Systemic Inflammation and Myocardial Repolarization Heterogeneity in Heart Failure and Obstructive Sleep Apnea: Impact on Arrhythmic Risk
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciuca-Pană, M.-A.; Boulmpou, A.; Ileri, C.; Manzi, G.; Golino, M.; Ostojic, M.; Galimzhanov, A.; Busnatu, S.; Mega, S.; Perone, F. Chronic Heart Failure and Coronary Artery Disease: Pharmacological Treatment and Cardiac Rehabilitation. Medicina 2025, 61, 211. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, U.; Gurdogan, M. Novel Predictor of the AF Development in Patients with OSAS: Importance of Visceral Adipose Index. Medeni. Med. J. 2023, 38, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Khattak, H.K.; Hayat, F.; Pamboukian, S.V.; Hahn, H.S.; Schwartz, B.P.; Stein, P.K. Obstructive Sleep Apnea in Heart Failure: Review of Prevalence, Treatment with Continuous Positive Airway Pressure, and Prognosis. Tex. Heart Inst. J. 2018, 45, 151–161. [Google Scholar] [CrossRef]
- Javaheri, S.; Javaheri, S. Obstructive Sleep Apnea in Heart Failure: Current Knowledge and Future Directions. J. Clin. Med. 2022, 11, 3458. [Google Scholar] [CrossRef]
- Lévy, P.; Naughton, M.T.; Tamisier, R.; Cowie, M.R.; Bradley, T.D. Sleep apnoea and heart failure. Eur. Respir. J. 2022, 59, 2101640. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Lorenzi-Filho, G. Cardiac rhythm disorders in obstructive sleep apnea. J. Thorac. Dis. 2018, 10, S4221–S4230. [Google Scholar] [CrossRef]
- Yetkin, E.; Yalta, K.; Waltenberger, J. An antiarrhythmic approach to hydroxychloroquine-induced QT prolongation. Neth. Heart J. 2020, 28, 437–438. [Google Scholar] [CrossRef]
- Asada, S.; Morita, H. State-of-the-art analysis of electrocardiogram findings in sudden cardiac death. Heart 2025, 111, 706–715. [Google Scholar] [CrossRef]
- Abdelmegid, M.A.F.; Bakr, M.M.; Shams-Eddin, H.; Youssef, A.A.; Abdel-Galeel, A. Effect of reperfusion strategy on QT dispersion in patients with acute myocardial infarction: Impact on in-hospital arrhythmia. World J. Cardiol. 2023, 15, 106–115. [Google Scholar] [CrossRef]
- Özen, Y.; Özbay, M.B.; Nriagu, B.N.; Yakut, İ.; Kanal, Y.; Çetin, E.; Oktay, A.A. Empagliflozin and Dapagliflozin Therapies Favorably Alter QRS-T Angle and Cardiac Repolarization Parameters in Patients with Heart Failure. J. Innov. Card. Rhythm Manag. 2024, 15, 5846–5851. [Google Scholar] [CrossRef]
- Tse, G.; Gong, M.; Wong, W.T.; Georgopoulos, S.; Letsas, K.P.; Vassiliou, V.S.; Chan, Y.S.; Yan, B.P.; Wong, S.H.; Wu, W.K.K.; et al. The T(peak)–T(end) interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm 2017, 14, 1131–1137. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 523. [Google Scholar] [CrossRef]
- Özkan, U.; Gürdoğan, M.; Öztürk, C.; Demir, M.; Akkuş Ö., F.; Yılmaz, E.; Altay, S. Systemic Immune-Inflammation Index: A Novel Predictor of Coronary Thrombus Burden in Patients with Non-ST Acute Coronary Syndrome. Medicina 2022, 58, 143. [Google Scholar] [CrossRef]
