valve Replacement for Patients With Symptomatic Mitral Regurgitation: A Global Feasibility Trial. J. Am. Coll. Cardiol. 2017, 69, 381–391. [Google Scholar] [CrossRef]
- Sorajja, P.; Moat, N.; Badhwar, V.; Walters, D.; Paone, G.; Bethea, B.; Bae, R.; Dahle, G.; Mumtaz, M.; Grayburn, P.; et al. Initial Feasibility Study of a New Transcatheter Mitral Prosthesis: The First 100 Patients. J. Am. Coll. Cardiol. 2019, 73, 1250–1260. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.G.; Chuang, A.; Meier, D.; von Bardeleben, R.S.; Kodali, S.K.; Smith, R.L.; Hausleiter, J.; Ong, G.; Boone, R.; Ruf, T.; et al. Transcatheter Tricuspid Valve Replacement With the EVOQUE System: 1-Year Outcomes of a Multicenter, First-in-Human Experience. JACC Cardiovasc. Interv. 2022, 15, 481–491. [Google Scholar] [CrossRef]
- Hahn, R.T.; Makkar, R.; Thourani, V.H.; Makar, M.; Sharma, R.P.; Haeffele, C.; Davidson, C.J.; Narang, A.; O’Neill, B.; Lee, J.; et al. Transcatheter Valve Replacement in Severe Tricuspid Regurgitation. N. Engl. J. Med. 2025, 392, 115–126. [Google Scholar] [CrossRef]
- Arnold, S.V.; Hahn, R.T.; Thourani, V.H.; Makkar, R.; Makar, M.; Sharma, R.P.; Haeffele, C.; Davidson, C.J.; Narang, A.; O’Neill, B.; et al. Quality of Life After Transcatheter Tricuspid Valve Replacement: 1-Year Results From TRISCEND II Pivotal Trial. J. Am. Coll. Cardiol. 2025, 85, 206–216. [Google Scholar] [CrossRef]
- Lurz, P.; Stephan von Bardeleben, R.; Weber, M.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.N.; Nabauer, M.; Tang, G.H.L.; et al. Transcatheter Edge-to-Edge Repair for Treatment of Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2021, 77, 229–239. [Google Scholar] [CrossRef]
- Taramasso, M.; Gavazzoni, M.; Maisano, F. Is tricuspid regurgitation a prognostic interventional target or is it just an indicator of worst prognosis in heart failure patients? Eur. Heart J. 2019, 40, 485–487. [Google Scholar] [CrossRef]
- Muneretto, C.; Bisleri, G.; Rosati, F.; Krakor, R.; Giroletti, L.; Di Bacco, L.; Repossini, A.; Moltrasio, M.; Curnis, A.; Tondo, C.; et al. European prospective multicentre study of hybrid thoracoscopic and transcatheter ablation of persistent atrial fibrillation: The HISTORIC-AF trial. Eur. J. Cardiothorac. Surg. 2017, 52, 740–745. [Google Scholar] [CrossRef]
- Rosati, F.; Baudo, M.; D’Alonzo, M.; Bacco LDi Arabia, G.; Muneretto, C. Hybrid strategies for stand-alone surgical ablation of atrial fibrillation. Ann. Cardiothorac. Surg. 2024, 13, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Nasso, G.; Vignaroli, W.; Dicandia, C.D.; Filannino, P.; Lembo, G.; Fiore, F.; Brigiani, M.S.; Greco, E.; Agrò, F.; Santarpino, G.; et al. Hybrid Atrial Fibrillation Ablation: A Decade-Long Single-Center Experience. Rev. Cardiovasc. Med. 2025, 26, 43780. [Google Scholar] [CrossRef]
- Doll, N.; Weimar, T.; Kosior, D.A.; Bulava, A.; Mokracek, A.; Mönnig, G.; Sahu, J.; Hunter, S.; Wijffels, M.; Van Putte, B.; et al. Durable effectiveness and safety of hybrid ablation versus catheter ablation: 2-year results from the randomized CEASE-AF trial. Eur. J. Cardiothorac. Surg. 2025, 67, ezaf146. [Google Scholar] [CrossRef]
