Serum Indoxyl Sulfate as a Potential Biomarker of Aortic Stiffness in Persons with Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Analysis and Biochemical Determinations
2.3. Carotid–Femoral Pulse Wave Velocity Assessment
2.4. High-Performance Liquid Chromatography–Mass Spectrometry for IS Measurements
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Serum IS Level and Development of AS
3.3. Correlations Between cfPWV Levels and Clinical Variables
3.4. Spearman Correlation Analysis of Serum IS Level and Clinical Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | aortic stiffness |
AUC | area under the curve |
BP | blood pressure |
BUN | blood urea nitrogen |
CV | cardiovascular |
CVD | cardiovascular disease |
cfPWV | carotid–femoral pulse wave velocity |
CKD | chronic kidney disease |
CRP | C-reactive protein |
DBP | diastolic blood pressure |
eGFR | estimated glomerular filtration rate |
HbA1c | glycated hemoglobin |
IS | indoxyl sulfate |
ROC | receiver operating characteristic |
SBP | systolic blood pressure |
T2DM | type 2 diabetes mellitus |
UACR | urine albumin-to-creatinine ratio |
References
- Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab. 2020, 9, 183–185. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Wong, N.D.; Sattar, N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Araujo, G.; Nakagami, H. Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc. Endocrinol. Metab. 2018, 7, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Schofield, I.; Malik, R.; Izzard, A.; Austin, C.; Heagerty, A. Vascular structural and functional changes in type 2 diabetes mellitus: Evidence for the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation 2002, 106, 3037–3043. [Google Scholar] [CrossRef]
- Budoff, M.J.; Alpert, B.; Chirinos, J.A.; Fernhall, B.; Hamburg, N.; Kario, K.; Kullo, I.; Matsushita, K.; Miyoshi, T.; Tanaka, H.; et al. Clinical applications measuring arterial stiffness: An expert consensus for the application of cardio-ankle vascular index. Am. J. Hypertens. 2022, 35, 441–453. [Google Scholar] [CrossRef]
- Cameron, J.D.; Bulpitt, C.J.; Pinto, E.S.; Rajkumar, C. The aging of elastic and muscular arteries: A comparison of diabetic and nondiabetic subjects. Diabetes Care 2003, 26, 2133–2138. [Google Scholar] [CrossRef]
- Agnoletti, D.; Mansour, A.S.; Zhang, Y.; Protogerou, A.D.; Ouerdane, S.; Blacher, J.; Safar, M.E. Clinical interaction between diabetes duration and aortic stiffness in type 2 diabetes mellitus. J. Hum. Hypertens. 2017, 31, 189–194. [Google Scholar] [CrossRef]
- Mitchell, G.F. Arterial stiffness and wave reflection: Biomarkers of cardiovascular risk. Artery Res. 2009, 3, 56–64. [Google Scholar] [CrossRef]
- Ramezani, A.; Raj, D.S. The gut microbiome, kidney disease, and targeted interventions. J. Am. Soc. Nephrol. 2014, 25, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, L.; Tang, M.Y.; Liu, Y.F.; Liu, L.; Liu, X.Y.; Zhang, C.; Huang, L. Indoxyl sulfate in atherosclerosis. Toxicol. Lett. 2023, 383, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Atoh, K.; Itoh, H.; Haneda, M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: Relation to renal function. Diabetes Res. Clin. Pract. 2009, 83, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Goligorsky, M.S. Vascular endothelium in diabetes. Am. J. Physiol. Ren. Physiol. 2017, 312, F266–F275. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef]