- Evangelista, A.; Flachskampf, F.; Lancellotti, P.; Badano, L.; Aguilar, R.; Monaghan, M.; Zamorano, J.; Nihoyannopoulos, P. European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur. J. Echocardiogr. 2008, 9, 438–448. [Google Scholar] [CrossRef]
- Abu Shajahan, M.; Mohideen, B.; Jeena, P.A.; Thaha, S.M.; Ashraf, A.R.; Nazar, I.; Nair, R.G.; Fakhrudeen Mushthak, S.; Suresh, A.L. Prognostic Value of QTc Dispersion in Acute Myocardial Infarction. Cureus 2025, 17, e82846. [Google Scholar] [CrossRef]
- Lipsy, R.J. The National Cholesterol Education Program Adult Treatment Panel III guidelines. J. Manag. Care Pharm. 2003, 9, 2–5. [Google Scholar] [CrossRef]
- Lim, G.; Jarrell, Z.R.; Go, Y.M.; Jones, D.P. Amino Acid Associations in Healthy and Unhealthy Obesity. J. Nutr. 2025, 155, 2643–2652. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.; Moreira, D.; Fonseca, G. Abstract 4115652: Effect of the sodium-glucose co-transporter 2 inhibitor, Dapagliflozin, on ventricular repolarization electrocardiographic parameters: DAPA-ECG study. Circulation 2024, 150, A4115652. [Google Scholar] [CrossRef]
- Özkan, U.; Budak, M.; Gürdoğan, M.; Öztürk, G.; Yildiz, M.; Taylan, G.; Altay, S.; Yalta, K. KCNQ1 Polymorphism in the Context of Ischemic Cardiomyopathy: A Potential Key to Decision-Making for Device Implantation. Clin. Cardiol. 2025, 48, e70148. [Google Scholar] [CrossRef]
- Malik, M.; Batchvarov, V.N. Measurement, interpretation and clinical potential of QT dispersion. J. Am. Coll. Cardiol. 2000, 36, 1749–1766. [Google Scholar] [CrossRef]
- Turrini, P.; Corrado, D.; Basso, C.; Nava, A.; Bauce, B.; Thiene, G. Dispersion of Ventricular Depolarization-Repolarization. Circulation 2001, 103, 3075–3080. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Burashnikov, A. Overview of Basic Mechanisms of Cardiac Arrhythmia. Card. Electrophysiol. Clin. 2011, 3, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Aro, A.L.; Huikuri, H.V. Electrocardiographic predictors of sudden cardiac death from a large Finnish general population cohort. J. Electrocardiol. 2013, 46, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Birda, C.L.; Kumar, S.; Bhalla, A.; Sharma, N.; Kumari, S. Prevalence and prognostic significance of prolonged QTc interval in emergency medical patients: A prospective observational study. Int. J. Crit. Illn. Inj. Sci. 2018, 8, 28–35. [Google Scholar] [CrossRef]
- Day, C.P.; McComb, J.M.; Campbell, R.W. QT dispersion: An indication of arrhythmia risk in patients with long QT intervals. Br. Heart J. 1990, 63, 342–344. [Google Scholar] [CrossRef]
- Batchvarov, V.; Yi, G.; Guo, X.; Savelieva, I.; Camm, A.J.; Malik, M. QT interval and QT dispersion measured with the threshold method depend on threshold level. Pacing Clin. Electrophysiol. 1998, 21, 2372–2375. [Google Scholar] [CrossRef]
