Comparing Tourniquet Use and Non-Use in Robot-Assisted Total Knee Arthroplasties
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, Y.-H.; Xu, H.; Su, Q.; Wan, X.-F.; Yuan, M.-C.; Zhou, Z.-K. Effect of tourniquet use on blood loss, pain, functional recovery, and complications in robot-assisted total knee arthroplasty: A prospective, double-blinded, randomized controlled trial. J. Orthop. Surg. Res. 2022, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Karasavvidis, T.; Pagan Moldenhauer, C.A.; Haddad, F.S.; Hirschmann, M.T.; Pagnano, M.W.; Vigdorchik, J.M. Current Concepts in Alignment in Total Knee Arthroplasty. J. Arthroplast. 2023, 38, S29–S37. [Google Scholar] [CrossRef]
- Shatrov, J.; Parker, D. Computer and robotic-assisted total knee arthroplasty: A review of outcomes. J. Exp. Orthop. 2020, 7, 70. [Google Scholar] [CrossRef]
- Rajgopal, A.; Sundararajan, S.S.; Aggarwal, K.; Kumar, S.; Singh, G. Robotic Assisted TKA achieves adjusted mechanical alignment targets more consistently compared to manual TKA without improving outcomes. J. Exp. Orthop. 2024, 11, e70008. [Google Scholar] [CrossRef]
- Inabathula, A.; Semerdzhiev, D.I.; Srinivasan, A.; Amirouche, F.; Puri, L.; Piponov, H. Robots on the Stage: A Snapshot of the American Robotic Total Knee Arthroplasty Market. JBJS Open Access 2024, 9, e24.00063. [Google Scholar] [CrossRef]
- Gordon, A.M.; Nian, P.; Baidya, J.; Mont, M.A. Trends of robotic total joint arthroplasty utilization in the United States from 2010 to 2022: A nationwide assessment. J. Robot. Surg. 2025, 19, 155. [Google Scholar] [CrossRef]
- Siebert, W.; Mai, S.; Kober, R.; Heeckt, P.F. Technique and first clinical results of robot-assisted total knee replacement. Knee 2002, 9, 173–180. [Google Scholar] [CrossRef]
- St Mart, J.P.; Goh, E.L. The current state of robotics in total knee arthroplasty. EFORT Open Rev. 2021, 6, 270–279. [Google Scholar] [CrossRef]
- Vermue, H.; Luyckx, T.; Winnock de Grave, P.; Ryckaert, A.; Cools, A.S.; Himpe, N.; Victor, J. Robot-assisted total knee arthroplasty is associated with a learning curve for surgical time but not for component alignment, limb alignment and gap balancing. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Alcelik, I.; Pollock, R.D.; Sukeik, M.; Bettany-Saltikov, J.; Armstrong, P.M.; Fismer, P. A comparison of outcomes with and without a tourniquet in total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. J. Arthroplast. 2012, 27, 331–340. [Google Scholar] [CrossRef]
- Huang, C.R.; Pan, S.; Li, Z.; Ruan, R.X.; Jin, W.Y.; Zhang, X.C.; Pang, Y.; Guo, K.J.; Zheng, X. Tourniquet use in primary total knee arthroplasty is associated with a hypercoagulable status: A prospective thromboelastography trial. Int. Orthop. 2021, 45, 3091–3100. [Google Scholar] [CrossRef]