- Lin, T.J.; Hsu, B.G.; Wang, J.H.; Lai, Y.H.; Dongoran, R.A.; Liu, C.H. Serum indoxyl sulfate as a potential biomarker of aortic arterial stiffness in coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2320–2327. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef]
- Partalidou, S.; Patoulias, D.; Pantekidis, I.; Kefas, A.; Doumas, M.; Gkaliagkousi, E.; Rizzo, M.; Dimitroulas, T.; Anyfanti, P. The cross-talk between arterial stiffness and microvascular complications in diabetes mellitus: A systematic review of the literature. J. Diabetes Metab. Disord. 2025, 24, 144. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Wu, H. Arterial stiffness: A focus on vascular calcification and its link to bone mineralization. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1078–1093. [Google Scholar] [CrossRef]
- Yao, H.; Sun, Z.; Zang, G.; Zhang, L.; Hou, L.; Shao, C.; Wang, Z. Epidemiological research advances in vascular calcification in diabetes. J. Diabetes Res. 2021, 2021, 4461311. [Google Scholar] [CrossRef]
- Kitada, M.; Zhang, Z.; Mima, A.; King, G.L. Molecular mechanisms of diabetic vascular complications. J. Diabetes Investig. 2010, 1, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Chen, K.; Gao, Z.; Bao, T.; Dong, L.; Zhao, L.; Tong, X.; Li, X. Common mechanisms underlying diabetic vascular complications: Focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun. Signal 2023, 21, 298. [Google Scholar] [CrossRef] [PubMed]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolite profiling of the gut-renal-cerebral axis reveals a particular pattern in early diabetic kidney disease in T2DM patients. Int. J. Mol. Sci. 2023, 24, 6212. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, C.E.; Liu, T.; Zhang, M.X.; Niu, Y.; Wang, M.; Yu, J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front. Microbiol. 2023, 14, 1207132. [Google Scholar] [CrossRef]
- Opdebeeck, B.; D’Haese, P.C.; Verhulst, A. Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and p-cresyl sulfate. Toxins 2020, 12, 58. [Google Scholar] [CrossRef]
- Adijiang, A.; Goto, S.; Uramoto, S.; Nishijima, F.; Niwa, T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transplant. 2008, 23, 1892–1901. [Google Scholar] [CrossRef]
- Dou, L.; Jourde-Chiche, N.; Faure, V.; Cerini, C.; Berland, Y.; Dignat-George, F.; Brunet, P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 2007, 5, 1302–1308. [Google Scholar] [CrossRef]
- Wakamatsu, T.; Yamamoto, S.; Yoshida, S.; Narita, I. Indoxyl sulfate-induced macrophage toxicity and therapeutic strategies in uremic atherosclerosis. Toxins 2024, 16, 254. [Google Scholar] [CrossRef]
- Meijers, B.K.; Evenepoel, P. The gut-kidney axis: Indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol. Dial. Transplant. 2011, 26, 759–761. [Google Scholar] [CrossRef]
- Chen, L.; Shi, J.; Ma, X.; Shi, D.; Qu, H. Effects of microbiota-driven therapy on circulating indoxyl sulfate and p-cresyl sulfate in patients with chronic kidney disease: A Systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2022, 13, 1267–1278. [Google Scholar] [CrossRef]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Giebultowicz, J.; Wroczynski, P.; Paczek, L. Age-dependent increase in serum levels of indoxyl sulphate and p-cresol sulphate is not related to their precursors: Tryptophan and tyrosine. Geriatr. Gerontol. Int. 2017, 17, 1022–1026. [Google Scholar] [CrossRef]