- De Maria, E.; Curnis, A.; Garyfallidis, P.; Mascioli, G.; Santangelo, L.; Calabrò, R.; Dei Cas, L. QT dispersion on ECG Holter monitoring and risk of ventricular arrhythmias in patients with dilated cardiomyopathy. Heart Int. 2006, 2, 33. [Google Scholar] [CrossRef]
- Yalta, K.; Yetkin, E.; Yalta, T. Systemic inflammation in patients with Takotsubo syndrome: A review of mechanistic and clinical implications. Monaldi Arch. Chest Dis. 2021, 91. [Google Scholar] [CrossRef]
- Compagnucci, P.; Casella, M.; Bianchi, V.; Franculli, F.; Vitali, F.; Santini, L.; Savarese, G.; Santobuono, V.E.; Chianese, R.; Lavalle, C.; et al. Implantable defibrillator-detected heart failure status predicts ventricular tachyarrhythmias. J. Cardiovasc. Electrophysiol. 2023, 34, 1257–1267. [Google Scholar] [CrossRef]
- Özkan, U.; Yalta, K.; Kounis, N.G. Beyond the Broken Heart: Exploring Metabolic Anti-ischemic Solutions for Takotsubo Syndrome. Cardiovasc. Drugs Ther. 2024, 39, 233–235. [Google Scholar] [CrossRef]
- Mantri, N.; Lu, M.; Zaroff, J.G.; Risch, N.; Hoffmann, T.; Oni-Orisan, A.; Lee, C.; Jorgenson, E.; Iribarren, C. QT Interval Dynamics and Cardiovascular Outcomes: A Cohort Study in an Integrated Health Care Delivery System. J. Am. Heart Assoc. 2021, 10, e018513. [Google Scholar] [CrossRef]
- Galinier, M.; Vialette, J.C.; Fourcade, J.; Cabrol, P.; Dongay, B.; Massabuau, P.; Boveda, S.; Doazan, J.P.; Fauvel, J.M.; Bounhoure, J.P. QT interval dispersion as a predictor of arrhythmic events in congestive heart failure. Importance of aetiology. Eur. Heart J. 1998, 19, 1054–1062. [Google Scholar] [CrossRef]
- Yalta, K.; Madias, J.E.; Kounis, N.G.; Y-Hassan, S.; Polovina, M.; Altay, S.; Mebazaa, A.; Yilmaz, M.B.; Lopatin, Y.; Mamas, M.A.; et al. Takotsubo Syndrome: An International Expert Consensus Report on Practical Challenges and Specific Conditions (Part-1: Diagnostic and Therapeutic Challenges). Balkan Med. J. 2024, 41, 421–441. [Google Scholar] [CrossRef] [PubMed]
- De Weerdt, S.; Schotte, C.; Demolder, F.; Verbanck, S.; Verbraecken, J. Cardiovascular diseases and type D personality in patients with obstructive sleep apnea: A prospective cohort study. Sleep Breath. 2025, 29, 189. [Google Scholar] [CrossRef]
- Yatsu, S.; Woo, A.; Horvath, C.M.; Tobushi, T.; Logan, A.G.; Floras, J.S.; Tomlinson, G.; Bradley, T.D. LV Structure and Function in HFrEF With and Without Peak-Flow-Triggered Adaptive Servo-Ventilation-Treated Sleep-Disordered Breathing. JACC Heart Fail. 2025, 102434. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhao, X.; Song, J.; Yang, S.; Xiang, J.; Zhang, M.; Tu, C.; Song, X. Association Between Nocturnal Hypoxemia Parameters and Coronary Microvascular Dysfunction: A Cross-Sectional Study. Nat. Sci. Sleep 2024, 16, 2279–2288. [Google Scholar] [CrossRef]
- Aromolaran, A.S.; Srivastava, U.; Alí, A.; Chahine, M.; Lazaro, D.; El-Sherif, N.; Capecchi, P.L.; Laghi-Pasini, F.; Lazzerini, P.E.; Boutjdir, M. Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS ONE 2018, 13, e0208321. [Google Scholar] [CrossRef]
