COVID-19 Alters Respiratory Function Associations in High-Level Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Size Estimation
2.3. Participants
2.4. Data Collection Tools
2.4.1. Personal Information Forms
2.4.2. Respiratory Function Testing
2.4.3. Respiratory Muscle Strength Testing
2.4.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarto, F.; Impellizzeri, F.M.; Spörri, J.; Porcelli, S.; Olmo, J.; Requena, B.; Suarez-Arrones, L.; Arundale, A.; Bilsborough, J.; Buchheit, M.; et al. Impact of Potential Physiological Changes due to COVID-19 Home Confinement on Athlete Health Protection in Elite Sports: A Call for Awareness in Sports Programming. Sports Med. 2020, 50, 1417–1419. [Google Scholar] [CrossRef]
- Toresdahl, B.G.; Asif, I.M. Coronavirus Disease 2019 (COVID-19): Considerations for the Competitive Athlete. Sports Health A Multidiscip. Approach 2020, 12, 221–224. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [PubMed]
- Rajpal, S.; Tong, M.S.; Borchers, J.; Zareba, K.M.; Obarski, T.P.; Simonetti, O.P.; Daniels, C.J. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering from COVID-19 Infection. JAMA Cardiol. 2020, 6, 116–118. [Google Scholar] [CrossRef]
- Hull, J.H.; Loosemore, M.; Schwellnus, M. Respiratory Health in Athletes: Facing the COVID-19 Challenge. Lancet Respir. Med. 2020, 8, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Marinos, G.; Lamprinos, D.; Papapanou, M.; Sofroni, A.; Papaioannou, A.; Miletis, D.-N.; Deligiorgi, P.; Papavassiliou, K.A.; Siasos, G.; Oikonomou, E.; et al. The Impact of the COVID-19 Pandemic on Elite Swimmers and Water Polo Players: Lessons for the Future. Epidemiologia 2024, 5, 289–308. [Google Scholar] [CrossRef] [PubMed]
- Zacher, J.; Branahl, A.; Predel, H.-G.; Laborde, S. Effects of COVID-19 on the Autonomic Nervous System in Elite Athletes Assessed by Heart Rate Variability. Sport Sci. Health 2023, 19, 1269–1280. [Google Scholar] [CrossRef]
- Spyrou, K.; Alcaraz, P.E.; Marín-Cascales, E.; Herrero-Carrasco, R.; Cohen, D.D.; Calleja-Gonzalez, J.; Pereira, L.A.; Loturco, I.; Freitas, T.T. Effects of the COVID-19 Lockdown on Neuromuscular Performance and Body Composition in Elite Futsal Players. J. Strength Cond. Res. 2021, 35, 2309–2315. [Google Scholar] [CrossRef]
- Fikenzer, S.; Fikenzer, K.; Laufs, U.; Falz, R.; Pietrek, H.; Hepp, P. Impact of COVID-19 Lockdown on Endurance Capacity of Elite Handball Players. J. Sports Med. Phys. Fit. 2021, 61, 977–982. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, J.-M.; Kim, Y.-H.; Kim, T.; Park, J.-C. Impact of COVID-19 Infection on Sports Performance of Elite University Athletes. J. Sports Med. Phys. Fit. 2023, 63, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Haufe, S.; Dirks, M.; Scharbau, M.; Lampe, V.; Dopfer-Jablonka, A.; Tegtbur, U.; Pink, I.; Drick, N.; Kerling, A. Post-COVID-19 Syndrome: Physical Capacity, Fatigue and Quality of Life. PLoS ONE 2023, 18, e0292928. [Google Scholar] [CrossRef] [PubMed]
- Karrer, Y.; Fröhlich, S.; Iff, S.; Spörri, J.; Scherr, J.; Seifritz, E.; Quednow, B.B.; Claussen, M.C. Training Load, Sports Performance, Physical and Mental Health during the COVID-19 Pandemic: A Prospective Cohort of Swiss Elite Athletes. PLoS ONE 2022, 17, e0278203. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, S.; Wang, J.; Zhang, P. Changes in Strength Performance of Highly Trained Athletes after COVID-19. PLoS ONE 2024, 19, e0308955. [Google Scholar] [CrossRef]