- Fan, P.C.; Chang, J.C.; Lin, C.N.; Lee, C.C.; Chen, Y.T.; Chu, P.H.; Kou, G.; Lu, Y.A.; Yang, C.W.; Chen, Y.C. Serum indoxyl sulfate predicts adverse cardiovascular events in patients with chronic kidney disease. J. Formos. Med. Assoc. 2019, 118, 1099–1106. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
Characteristic | All Patients (n = 80) | Control Group (n = 50) | Aortic Stiffness Group (n = 30) | p Value |
---|---|---|---|---|
Age (years) | 61.84 ± 13.09 | 58.85 ± 13.15 | 66.87 ± 11.52 | 0.007 * |
Height (cm) | 161.78 ± 8.35 | 163.06 ± 8.32 | 159.63 ± 8.09 | 0.075 |
Body weight (kg) | 70.45 ± 14.79 | 70.69 ± 16.12 | 70.06 ± 12.51 | 0.856 |
Body mass index (kg/m2) | 26.79 ± 4.36 | 26.42 ± 4.64 | 27.39 ± 3.85 | 0.339 |
cfPWV (m/s) | 9.49 ± 2.90 | 7.72 ± 1.39 | 12.45 ± 2.29 | <0.001 * |
SBP (mmHg) | 142.65 ± 21.03 | 137.10 ± 19.60 | 151.90 ± 20.34 | 0.002 * |
DBP (mmHg) | 81.96 ± 12.36 | 80.54 ± 12.58 | 84.33 ± 11.81 | 0.186 |
Total cholesterol (mg/dL) | 162.41 ± 31.26 | 158.12 ± 27.77 | 169.57 ± 35.69 | 0.113 |
Triglyceride (mg/dL) | 122.50 (85.00–170.50) | 104.00 (72.00–159.50) | 133.00 (103.25–189.00) | 0.023 * |
HDL-C (mg/dL) | 47.11 ± 12.14 | 46.68 ± 12.19 | 47.83 ± 12.23 | 0.683 |
LDL-C (mg/dL) | 98.31 ± 26.14 | 97.94 ± 23.18 | 98.93 ± 30.86 | 0.871 |
Fasting glucose (mg/dL) | 136.00 (123.50–176.00) | 130.00 (122.50–158.00) | 161.50 (124.75–210.75) | 0.025 * |
HbA1c (%) | 7.50 (6.73–8.98) | 7.00 (6.60–8.25) | 8.10 (7.00–9.50) | 0.013 * |
Blood urea nitrogen (mg/dL) | 16.00 (12.25–20.00) | 15.00 (12.00–17.25) | 18.00 (14.00–22.75) | 0.013 * |
Creatinine (mg/dL) | 0.90 (0.70–1.08) | 0.80 (0.70–1.00) | 0.90 (0.80–1.20) | 0.047 * |
eGFR (mL/min) | 84.13 ± 28.59 | 91.24 ± 29.28 | 72.27 ± 23.34 | 0.003 * |
UACR (mg/g) | 19.19 (7.82–114.73) | 11.50 (7.35–45.13) | 37.87 (12.62–348.18) | 0.005 * |
C-reactive protein (mg/dL) | 0.13 (0.07–0.41) | 0.11 (0.07–0.22) | 0.25 (0.09–0.59) | 0.029 * |
Indoxyl sulfate (μg/mL) | 1.05 ± 0.78 | 0.81 ± 0.60 | 1.46 ± 0.89 | <0.001 * |
Male, n (%) | 42 (52.5) | 29 (58.0) | 13 (43.3) | 0.203 |
Hypertension, n (%) | 44 (55.0) | 23 (46.0) | 21 (70.0) | 0.037 * |
ACE inhibitor use, n (%) | 7 (8.8) | 3 (6.0) | 4 (13.3) | 0.261 |
ARB use, n (%) | 31 (38.8) | 18 (36.0) | 13 (43.3) | 0.515 |
β-blocker use, n (%) | 10 (12.5) | 5 (10.0) | 5 (16.7) | 0.383 |
CCB use, n (%) | 25 (31.3) | 13 (26.0) | 12 (40.0) | 0.191 |
Statin use, n (%) | 46 (57.5) | 26 (52.0) | 20 (66.7) | 0.199 |
Fibrate use, n (%) | 10 (12.5) | 7 (14.0) | 3 (10.0) | 0.600 |
Metformin use, n (%) | 41 (51.3) | 23 (46.0) | 18 (60.0) | 0.225 |
Sulfonylureas use, n (%) | 42 (52.5) | 27 (54.0) | 15 (50.0) | 0.729 |
DDP-4 inhibitor use, n (%) | 46 (57.5) | 31 (62.0) | 15 (50.0) | 0.293 |
Insulin use, n (%) | 22 (27.5) | 13 (26.0) | 9 (30.0) | 0.698 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Indoxyl sulfate, 1 μg/mL | 2.565 | 1.145–5.748 | 0.022 * |
Age, 1 year | 1.042 | 0.977–1.111 | 0.213 |
Hypertension, present | 0.538 | 0.088–3.304 | 0.503 |
Systolic blood pressure, 1 mmHg | 1.041 | 0.987–1.099 | 0.141 |