- Khan, M.; Lygre, S.H.L.; Badawy, M.; Husby, O.S.; Hallan, G.; Høl, P.J.; Gjertsen, J.E.; Furnes, O. Association of tourniquet use on short-term implant survival after primary total knee arthroplasty: A study of 24,249 knees from the Norwegian Arthroplasty Register. Acta Orthop. 2025, 96, 547–554. [Google Scholar] [CrossRef]
- Smith, A.F.; Usmani, R.H.; Wilson, K.D.; Smith, L.S.; Malkani, A.L. Effect of Tourniquet Use on Patient Outcomes After Cementless Total Knee Arthroplasty: A Randomized Controlled Trial. J. Arthroplast. 2021, 36, 2331–2334. [Google Scholar] [CrossRef] [PubMed]
- Stronach, B.M.; Jones, R.E.; Meneghini, R.M. Tourniquetless Total Knee Arthroplasty: History, Controversies, and Technique. J. Am. Acad. Orthop. Surg. 2021, 29, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Rafaqat, W.; Kumar, S.; Ahmad, T.; Qarnain, Z.; Khan, K.S.; Lakdawala, R.H. The mid-term and long-term effects of tourniquet use in total knee arthroplasty: Systematic review. J. Exp. Orthop. 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Picado, A.; Albinarrate, A.; Barrachina, B.J.A. Determination of perioperative blood loss: Accuracy or approximation? Anesth. Analg. 2017, 125, 280–286. [Google Scholar] [CrossRef]
- Pearson, T.C.; Guthrie, D.L.; Simpson, J.; Chinn, S.; Barosi, G.; Ferrant, A.; Lewis, S.M.; Najean, Y. Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. Br. J. Haematol. 1995, 89, 748–756. [Google Scholar] [CrossRef]
- Hasanain, M.S.; Apostu, D.; Alrefaee, A.; Tarabichi, S. Comparing the Effect of Tourniquet vs. Tourniquet-Less in Simultaneous Bilateral Total Knee Arthroplasties. J. Arthroplast. 2018, 33, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Chaitantipongse, S.; Hongku, N.; Thiengwittayaporn, S. Optimizing surgical field visualization in total knee arthroplasty: A randomized controlled trial comparing esmarch bandages and simple leg elevation. J. Orthop. Surg. Res. 2025, 20, 455. [Google Scholar] [CrossRef]
- Jones, C.A.; Beaupre, L.A.; Johnston, D.W.; Suarez-Almazor, M.E. Total joint arthroplasties: Current concepts of patient outcomes after surgery. Clin. Geriatr. Med. 2005, 21, 527–541. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Song, Q.; Mou, Z.; Dong, Y. Tourniquet use benefits to reduce intraoperative blood loss in patients receiving total knee arthroplasty for osteoarthritis: An updated meta-analysis with trial sequential analysis. J. Orthop. Surg. 2023, 31, 10225536231191607. [Google Scholar] [CrossRef]
- Ayik, O.; Demirel, M.; Birisik, F.; Ersen, A.; Balci, H.I.; Sahinkaya, T.; Batibay, S.G.; Ozturk, I. The Effects of Tourniquet Application in Total Knee Arthroplasty on the Recovery of Thigh Muscle Strength and Clinical Outcomes. J. Knee Surg. 2021, 34, 1057–1063. [Google Scholar] [CrossRef]
- An, S.; Maa, S.; Mk, M.-I.; Mf, Y. Prevalence of Blood Transfusion and Factors Influencing Blood Loss Following Primary Total Knee Replacement Surgery. Malays. Orthop. J. 2025, 19, 49–56. [Google Scholar] [CrossRef]