- Rivera, A.; Braga, M.A.P.; Ternes, C.M.P.; Gewehr, D.M.; Villa Martignoni, F.; Dal Forno, A.; Locke, A.H.; d’Avila, A. Hybrid ablation for persistent/long-standing persistent atrial fibrillation: A meta-analysis and trial sequential analysis of randomized controlled trials. J. Interv. Card. Electrophysiol. 2025, 68, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Grimster, A.G.; Woelk, S.W.; Gumm, T.G.; Yap, J.Y.; Lee, R.L.; Providencia, R.P.; Papageorgiou, N.A.; Ahsan, S.A. The hybrid ablation approach to treating long-standing persistent atrial fibrillation: Real-world data from a tertiary institution. Eur. Heart J. 2025, 46, ehaf784.500. [Google Scholar] [CrossRef]
- DeLurgio, D.B.; Ferguson, E.; Gill, J.; Blauth, C.; Oza, S.; Mostovych, M.; Awasthi, Y.; Ndikintum, N.; Crossen, K. Convergence of Epicardial and Endocardial RF Ablation for the Treatment of Symptomatic Persistent AF (CONVERGE Trial): Rationale and design. Am. Heart J. 2020, 224, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Wats, K.; Kiser, A.; Makati, K.; Sood, N.; DeLurgio, D.; Greenberg, Y.; Yang, F. The Convergent Atrial Fibrillation Ablation Procedure: Evolution of a Multidisciplinary Approach to Atrial Fibrillation Management. Arrhythmia Electrophysiol. Rev. 2020, 9, 88–96. [Google Scholar] [CrossRef]
- Delurgio, D.B.; Crossen, K.J.; Gill, J.; Blauth, C.; Oza, S.R.; Magnano, A.R.; Mostovych, M.A.; Halkos, M.E.; Tschopp, D.R.; Kerendi, F.; et al. Hybrid Convergent Procedure for the Treatment of Persistent and Long-Standing Persistent Atrial Fibrillation: Results of CONVERGE Clinical Trial. Circ. Arrhythm. Electrophysiol. 2020, 13, E009288. [Google Scholar] [CrossRef]
- Mehr, M.; Taramasso, M.; Besler, C.; Ruf, T.; Connelly, K.A.; Weber, M.; Yzeiraj, E.; Schiavi, D.; Mangieri, A.; Vaskelyte, L.; et al. 1-Year Outcomes After Edge-to-Edge Valve Repair for Symptomatic Tricuspid Regurgitation: Results From the TriValve Registry. JACC Cardiovasc. Interv. 2019, 12, 1451–1461. [Google Scholar] [CrossRef]
- Burns, D.J.P.; Wierup, P.; Gillinov, M. Minimally Invasive Mitral Surgery: Patient Selection and Technique. Cardiol. Clin. 2021, 39, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ailawadi, G.; Agnihotri, A.K.; Mehall, J.R.; Alan Wolfe, J.; Hummel, B.W.; Fayers, T.M.; Saeid Farivar, R.; Grossi, E.A.; Sloane Guy, T.; Clark Hargrove, W.; et al. Minimally Invasive Mitral Valve Surgery I: Patient Selection, Evaluation, and Planning. Innovations 2016, 11, 243. [Google Scholar] [CrossRef]
- Rosati, F.; Baudo, M.; Tomasi, C.; Scotti, G.; Pirola, S.; Mastroiacovo, G.; Polvani, G.; Bisleri, G.; Benussi, S.; Di Bacco, L.; et al. Prediction Model for POstoperative atriaL fibrillAtion in caRdIac Surgery: The POLARIS Score. J. Clin. Med. 2025, 14, 650. [Google Scholar] [CrossRef] [PubMed]
- Romiti, S.; Vinciguerra, M.; Saade, W.; Anso Cortajarena, I.; Greco, E. Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance. Cardiol. Res. Pract. 2020, 2020, 4972346. [Google Scholar] [CrossRef] [PubMed]
- Leivaditis, V.; Beltsios, E.; Papatriantafyllou, A.; Grapatsas, K.; Mulita, F.; Kontodimopoulos, N.; Baikoussis, N.G.; Tchabashvili, L.; Tasios, K.; Maroulis, I.; et al. Artificial Intelligence in Cardiac Surgery: Transforming Outcomes and Shaping the Future. Clin. Pract. 2025, 15, 17. [Google Scholar] [CrossRef]
- Sulague, R.M.; Beloy, F.J.; Medina, J.R.; Mortalla, E.D.; Cartojano, T.D.; Macapagal, S.; Kpodonu, J. Artificial intelligence in cardiac surgery: A systematic review. World J. Surg. 2024, 48, 2073–2089. [Google Scholar] [CrossRef]