C-reactive protein, 1 mg/dL | 0.598 | 0.099–3.626 | 0.576 |
Triglyceride, 1 mg/dL | 1.003 | 0.994–1.013 | 0.482 |
Fasting glucose, 1 mg/dL | 1.008 | 0.988–1.028 | 0.445 |
HbA1c, 1% | 0.948 | 0.533–1.686 | 0.855 |
Blood urea nitrogen, 1 mg/dL | 1.039 | 0.912–1.184 | 0.562 |
Creatinine, 0.1 mg/dL | 0.915 | 0.601–1.394 | 0.681 |
Estimated glomerular filtration rate, 1 mL/min | 0.991 | 0.936–1.049 | 0.755 |
Urine albumin-to-creatinine ratio, 1 mg/g | 1.000 | 0.999–1.001 | 0.980 |
Clinical Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Univariate Regression | Multivariate Regression | ||||
r | p Value | β | Adjusted R2 Change | p Value | |
Age (years) | 0.289 | 0.009 * | — | — | — |
Height (cm) | −0.204 | 0.069 | — | — | — |
Body weight (kg) | 0.023 | 0.839 | — | — | — |
Body mass index (kg/m2) | 0.163 | 0.149 | — | — | — |
SBP (mmHg) | 0.358 | 0.001 * | 0.272 | 0.117 | 0.015 * |
DBP (mmHg) | 0.214 | 0.057 | — | — | — |
Total cholesterol (mg/dL) | 0.163 | 0.149 | — | — | — |
Log-Triglyceride (mg/dL) | 0.239 | 0.033 * | — | — | — |
HDL-C (mg/dL) | 0.066 | 0.559 | — | — | — |
LDL-C (mg/dL) | 0.138 | 0.222 | — | — | — |
Log-Glucose (mg/dL) | 0.234 | 0.037 * | — | — | — |
Log-HbA1c (%) | 0.148 | 0.191 | — | — | — |
Log-BUN (mg/dL) | 0.218 | 0.052 | — | — | — |
Log-Creatinine (mg/dL) | 0.219 | 0.051 | — | — | — |
eGFR (mL/min) | −0.302 | 0.006 * | — | — | — |
Log-UACR (mg/g) | 0.272 | 0.014 * | — | — | — |
Log-CRP (mg/dL) | 0.292 | 0.008 * | — | — | — |
Indoxyl sulfate (μg/mL) | 0.351 | 0.001 * | 0.261 | 0.051 | 0.019 * |
Variables | Spearman’s Correlation Coefficient | p Value |
---|---|---|
Age (years) | 0.231 | 0.039 * |
Body mass index (kg/m2) | 0.046 | 0.686 |
SBP (mmHg) | 0.331 | 0.003 * |
DBP (mmHg) | 0.075 | 0.511 |
Carotid–femoral PWV (m/s) | 0.351 | 0.001 * |
Total cholesterol (mg/dL) | 0.003 | 0.981 |
Log-Triglyceride (mg/dL) | 0.118 | 0.295 |
HDL-C (mg/dL) | 0.033 | 0.768 |
LDL-C (mg/dL) | −0.029 | 0.795 |
Log-Glucose (mg/dL) | 0.224 | 0.046 * |
Log-HbA1c (%) | 0.204 | 0.069 |
Log-BUN (mg/dL) | 0.203 | 0.072 |
Log-Creatinine (mg/dL) | 0.229 | 0.041 * |
eGFR (mL/min) | −0.286 | 0.010 * |
Log-UACR (mg/g) | 0.215 | 0.055 |
Log-CRP (mg/dL) | 0.338 | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, I.-M.; Teng, Y.-Y.; Li, J.-C.; Liu, C.-H.; Wu, D.-A.; Hsu, B.-G. Serum Indoxyl Sulfate as a Potential Biomarker of Aortic Stiffness in Persons with Type 2 Diabetes Mellitus. Medicina 2025, 61, 1607. https://doi.org/10.3390/medicina61091607
Su I-M, Teng Y-Y, Li J-C, Liu C-H, Wu D-A, Hsu B-G. Serum Indoxyl Sulfate as a Potential Biomarker of Aortic Stiffness in Persons with Type 2 Diabetes Mellitus. Medicina. 2025; 61(9):1607. https://doi.org/10.3390/medicina61091607
Chicago/Turabian StyleSu, I-Min, Yi-Yen Teng, Jer-Chuan Li, Chin-Hung Liu, Du-An Wu, and Bang-Gee Hsu. 2025. "Serum Indoxyl Sulfate as a Potential Biomarker of Aortic Stiffness in Persons with Type 2 Diabetes Mellitus" Medicina 61, no. 9: 1607. https://doi.org/10.3390/medicina61091607
APA StyleSu, I.-M., Teng, Y.-Y., Li, J.-C., Liu, C.-H., Wu, D.-A., & Hsu, B.-G. (2025). Serum Indoxyl Sulfate as a Potential Biomarker of Aortic Stiffness in Persons with Type 2 Diabetes Mellitus. Medicina, 61(9), 1607. https://doi.org/10.3390/medicina61091607