- Singh, J.A.; Lemay, C.A.; Nobel, L.; Yang, W.; Weissman, N.; Saag, K.G.; Allison, J.; Franklin, P.D. Association of Early Postoperative Pain Trajectories With Longer-term Pain Outcome After Primary Total Knee Arthroplasty. JAMA Netw. Open 2019, 2, e1915105. [Google Scholar] [CrossRef]
- Pavão, D.M.; Pires eAlbuquerque, R.S.; de Faria, J.L.R.; Sampaio, Y.D.; de Sousa, E.B.; Fogagnolo, F. Optimized Tourniquet Use in Primary Total Knee Arthroplasty: A Comparative, Prospective, and Randomized Study. J. Arthroplast. 2023, 38, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Guo, J.; Li, Q.; Wu, J.; Li, Y. Comparison of efficacy and safety of different tourniquet applications in total knee arthroplasty: A network meta-analysis of randomized controlled trials. Ann. Med. 2021, 53, 1816–1826. [Google Scholar] [CrossRef]
- Gordon, M.; Rivkin, G.; Greenberg, A.; Kandel, L.; Liebergall, M.; Perets, I. Robotic Guided Knee Arthroplasty—Group Learning Curve and Early Outcomes. Arthroplast. Today 2025, 34, 101746. [Google Scholar] [CrossRef]
- Jung, H.J.; Kang, M.W.; Lee, J.H.; Kim, J.I. Learning curve of robot-assisted total knee arthroplasty and its effects on implant position in asian patients: A prospective study. BMC Musculoskelet. Disord. 2023, 24, 332. [Google Scholar] [CrossRef] [PubMed]
- Barahona, M.; Bustos, F.; Hinzpeter, J.; Urroz, F.; Barrientos, C.; Infante, C.A.; Barahona, M.A. Evaluation of the Learning Curve in Robotic-Assisted Total Knee Arthroplasty: A Time-Series Analysis of Surgical Time. Cureus 2025, 17, e84120. [Google Scholar] [CrossRef]
- Koh, I.J.; Kim, T.K.; Chang, C.B.; Cho, H.J.; In, Y. Trends in use of total knee arthroplasty in Korea from 2001 to 2010. Clin. Orthop. Relat. Res. 2013, 471, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
Early Tourniquet (n = 29) | No Tourniquet (n = 30) | Late Tourniquet (n = 41) | p Value | |
---|---|---|---|---|
Age a | 71.5 ± 5.8 | 71.7 ± 6.5 | 72.5 ± 5.7 | 0.736 |
Height a | 1.58 ± 0.07 | 1.57 ± 0.09 | 1.58 ± 0.06 | 0.911 |
Weight a | 63.5 ± 6.4 | 64.7 ± 13.6 | 63.6 ± 7.3 | 0.862 |
Male sex † | 5 (17.2%) | 8 (26.7%) | 4 (9.8%) | 0.173 |
Female sex † | 24 (82.8%) | 22 (73.3%) | 37 (90.2%) | |
Op side Rt. † | 15 (51.7%) | 13 (43.3%) | 15 (36.6%) | 0.452 |
Op side Lt. † | 14 (48.3%) | 17 (56.7%) | 26 (63.4%) |
Early Tourniquet (n = 29) | No Tourniquet (n = 30) | Late Tourniquet (n = 41) | p-Value | |
---|---|---|---|---|
EBL POD 1 a | 407.9 ± 133.8 | 500.1 ± 151.8 | 392.3 ± 116.0 | 0.003 |
EBL POD 2 a | 595.6 ± 181.7 | 723.2 ± 194.4 | 542.3 ± 164.6 | <0.001 |
EBL POD 3 a | 622.3 ± 180.8 | 781.9 ± 212.9 | 647.5 ± 177.6 | 0.005 |
Transfusion rate † | 1 (3.4%) | 0 (0.0%) | 0 (0.0%) | 0.290 |
Preop Hb a | 13.0 ± 1.1 | 13.7 ± 1.4 | 13.3 ± 1.1 | 0.106 |
Preop Hct a | 40.0 ± 3.2 | 41.7 ± 4.6 | 41.3 ± 3.3 | 0.149 |
POD1 Hb a | 10.5 ± 1.1 | 10.4 ± 1.3 | 10.8 ± 1.1 | 0.182 |