- Serafini, B.; Kim, L.; Saour, B.M.; James, R.; Hannaford, B.; Hansen, R.; Kohno, T.; Monsky, W.; Seslar, S.P. Exploring telerobotic cardiac catheter ablation in a rural community hospital: A pilot study. Cardiovasc. Digit. Health J. 2022, 3, 313–319. [Google Scholar] [CrossRef]
- Xia, S.B.; Lu, Q.S. Development status of telesurgery robotic system. Chin. J. Traumatol.-Engl. Ed. 2021, 24, 144–147. [Google Scholar] [CrossRef]
- Reddy, S.K.; Saikali, S.; Gamal, A.; Moschovas, M.C.; Rogers, T.; Dohler, M.; Marescaux, J.; Patel, V. Telesurgery: A Systematic Literature Review and Future Directions. Ann. Surg. 2025, 282, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Afilalo, J.; Alexander, K.P.; Mack, M.J.; Maurer, M.S.; Green, P.; Allen, L.A.; Popma, J.J.; Ferrucci, L.; Forman, D.E. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 2014, 63, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 524. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Baron, S.J.; Takagi, K.; Thompson, C.A.; Jiao, X.; Yamabe, K. Cost-effectiveness analysis of transcatheter aortic valve implantation in aortic stenosis patients at low- and intermediate-surgical risk in Japan. J. Med. Econ. 2024, 27, 697–707. [Google Scholar] [CrossRef]
- Chotnoppharatphatthara, P.; Yoodee, V.; Taesotikul, S.; Yadee, J.; Permsuwan, U. Transcatheter aortic valve implantation in patients with severe symptomatic aortic valve stenosis: Systematic review of cost-effectiveness analysis. Eur. J. Health Econ. 2023, 24, 359–376. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, E35–E71. [Google Scholar] [CrossRef]
| Characteristic | Minimally Invasive Cardiac Surgery (MICS) | Micro-Invasive/Transcatheter Techniques |
|---|---|---|
| Main Advantages | • Reduced surgical trauma and blood loss • Less postoperative pain • Faster mobilization and recovery • Lower infection and wound complication rates • Superior cosmetic results • Suitable for complex valvular and coronary procedures | • No sternotomy or major thoracic incision • No cardiopulmonary bypass in most cases • Ultra-rapid recovery and shorter hospitalization • Ideal for elderly, frail, or high-risk patients • Lower overall physiological burden |
| Limitations/Disadvantages | • Steep learning curve • Limited operative exposure • Possible longer operative and CPB times during early experience • Need for dedicated equipment and trained teams • Risk of conversion to sternotomy | • Durability still under evaluation, especially in younger patients • Anatomical constraints (vascular access, calcification, annular size) • High device and procedural costs • Requires advanced imaging and multidisciplinary Heart Team expertise |
| Ideal Candidates | Low- to intermediate-risk patients; younger individuals; candidates for complex reparative procedures | Elderly, frail, or high-risk surgical patients; patients with significant comorbidities |
| Clinical Outcomes | Comparable mortality and morbidity to full sternotomy, with superior postoperative recovery | Non-inferior or superior outcomes compared to surgery in selected populations (e.g., TAVI, TEER) |
| Technical Requirements | High-volume centers; experienced minimally invasive surgical teams | Hybrid operating room; advanced imaging integration; multidisciplinary expertise |
| Category | Approach | Description and Main Indications |
|---|---|---|
| Aortic Valve—MICS | Partial Upper Mini-sternotomy | Limited J- or inverted-T sternotomy with reliable exposure of the aortic root; indicated for aortic valve replacement. |