- Ribeiro, J.; Caldeira, D.; Dores, H. Long-Term Manifestations of COVID-19 in Athletes: A Narrative Review. Phys. Sportsmed. 2024, 52, 452–459. [Google Scholar] [CrossRef]
- Ippoliti, L.; Coppeta, L.; Somma, G.; Bizzarro, G.; Borelli, F.; Crispino, T.; Ferrari, C.; Iannuzzi, I.; Mazza, A.; Paolino, A.; et al. Pulmonary Function Assessment after COVID-19 in Vaccinated Healthcare Workers. J. Occup. Med. Toxicol. 2023, 18, 31. [Google Scholar] [CrossRef]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory Function in Patients Post-Infection by COVID-19: A Systematic Review and Meta-Analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Bostancı, Ö.; Karaduman, E.; Çolak, Y.; Yılmaz, A.K.; Kabadayı, M.; Bilgiç, S. Respiratory Muscle Strength and Pulmonary Function in Unvaccinated Athletes before and after COVID-19 Infection: A Prospective Cohort Study. Respir. Physiol. Neurobiol. 2023, 308, 103983. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample Size, Power and Effect Size Revisited: Simplified and Practical Approaches in Pre-Clinical, Clinical and Laboratory Studies. Biochem. Med. 2021, 31, 27–53. [Google Scholar] [CrossRef]
- Mazic, S.; Lazovic, B.; Djelic, M.; Suzic-Lazic, J.; Djordjevic-Saranovic, S.; Durmic, T.; Soldatovic, I.; Zikic, D.; Gluvic, Z.; Zugic, V. Respiratory Parameters in Elite Athletes–Does Sport Have an Influence? Rev. Port. de Pneumol. (Engl. Ed.) 2015, 21, 192–197. [Google Scholar] [CrossRef]
- Durmic, T.; Lazovic Popovic, B.; Zlatkovic Svenda, M.; Djelic, M.; Zugic, V.; Gavrilovic, T.; Mihailovic, Z.; Zdravkovic, M.; Leischik, R. The Training Type Influence on Male Elite Athletes’ Ventilatory Function. BMJ Open Sport Exerc. Med. 2017, 3, e000240. [Google Scholar] [CrossRef] [PubMed]
- Hackett, D.A. Lung Function and Respiratory Muscle Adaptations of Endurance- and Strength-Trained Males. Sports 2020, 8, 160. [Google Scholar] [CrossRef]
- Karaduman, E.; Bostancı, Ö.; Bayram, L. Respiratory Muscle Strength and Pulmonary Functions in Athletes: Differences by BMI Classifications. J. Men’s Health 2022, 18, 054. [Google Scholar] [CrossRef]
- Çelik, Z.; Güzel, N.A.; Kafa, N.; Köktürk, N. Respiratory Muscle Strength in Volleyball Players Suffered from COVID-19. Ir. J. Med. Sci. (1971-) 2022, 191, 1959–1965. [Google Scholar] [CrossRef]
- Sutherland, E.R.; Martin, R.J.; Bowler, R.P.; Zhang, Y.; Rex, M.D.; Kraft, M. Physiologic Correlates of Distal Lung Inflammation in Asthma. J. Allergy Clin. Immunol. 2004, 113, 1046–1050. [Google Scholar] [CrossRef]
- Neil, P.W.; Michael, G.; Roy, J.S.; Maree Gleeson Jeffrey, A.W.; Nicolette, C.B.; Monika, F.; Green, C.; Bente, K.P.; Laurie, H.-G.; Connie, J.R.; et al. Position Statement Part One: Immune Function and Exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar]
COVID-19 History | Yes (n = 34) M ± SD | No (n = 34) M ± SD | Total (n = 68) M ± SD |
---|---|---|---|
Age (year) | 18.00 ± 3.17 | 18.02 ± 3.45 | 18.01 ± 3.28 |
Height (cm) | 171.61 ± 8.63 | 175.85 ± 8.30 | 173.73 ± 8.67 |
Weight (kg) | 68.94 ± 13.25 | 71.73 ± 11.21 | 70.33 ± 12.26 |
Sports Experience (year) | 4.79 ± 2.44 | 5.05 ± 2.33 | 4.95 ± 2.37 |