- Zamenina, E.V.; Panteleeva, N.I.; Roshchevskaya, I.M. Heart Electrical Activity during Ventricular Repolarization in Subjects with Different Resistances to Hypoxia. Hum. Physiol. 2019, 45, 634–641. [Google Scholar] [CrossRef]
- Rana, D.; Torrilus, C.; Ahmad, W.; Okam, N.A.; Fatima, T.; Jahan, N. Obstructive Sleep Apnea and Cardiovascular Morbidities: A Review Article. Cureus 2020, 12, e10424. [Google Scholar] [CrossRef]
- Badran, M.; Puech, C.; Gozal, D. The cardiovascular consequences of chronic sleep fragmentation: Evidence from experimental models of obstructive sleep apnea. Sleep Med. 2025, 132, 106566. [Google Scholar] [CrossRef]
- Jiang, N.; Zhou, A.; Prasad, B.; Zhou, L.; Doumit, J.; Shi, G.; Imran, H.; Kaseer, B.; Millman, R.; Dudley, S.C., Jr. Obstructive Sleep Apnea and Circulating Potassium Channel Levels. J. Am. Heart Assoc. 2016, 5, e003666. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Vasini, B.; Mabry, S.; Hefley, B.S.; Wilson, E.N.; Gardner, J.J.; Cunningham, R.L.; Karamichos, D. Chronic intermittent hypoxia modulates corneal fibrotic markers and inflammatory cytokine expression in a sex-dependent manner. Exp. Eye Res. 2025, 255, 110358. [Google Scholar] [CrossRef]
- Itaya, E.D.; Ternes, C.M.P.; Maher, T.; Fernandes, A.A.D.; Rocha, A.V.; Wippel, C.; Rivera, A.; Locke, A.H.; d’Avila, A. Efficacy of continuous positive airway pressure on atrial fibrillation recurrence after catheter ablation in patients with obstructive sleep apnea: A systematic review and meta-analysis. J. Interv. Card. Electrophysiol. 2025. [Google Scholar] [CrossRef]
- Rossi, V.A.; Stoewhas, A.C.; Camen, G.; Steffel, J.; Bloch, K.E.; Stradling, J.R.; Kohler, M. The effects of continuous positive airway pressure therapy withdrawal on cardiac repolarization: Data from a randomized controlled trial. Eur. Heart J. 2012, 33, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Voigt, L.; Haq, S.A.; Mitre, C.A.; Lombardo, G.; Kassotis, J. Effect of obstructive sleep apnea on QT dispersion: A potential mechanism of sudden cardiac death. Cardiology 2011, 118, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Safabakhsh, S.; Al-Shaheen, A.; Swiggum, E.; Mielniczuk, L.; Tremblay-Gravel, M.; Laksman, Z. Arrhythmic Sudden Cardiac Death in Heart Failure with Preserved Ejection Fraction: Mechanisms, Genetics, and Future Directions. CJC Open 2022, 4, 959–969. [Google Scholar] [CrossRef]
- Badran, M.; Khalyfa, A.; Bailey, C.A.; Gozal, D.; Bender, S.B. Mineralocorticoid receptor antagonism prevents coronary microvascular dysfunction in intermittent hypoxia independent of blood pressure. Sleep 2024, 48, zsae296. [Google Scholar] [CrossRef]
- Saeed, S.; Romarheim, A.; Solheim, E.; Bjorvatn, B.; Lehmann, S. Cardiovascular remodeling in obstructive sleep apnea: Focus on arterial stiffness, left ventricular geometry and atrial fibrillation. Expert Rev. Cardiovasc. Ther. 2022, 20, 455–464. [Google Scholar] [CrossRef]