| Right Anterior Mini-thoracotomy | Avoids sternal division; preferred in patients with high aortic position or when improved cosmetic results are desired. | |
| Mitral Valve—MICS | Right Mini-thoracotomy | Standard access for minimally invasive mitral repair and replacement; suitable for degenerative disease and selected complex cases. |
| Video-Assisted MIMVS | Offers magnified visualization of leaflet and subvalvular structures; enhances precision during repair. | |
| Robotic-Assisted Mitral Surgery | Provides 3D visualization and articulated instruments; ideal for complex multi-segment repair. | |
| Coronary Surgery—MICS | MIDCAB | Off-pump LIMA-to-LAD grafting via small left thoracotomy; indicated for isolated LAD disease. |
| Robotic MIDCAB | Robotic harvesting of the LIMA and, in selected cases, robotic-assisted anastomosis; reduces chest wall trauma. | |
| TECAB | Fully endoscopic coronary bypass via ports without thoracotomy; suitable for selected multivessel disease. | |
| Atrial Fibrillation—MICS | Bilateral Thoracoscopic Ablation | Replicates bi-atrial Cox-Maze IV lesion set using RF or cryo-energy; indicated for persistent or long-standing AF. |
| Right Mini-thoracotomy Maze | Single-sided access with simplified lesion set; used in selected AF patients. | |
| Micro-Invasive (Transcatheter) | TAVI (TF, TAx, TA) | Transfemoral preferred; indicated for severe aortic stenosis in high-, intermediate-, and selected low-risk patients. |
| TEER (MitraClip, PASCAL) | Edge-to-edge leaflet approximation; indicated for secondary MR and selected primary MR. | |
| TMVR (Tendyne, Intrepid) | Transcatheter mitral valve replacement for anatomically unsuitable repair cases. | |
| Transcatheter Tricuspid Therapies | Includes TriClip, PASCAL, Cardioband, and orthotopic TVR; indicated for severe symptomatic TR in high-risk patients. | |
| Hybrid Procedures | Hybrid Coronary Revascularization | Combines LIMA-LAD surgical graft with PCI on non-LAD vessels; useful in multivessel disease with high surgical risk. |
| Hybrid AF Ablation | Combines thoracoscopic ablation with catheter mapping and endocardial completion; superior to stand-alone procedures in selected cases. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vignaroli, W.; Pala, B.; Nasso, G.; Sechi, S.; Campolongo, G.; Speziale, G.; Navarra, E.M. Mini- and Micro-Invasive Approaches in Cardiac Surgery: Current Techniques, Outcomes, and Future Perspectives. Medicina 2026, 62, 102. https://doi.org/10.3390/medicina62010102
Vignaroli W, Pala B, Nasso G, Sechi S, Campolongo G, Speziale G, Navarra EM. Mini- and Micro-Invasive Approaches in Cardiac Surgery: Current Techniques, Outcomes, and Future Perspectives. Medicina. 2026; 62(1):102. https://doi.org/10.3390/medicina62010102
Chicago/Turabian StyleVignaroli, Walter, Barbara Pala, Giuseppe Nasso, Stefano Sechi, Giuseppe Campolongo, Giuseppe Speziale, and Emiliano Marco Navarra. 2026. "Mini- and Micro-Invasive Approaches in Cardiac Surgery: Current Techniques, Outcomes, and Future Perspectives" Medicina 62, no. 1: 102. https://doi.org/10.3390/medicina62010102
APA StyleVignaroli, W., Pala, B., Nasso, G., Sechi, S., Campolongo, G., Speziale, G., & Navarra, E. M. (2026). Mini- and Micro-Invasive Approaches in Cardiac Surgery: Current Techniques, Outcomes, and Future Perspectives. Medicina, 62(1), 102. https://doi.org/10.3390/medicina62010102