Training Duration (week/day) | 4.47 ± 0.13 | 4.47 ± 0.13 | 4.47 ± 0.94 |
Training Duration (days/hours) | 3.79 ± 0.12 | 3.79 ± 0.12 | 3.79 ± 0.87 |
With COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
FEV1 | r | 1.000 | 0.893 | −0.460 | −0.156 | 0.086 | −0.048 | 0.133 | 0.100 |
p | 0.001 | 0.006 | 0.210 | 0.328 | 0.402 | 0.245 | 0.302 | ||
Without COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
FEV1 | r | 1.000 | 0.881 | 0.202 | 0.658 | 0.568 | 0.590 | 0.375 | 0.407 |
p | 0.001 | 0.147 | 0.001 | 0.001 | 0.001 | 0.023 | 0.014 |
With COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
FEV1 | r | 0.893 | 1.000 | −0.042 | 0.078 | 0.461 | 0.031 | 0.163 | 0.195 |
p | 0.001 | 0.414 | 0.343 | 0.006 | 0.437 | 0.199 | 0.156 | ||
Without COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
FEV1 | r | 0.881 | 1.000 | 0.634 | 0.828 | 0.840 | 0.585 | 0.379 | 0.317 |
p | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.021 | 0.047 |
With COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
MIP | r | 0.133 | 0.163 | −0.040 | 0.236 | 0.111 | 0.170 | 1.000 | 0.670 |
p | 0.245 | 0.199 | 0.419 | 0.109 | 0.283 | 0.189 | 0.001 | ||
Without COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP | |
MIP | r | 0.375 | 0.379 | 0.252 | 0.192 | 0.291 | 0.510 | 1.000 | 0.731 |
p | 0.023 | 0.021 | 0.094 | 0.160 | 0.063 | 0.002 | 0.001 |
With COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP |
MEP | r | 0.100 | 0.195 | 0.103 | 0.549 | 0.087 | 0.269 | 0.670 |
p | 0.302 | 0.156 | 0.298 | 0.001 | 0.328 | 0.079 | 0.001 | |
Without COVID-19 History | FVC | FEV1 | FEV1/FVC | PEF | FEF25–75 | MVV | MIP | MEP |
MEP | r | 0.407 | 0.317 | 0.100 | 0.049 | 0.269 | 0.470 | 0.731 |
p | 0.014 | 0.047 | 0.303 | 0.401 | 0.079 | 0.005 | 0.001 |
Correlation Pair | With COVID-19 (n = 34) | Without COVID-19 (n = 34) | Fisher’s z-Test | |
---|---|---|---|---|
r [95% CI] | r [95% CI] | z | p | |
FVC-PEF | −0.156 [−0.456, 0.172] | 0.658 [0.408, 0.816] | 3.82 | 0.001 |
FVC-MVV | −0.048 [−0.368, 0.282] | 0.590 [0.318, 0.771] | 3.02 | 0.003 |
FEV1-PEF | −0.078 [−0.392, 0.252] | 0.828 [0.681, 0.910] | 5.41 | 0.001 |
MIP-MVV | 0.170 [−0.162, 0.471] | 0.510 [0.202, 0.728] | 1.56 | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabak, B.; Erdoğan, M.; Tortu, E.; Deliceoğlu, G.; Bulgay, C.; Kızar, O.; Baydaş, G.; Szabo, A. COVID-19 Alters Respiratory Function Associations in High-Level Athletes. Medicina 2025, 61, 1652. https://doi.org/10.3390/medicina61091652
Kabak B, Erdoğan M, Tortu E, Deliceoğlu G, Bulgay C, Kızar O, Baydaş G, Szabo A. COVID-19 Alters Respiratory Function Associations in High-Level Athletes. Medicina. 2025; 61(9):1652. https://doi.org/10.3390/medicina61091652
Chicago/Turabian StyleKabak, Banu, Murat Erdoğan, Erkan Tortu, Gökhan Deliceoğlu, Celal Bulgay, Oktay Kızar, Giyasettin Baydaş, and Attila Szabo. 2025. "COVID-19 Alters Respiratory Function Associations in High-Level Athletes" Medicina 61, no. 9: 1652. https://doi.org/10.3390/medicina61091652
APA StyleKabak, B., Erdoğan, M., Tortu, E., Deliceoğlu, G., Bulgay, C., Kızar, O., Baydaş, G., & Szabo, A. (2025). COVID-19 Alters Respiratory Function Associations in High-Level Athletes. Medicina, 61(9), 1652. https://doi.org/10.3390/medicina61091652