- DiCaro, M.V.; Lei, K.; Yee, B.; Tak, T. The Effects of Obstructive Sleep Apnea on the Cardiovascular System: A Comprehensive Review. J. Clin. Med. 2024, 13, 3223. [Google Scholar] [CrossRef]
- Wester, M.; Hegner, P.H.; Tafelmeier, M.T.; Lebek, S.L.; Provaznik, Z.P.; Floerchinger, B.F.; Schmid, C.S.; Maier, L.S.M.; Arzt, M.A.; Wagner, S.W. Sleep-disordered breathing is associated with fibrosis and impaired diastolic function. Eur. Heart J. 2023, 44, ehad655.791. [Google Scholar] [CrossRef]
- Svorc, P.; Benacka, R.; Petrásová, D.; Bracoková, I.; Kujaník, S. Effect of systemic hypoxia and reoxygenation on electrical stability of the rat myocardium: Chronophysiological study. Physiol. Res. 2005, 54, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Weir, E.K.; Olschewski, A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc. Res. 2006, 71, 630–641. [Google Scholar] [CrossRef]
- Alpenglow, J.K.; Bunsawat, K.; Francisco, M.A.; Craig, J.C.; Iacovelli, J.J.; Ryan, J.J.; Wray, D.W. Impaired cardiopulmonary baroreflex function and altered cardiovascular responses to hypovolemia in patients with heart failure with preserved ejection fraction. J. Appl. Physiol. 2024, 136, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Martinez, F.; Chatterjee, R.; Aysola, R.S.; Harper, R.M.; Macefield, V.G.; Henderson, L.A.; Macey, P.M. Baroreflex sensitivity during rest and pressor challenges in obstructive sleep apnea patients with and without CPAP. Sleep Med. 2022, 97, 73–81. [Google Scholar] [CrossRef]
- Bilak, J.M.; Alam, U.; Miller, C.A.; McCann, G.P.; Arnold, J.R.; Kanagala, P. Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: Pathophysiology, Assessment, Prevalence and Prognosis. Card. Fail. Rev. 2022, 8, e24. [Google Scholar] [CrossRef]
- Pojednic, R.; D’Arpino, E.; Halliday, I.; Bantham, A. The Benefits of Physical Activity for People with Obesity, Independent of Weight Loss: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 4981. [Google Scholar] [CrossRef]
- Podzolkov, V.; Pokrovskaya, A.; Bazhanova, U.; Vanina, D.; Vargina, T. Impact of Obesity on Cardiac Structural and Functional Changes. Russ. Open Med. J. 2022, 11, e0103. [Google Scholar] [CrossRef]
- Muthuchamy, M.; Gashev, A.; Boswell, N.; Dawson, N.; Zawieja, D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J. 2003, 17, 920–922. [Google Scholar] [CrossRef]
- Scallan, J.P.; Zawieja, S.D.; Castorena-Gonzalez, J.A.; Davis, M.J. Lymphatic pumping: Mechanics, mechanisms and malfunction. J. Physiol. 2016, 594, 5749–5768. [Google Scholar] [CrossRef]
- Feng, T.; Vegard, M.; Strand, L.B.; Laugsand, L.E.; Mørkedal, B.; Aune, D.; Vatten, L.; Ellekjaer, H.; Loennechen, J.P.; Mukamal, K.; et al. Metabolically Healthy Obesity and Risk for Atrial Fibrillation: The HUNT Study. Obes. Soc. 2019, 27, 332–338. [Google Scholar] [CrossRef]
