Imaging Modalities in Medication-Related Osteonecrosis of the Jaw: A Narrative Review of Diagnostic Findings and Staging
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Imaging Patterns in Early Diagnosis of MRONJ (Stage 0)
3.1.1. Panoramic Images and CT/CBCT
3.1.2. MRI Examination
3.2. Imaging Findings for Late Diagnosis of MRONJ (Stages I–III)
3.2.1. Panoramic Images and CT/CBCT
3.2.2. MRI Examination
3.3. Imaging Pattern of MRONJ in the Presence of Comorbidities, Other Medications, and Dental Infections
3.4. Imaging Pattern of MRONJ in the Presence of Osteomyelitis (OM) and Osteoradionecrosis (ORN)
4. Discussion
4.1. Challenges and Future Directions
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | apparent diffusion coefficient |
AI | artificial intelligence |
AUC | area under the curve |
BC | breast cancer |
BMD | bone mineral density |
BP | bisphosphonates |
BRONJ | bisphosphonate-related osteonecrosis of the jaw |
CBCT | cone-beam computed tomography |
CRI | composite radiographic index |
CS | corticosteroids |
CT | computed tomography |
DNB | denosumab |
DM | diabetes mellitus |
DWI | diffusion-weighted imaging |
JM | jaw metastases |
m-TOR | mammalian target of rapamycin |
MDP | technetium-99m-methylene diphosphonate |
MM | multiple myeloma |
MRI | magnetic resonance imaging |
MRONJ | medication-related osteonecrosis of the jaw |
OM | osteomyelitis |
OPT | orthopantomogram (panoramic radiograph) |
ONJ | osteonecrosis of the jaw |
ORN | osteoradionecrosis |
PCa | prostate cancer |
PET/CT | positron emission tomography/computed tomography |
PET/MRI | positron emission tomography/magnetic resonance imaging |
RA | rheumatoid arthritis |
RANKL | receptor activator of nuclear factor kappa-B ligand |
ROC | receiver operating characteristic |
SLE | systemic lupus erythematosus |
STIR | short tau inversion recovery |
SUV | standardized uptake value |
SPECT | single-photon emission computed tomography |
T1 | T1-weighted MRI signal |
T2 | T2-weighted MRI signal |
UTE-MRI | ultrashort echo time magnetic resonance imaging |
99mTc-DPD | technetium-99m-dicarboxypropane diphosphonate |
99mTc-HMDP | technetium-99m-hydroxymethylene diphosphonate |
3D | three-dimensional |
Appendix A
Variable | Search Strategy |
---|---|
Database searched | MEDLINE (accessed through PubMed) and EBSCO databases from their origin until 23 January 2024 |
Search strategy for PubMed | (“Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnostic imaging”[Mesh]) OR ((“osteonecrosis “OR”MRONJ“OR”BRONJ”) AND “jaw” AND (“medication” OR “drug” OR “bisphosphonate” OR “alendronate” OR “ibandronate” OR “risedronate” OR “zoledronate” OR “zoledronic acid” OR “antiresorptive” OR “Diphosphonates”[MeSH]) AND (“Diagnostic Imaging”[Mesh] OR “Imaging” OR “MRI” OR “magnetic resonance” OR “CBCT” OR “cone-beam” OR “OPT” OR “radiography” OR “X-ray”)) |
Search strategy for EBSCO | ((((“medication-related osteonecrosis of the jaw” OR MRONJ OR BRONJ) AND (imaging OR radiography OR MRI OR CBCT OR “cone-beam computed tomography”)))) |
Other sources | The reference lists of selected articles and reviews were hand-searched to identify any additional relevant articles. |
Appendix B
Study | Selection * | Comparability * | Outcome/Exposure * | Total * | Justification/Notes |
---|---|---|---|---|---|
Assaf et al. [26] | 2 | 1 | 2 | 5 | Matched controls; objective measurement of periodontal ligament width; no control for systemic confounders. |
Baba et al. [40] | 3 | 1 | 2 | 6 | Multivariate logistic regression performed; blinded CT assessment; no control group included. |
Demir et al. [27] | 1 | 0 | 1 | 2 | Case series with minimal sample; no control group; unblinded imaging assessment. |