POD1 Hct a | 32.1 ± 3.2 | 32.1 ± 3.8 | 33.4 ± 3.3 | 0.163 |
POD2 Hb a | 9.4 ± 1.1 | 9.1 ± 1.2 | 10.0 ± 1.1 | 0.010 |
POD2 Hb a* | 9.4 ± 1.1 | 9.1 ± 1.2 | 1.000 * | |
POD2 Hb a* | 9.4 ± 1.1 | 10.0 ± 1.1 | 0.147 * | |
POD2 Hb a* | 9.1 ± 1.2 | 10.0 ± 1.1 | 0.011 * | |
POD2 Hct a | 29.0 ± 3.6 | 28.4 ± 3.5 | 30.8 ± 3.6 | 0.011 |
POD2 Hb a* | 29.0 ± 3.6 | 28.4 ± 3.5 | 1.000 * | |
POD2 Hb a* | 29.0 ± 3.6 | 30.8 ± 3.6 | 0.114 * | |
POD2 Hb a* | 28.4 ± 3.5 | 30.8 ± 3.6 | 0.014 * | |
POD3 Hb a | 92 ± 0.9 | 8.8 ± 1.2 | 9.4 ± 1.1 | 0.061 |
POD3 Hct a | 28.5 ± 3.1 | 27.4 ± 3.5 | 29.1 ± 3.3 | 0.126 |
Early Tourniquet (n = 29) | No Tourniquet (n = 30) | Late Tourniquet (n = 41) | p-Value | |
---|---|---|---|---|
Knee pain a | 5.0 ± 2.8 | 5.3 ± 1.3 | 5.9 ± 1.8 | 0.323 |
Thigh pain a | 3.5 ± 0.7 | 3.4 ± 2.1 | 4.1 ± 2.6 | 0.553 |
Radiating pain a | 0.0 ± 0.0 | 0.2 ± 0.9 | 0.1 ± 0.4 | 0.754 |
Early Tourniquet (n = 29) | No Tourniquet (n = 30) | Late Tourniquet (n = 41) | p-Value | |
---|---|---|---|---|
Readmission Rate | 3 (10.3%) | 1 (3.3%) | 1 (2.4%) | 0.289 |
Superficial Infection † | 2 (6.9%) | 0 (0.0%) | 0 (0.0%) | 0.082 |
DVT Symptom † | 2 (6.9%) | 2 (6.7%) | 0 (0.0%) | 0.235 |
CT-confirmed DVT † | 0 (0.0%) | 1 (3.3%) | 0 (0.0%) | 0.308 |
Overall Complication † | 5 (17.2%) | 3 (10.0%) | 11 (26.8%) | 0.195 |
Early Tourniquet (n = 29) | No Tourniquet (n = 30) | Late Tourniquet (n = 41) | p-Value | |
---|---|---|---|---|
Femur Size a | 3.4 ± 1.0 | 3.7 ± 1.5 | 3.4 ± 1.0 | 0.403 |
Tibia Size a | 3.4 ± 1.0 | 3.8 ± 1.4 | 3.4 ± 1.0 | 0.264 |
Insert a | 11.1 ± 1.5 | 11.1 ± 1.7 | 10.9 ± 1.5 | 0.800 |
Implant Type | ||||
CR † | 15 (51.7%) | 23 (76.7%) | 35 (85.4%) | 0.007 |
PS † | 14 (48.3%) | 7 (23.3%) | 6 (14.6%) | |
15 (51.7%) | 23 (76.7%) | 0.136 * | ||
15 (51.7%) | 35 (85.4%) | 0.006 * | ||
23 (76.7%) | 35 (85.4%) | 1.000 * | ||
Op Time a | 100.8 ± 15.5 | 96.4 ± 11.1 | 83.7 ± 8.3 | <0.001 |
100.8 ± 15.5 | 96.4 ± 11.1 | 0.431 * | ||
100.8 ± 15.5 | 83.7 ± 8.3 | <0.001 * | ||
96.4 ± 11.1 | 83.7 ± 8.3 | <0.001 * | ||
Tourniquet Time a | 56.4 ± 17.2 | 48.9 ± 4.8 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.Y.; Kim, M.S.; In, Y. Comparing Tourniquet Use and Non-Use in Robot-Assisted Total Knee Arthroplasties. Medicina 2025, 61, 1701. https://doi.org/10.3390/medicina61091701
Choi KY, Kim MS, In Y. Comparing Tourniquet Use and Non-Use in Robot-Assisted Total Knee Arthroplasties. Medicina. 2025; 61(9):1701. https://doi.org/10.3390/medicina61091701
Chicago/Turabian StyleChoi, Keun Young, Man Soo Kim, and Yong In. 2025. "Comparing Tourniquet Use and Non-Use in Robot-Assisted Total Knee Arthroplasties" Medicina 61, no. 9: 1701. https://doi.org/10.3390/medicina61091701
APA StyleChoi, K. Y., Kim, M. S., & In, Y. (2025). Comparing Tourniquet Use and Non-Use in Robot-Assisted Total Knee Arthroplasties. Medicina, 61(9), 1701. https://doi.org/10.3390/medicina61091701