Characteristics | Group 1 (n = 82) | Group 2 (n = 78) | p-Value | |
---|---|---|---|---|
Age (years) | 61.4 ± 10.5 | 60.7 ± 12.7 | 0.68 | |
Male gender, n (%) | 43 (52.4) | 56 (71.8) | 0.01 | |
Hypertension, n (%) | 61 (74.4) | 60 (76.9) | 0.07 | |
Diabetes Mellitus, n (%) | 24 (29.3) | 31 (39.7) | 0.16 | |
Atriyal fibrilasyon, n (%) | 5 (6.1) | 14 (17.9) | 0.02 | |
Stroke, n (%) | 6 (7.3) | 5 (6.4) | 0.82 | |
Coronary artery disease, n (%) | 43 (52.4) | 43 (55.1) | 0.73 | |
Intracardiac device, n (%) | 1 (1.2) | 7 (9) | 0.02 | |
Smoking, n (%) | 19 (23.2) | 12 (15.4) | 0.21 | |
HFrEF (LVEF ≤ 40%), n (%) | 6 a (7.3) | 7 a (9) | ||
HFmrEF (LVEF 41–49%), n (%) | 6 a (7.3) | 17 b (21.8) | 0.03 | |
HFpEF (LVEF ≥ 50%), n (%) | 70 a (85.4) | 54 b (69.2) | ||
BMI, kg/m2 | 34.3 ± 3.4 | 34.9 ± 2.5 | 0.17 | |
| 10 a (12.2) | 0 b (0) | 0.004 | |
| 39 a (47.6) | 36 a (46.2) | ||
| 33 a (40.2) | 42 a (53.8) | ||
Obesity Classification | ||||
Healthy Obesity | 27 (37.5) | 24 (30.8) | 0.38 | |
Unhealthy Obesity | 45 (62.5) | 54 (69.2) | ||
Metabolic Syndrome, n (%) | 46(86.8) | 80(74.8) | 0.33 | |
Apnea-Hypopnea index | ||||
| 45 a (54.9) | 8 b (10.3) | <0.001 | |
| 37 a (45.1) | 70 b (89.7) | ||
Fasting Glucose, (mg/dL) | 116.5 (92–201) | 116 (78–135) | 0.06 | |
HDL, (mg/dL) | 41.6 ± 6.5 | 43.1 ± 6.4 | 0.15 | |
Triglycerides, (mg/dL) | 158.7 ± 13.7 | 158.9 ± 15.5 | 0.93 | |
Systolic blood pressure, (mmHg) | 132.9 ± 8.8 | 130.9 ± 8.6 | 0.15 | |
Dystolic blood pressure, (mmHg) | 81.1 ± 5.3 | 80 ± 4.5 | 0.14 | |
Waist circumference | 107.2 ± 8.3 | 109.7 ± 8.3 | 0.06 | |
Ventricular tachyarrhythmia, n (%) | 0 (0) | 22 (28.2) | <0.001 | |
Sudden cardiac death, n (%) | 0 (0) | 11 (14.1) | <0.001 | |
Beta blocker, n (%) | 42 (51.2) | 45 (57.7) | 0.41 | |
SGLT2 inhibitors, n (%) | 21 (25.6) | 28 (35.9) | 0.15 | |
RAS blocker, n (%) | ||||
| 19 (23.2) | 30 (38.5) | 0.08 | |
| 60 (73.2) | 47 (60.3) | ||
| 3 (3.7) | 1 (1.3) | ||
MRA, n (%) | 14 (17.1) | 12 (15.4) | 0.77 | |
Loop Diüretics, n (%) | 39 (47.6) | 33 (42.3) | 0.5 | |
Ranelozin, n (%) | 18 (22) | 23 (29.5) | 0.27 | |
Statin, n (%) | 36 (43.9) | 46 (59) | 0.06 |
Variable | Group 1 (n = 82) | Group 2 (n = 78) | p-Value | |
---|---|---|---|---|
WBC count (103/µL) | EF < 40% | 10.7 ± 2.1 | 9.2 ± 1.8 | 0.59 |
EF 40–50% | 9.4 ± 3.5 | 8.6 ± 3 | ||
EF > 50% | 8.3 ± 2.2 | 8.8 ± 2.3 | ||
Hemoglobin. (mg/dL) | EF < 40% | 13.8 (11.1–16) | 13.2 (10.3–16.4) | 0.75 |
EF 40–50% | 14.7 (13.9–15.1) | 13.3 (11.3–17) | ||
EF > 50% | 13.7 (8.1–17.3) | 13.9 (8.5–17) | ||
Creatinine. (mg/dL) | EF < 40% | 0.8 (0.7–1.1) | 0.7 (0.7–0.9) | 0.47 |
EF 40–50% | 0.9 (0.8–1) | 1 (0.7–1.6) | ||
EF > 50% | 0.9 (0.5–2.2) | 0.9 (0.5–10.5) | ||
GFR. (mL/min/1.79 m2) | EF < 40% | 90.3 (79.5–94.7) | 95.7 (87.7–116.8) | 0.87 |
EF 40–50% | 90.6 (67.3–102.3) | 86.4 (34.3–102.9) | ||
EF > 50% | 93.3 (11.5–114.2) | 90.9 (4.8–126.7) | ||
CRP. (mg/dL) | EF < 40% | 8.3 (4.4–50) | 10 (0.2–21.7) | 0.72 |
EF 40–50% | 2.3 (0.3–4.2) | 5.2 (0.2–83.5) | ||
EF > 50% | 3.1 (0.1–32.2) | 3 (0.2–19.7) | ||
ALT. (µ/L) | EF < 40% | 16 (13–35) | 19 (12–50) | 0.36 |
EF 40–50% | 20 (17–46) | 21 (10–42) | ||
EF > 50% | 20 (9–57) | 20.5 (9–63) | ||
AST. (µ/L) | EF < 40% | 18.5 (13–29) | 17 (12–59) | 0.79 |
EF 40–50% | 23.5 (14–31) | 22 (15–40) | ||
EF > 50% | 20.5 (8–46) | 19.5 (9–71) | ||
Neutrophil count. (103/µL) | EF < 40% | 6.2 (2.3–7.8) | 5.4 (3.9–8.2) | 0.005 |
EF 40–50% | 4.8 (2.2–11.3) | 5.2 (2.2–12.6) | ||
EF > 50% | 4.7 (2.1–9.9) | 5.5 (3.5–9.1) | ||
Platelet count. (103/µL) | EF < 40% | 254.2 ± 95.2 | 279 ± 71.2 | 0.001 |
EF 40–50% | 233.8 ± 29.2 | 260.6 ± 62.7 | ||
EF > 50% | 251.3 ± 57.8 | 286.3 ± 56.4 | ||
Lymphocyte count. (103/µL) | EF < 40% | 2.4 (1.1–3.1) | 2.1 (1.5–3.1) | 0.09 |
EF 40–50% | 3.2 (1.7–4.5) | 2.1 (0.7–3.5) | ||
EF > 50% | 2.4 (1–22.6) | 2.3 (0.7–5.4) | ||
SII | EF < 40% | 578.1 (349.2–951.8) | 756 (294.7–1126.7) | <0.001 |
EF 40–50% | 278.8 (218.3–1229.4) | 621 (198.2–2633.4) | ||
EF > 50% | 476.7 (127.1–1085.2) | 691.5 (271.1–2747.7) |
Variable | Group 1 (n = 82) | Group 2 (n = 78) | p-Value | |
---|---|---|---|---|
EF. n (%) | EF < 40% | 6 a (7.3) | 7 a (9) | 0.03 |
EF 40–50% | 6 a (7.3) | 17 b (21.8) | ||
EF > 50% | 70 a (85.4) | 54 b (69.2) | ||
Mitral regurgitation. n (%) | Severe | 1 (1.2) | 2 (2.6) | 0.85 |
Moderate | 11 (13.4) | 13 (16.7) | ||
Mild | 46 (56.1) | 41 (52.6) | ||
Normal | 24 (29.3) | 22 (28.2) | ||
Aortic regurgitation. n (%) | Severe | 0 (0.0) | 0 (0.0) | 0.68 |
Moderate | 3 (3.7) | 5 (6.4) | ||
Mild | 37 (45.1) | 32 (41) | ||
Normal | 42 (51.2) | 41 (52.6) | ||
Tricuspid regurgitation. n (%) | Severe | 2 (2.4) | 4 (5.1) | 0.6 |
Moderate | 15 (18.3) | 13 (16.7) | ||
Mild | 50 (61) | 50 (64.1) | ||
Normal | 15 (18.3) | 10 (12.8) | ||
QT Dispersion | EF < 40% | 31 (24–33) | 57 (43–77) | <0.001 |
EF 40–50% | 28.5 (18–35) | 54 (40–76) | ||
EF > 50% | 28 (10–39) | 56.5 (40–82) | ||
Longest QT | EF < 40% | 441 (370–502) | 506 (482–532) | <0.001 |
EF 40–50% | 430 (380–490) | 472 (395–545) | ||
EF > 50% | 405.5 (358–510) | 476 (398–540) | ||
Shortest QT | EF < 40% | 410 (346–470) | 457 (405–475) | <0.001 |
EF 40–50% | 405 (350–458) | 420 (350–490) | ||
EF > 50% | 377 (235–475) | 420 (346–496) | ||
PAB | EF < 40% | 45.5 (37–47) | 40 (20–48) | 0.32 |
EF 40–50% | 35 (20–53) | 32 (20–70) | ||
EF > 50% | 24.5 (20–80) | 25 (20–70) | ||
EF < 40% | 424.8 ± 5.8 | 412.4 ± 11.5 | 0.45 | |
QTc interval | EF 40–50% | 430.4 ± 23.9 | 418 ± 15.4 | |
EF > 50% | 417.5 ± 15.8 | 422.9 ± 17.8 | ||
Frontal QRS-T Angle | EF < 40% | 55.1 ± 25 | 70.8 ± 28.8 | 0.03 |
EF 40–50% | 64.6 ± 15.9 | 62.7 ± 24.9 | ||
EF > 50% | 64.6 ± 27 | 69.9 ± 30.3 | ||
T wave peak-to end Interval | EF < 40% | 85 ± 10.5 | 82.5 ± 19.2 | 0.02 |
EF 40–50% | 83.1 ± 14.2 | 89 ± 13.3 | ||
EF > 50% | 79.1 ± 11.9 | 84.6 ± 17.3 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | (95% C.I. for Odds Ratio) | p * | Odds Ratio | (95% C.I. for Odds Ratio) | p * | |
WBC | 1.037 | (0.909–1.183) | 0.59 | 0.823 | (0.666–1.018) | 0.07 |
SII | 1.001 | (1–1.002) | <0.001 | 1.002 | (1–1.003) | 0.01 |
GFR | 1.001 | (0.987–1.015) | 0.86 | 1.001 | (0.977–1.026) | 0.93 |
Apnea/Hypopnea index | 1.059 | (1.04–1.079) | <0.001 | 1.066 | (1.044–1.088) | <0.001 |
Age | 0.994 | (0.968–1.021) | 0.68 | 0.997 | (0.951–1.046) | 0.91 |
Hypertension | 1.148 | (0.557–2.366) | 0.71 | 0.696 | (0.253–1.917) | 0.48 |
Diabetes Mellitus | 1.594 | (0.826–3.075) | 0.16 | 2.538 | (1.059–6.082) | 0.04 |
PAB | 1.015 | (0.99–1.041) | 0.24 | 1.024 | (0.99–1.06) | 0.17 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | (95% C.I. for Odds Ratio) | p * | Odds Ratio | (95% C.I. for Odds Ratio) | p * | |
Apnea/Hypopnea index | 1.014 | (0.999–1.03) | 0.07 | 0.883 | (0.776–1.004) | 0.057 |
Body Mass Index | 1.111 | (0.952–1.295) | 0.18 | 1.453 | (0.744–2.836) | 0.27 |
QTc | 0.994 | (0.967–1.021) | 0.64 | 1.03 | (0.923–1.15) | 0.59 |
QT Dispersion | 1.146 | (1.087–1.208) | <0.001 | 1.694 | (1.107–2.592) | 0.02 |
Frontal QRS-T Angle | 1.017 | (1.001–1.033) | 0.04 | 0.984 | (0.921–1.05) | 0.62 |
T wave peak-to end Interval | 1.224 | (1.125–1.333) | <0.001 | 1.306 | (1.036–1.646) | 0.02 |
LVEF | 0.981 | (0.936–1.027) | 0.4 | 1.218 | (0.959–1.547) | 0.11 |
SII | 1.006 | (1.004–1.009) | <0.001 | 1.004 | (1.001–1.008) | 0.01 |
Ventricular Arrhythmia | SII | QT Dispersion | Frontal QRS-T Angle | TPEI | QTc | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
SII | 0.673 ** | <0.001 | ||||||||||
QT Dispersion | 0.551 ** | <0.001 | 0.417 ** | <0.001 | ||||||||
Frontal QRS-T Angle | 0.169 * | 0.03 | 0.177 * | 0.03 | 0.15 | 0.06 | ||||||
TPEI | 0.554 ** | <0.001 | 0.425 ** | <0.001 | 0.275 ** | <0.001 | 0.166 * | 0.04 | ||||
QTc | 0.37 | 0.64 | <0.001 | 0.97 | 0.02 | 0.79 | 0.02 | 0.79 | 0.12 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çakır, E.; Özkan, U.; Yılmam, İ. Systemic Inflammation and Myocardial Repolarization Heterogeneity in Heart Failure and Obstructive Sleep Apnea: Impact on Arrhythmic Risk. Medicina 2025, 61, 1674. https://doi.org/10.3390/medicina61091674
Çakır E, Özkan U, Yılmam İ. Systemic Inflammation and Myocardial Repolarization Heterogeneity in Heart Failure and Obstructive Sleep Apnea: Impact on Arrhythmic Risk. Medicina. 2025; 61(9):1674. https://doi.org/10.3390/medicina61091674
Chicago/Turabian StyleÇakır, Emirhan, Uğur Özkan, and İlker Yılmam. 2025. "Systemic Inflammation and Myocardial Repolarization Heterogeneity in Heart Failure and Obstructive Sleep Apnea: Impact on Arrhythmic Risk" Medicina 61, no. 9: 1674. https://doi.org/10.3390/medicina61091674
APA StyleÇakır, E., Özkan, U., & Yılmam, İ. (2025). Systemic Inflammation and Myocardial Repolarization Heterogeneity in Heart Failure and Obstructive Sleep Apnea: Impact on Arrhythmic Risk. Medicina, 61(9), 1674. https://doi.org/10.3390/medicina61091674