Garcia-Ferrer et al. [53] | 1 | 0 | 1 | 2 | Descriptive MRI case series; no comparator or validation of outcome. |
Goller-Bulut et al. [28] | 2 | 1 | 2 | 5 | Matched case–control; blinded measurement of canal diameters; no multivariate adjustment. |
Gonen et al. [44] | 2 | 1 | 2 | 5 | Small matched cohort; objective cortical measurement; unclear blinding. |
Guggenberger et al. [50] | 2 | 1 | 2 | 5 | Prospective design; blinded imaging assessment; no control group. |
Guo et al. [29] | 1 | 0 | 1 | 2 | Retrospective comparison; no control group; descriptive imaging analysis. |
Huber et al. [49] | 2 | 1 | 2 | 5 | CBCT vs. UTE-MRI; blinded reviewers; absence of control group and confounder adjustment. |
Hutchinson et al. [23] | 2 | 1 | 1 | 4 | The study highlights radiographic features of stage 0 MRONJ but lacks a control group and uses a small, self-selected cohort |
Ito et al. [47] | 2 | 0 | 2 | 4 | Texture analysis of stage 0 MRONJ; no external control group; objective but unvalidated features. |
Kammerer et al. [24] | 2 | 0 | 1 | 3 | Retrospective CBCT/OPT study; small sample; unblinded evaluation. |
Klingelhoffer et al. [30] | 2 | 1 | 2 | 5 | Matched cases; randomization and blinding of radiographs; limited confounder control. |
Koo et al. [42] | 2 | 1 | 2 | 5 | Cross-sectional comparison; clear inclusion; group comparisons only. |
Kubo et al. [31] | 3 | 2 | 2 | 7 | Matched controls; analyzed morphometric variables; limited statistical adjustment. |
Moreno-Rabie et al. [43] | 2 | 1 | 2 | 5 | Case–control with 3 groups; substantial inter-observer agreement; no multivariable analysis. |
Muraoka et al. [51] | 2 | 1 | 2 | 5 | ADC-based MRI study; control group included; no blinding or full confounder adjustment. |
Ogura et al. [45] | 2 | 1 | 2 | 5 | Surgical specimens compared to ORN; histopathologic gold standard; no multivariable control. |
Ristow et al. [39] | 3 | 2 | 3 | 8 | Histology-validated diagnostic accuracy study; blinded examiners; no adjustment for stage. |
Rocha et al. [32] | 2 | 1 | 2 | 5 | Oncology vs. control patients; radiographic signs compared; no multivariable control. |
Sahin et al. [33] | 2 | 1 | 2 | 5 | Stratified MRONJ severity; no control group; small sample. |
Sakamoto et al. [48] | 1 | 0 | 2 | 3 | Compared osteolytic patterns; no confounder adjustment or control group. |
Schumann et al. [52] | 2 | 1 | 2 | 5 | UTE-MRI perfusion correlation; no adjustment for confounders. |
Shin et al. [22] | 3 | 2 | 2 | 7 | Large cohort with antiresorptive exposure; stratified analyses by imaging features; no follow-up. |
Soundia et al. [34] | 2 | 1 | 2 | 5 | Blinded imaging index for stage 0 progression; small cohort; no adjustment. |
Stockmann et al. [25] | 2 | 1 | 2 | 5 | Compared CT/MRI to intra-op findings; no confounder control; prospective. |
Torres et al. [41] | 3 | 2 | 3 | 8 | CBCT-based morphometry; matched controls; strong reliability metrics. |
Treister et al. [35] | 2 | 0 | 2 | 4 | Descriptive analysis of BONJ imaging signs; no controls or blinding. |
Walton et al. [36] | 2 | 1 | 2 | 5 | Composite index scoring; no multivariable analysis. |
Wazzan et al. [37] | 2 | 1 | 1 | 4 | Retrospective controls; matching methods unclear; poor methodological detail. |
Yfanti et al. [46] | 2 | 1 | 2 | 5 | CRI-based severity score; no external validation; limited confounder adjustment. |
Zaman et al. [38] | 2 | 1 | 1 | 4 | Small radiograph comparison study; unblinded, limited reproducibility. |
References
- Talreja, D.B. Importance of Antiresorptive Therapies for Patients with Bone Metastases from Solid Tumors. Cancer Manag. Res. 2012, 4, 287–297. [Google Scholar] [CrossRef]
- Lamy, O.; Everts-Graber, J.; Rodriguez, E.G. Denosumab for Osteoporosis Treatment: When, How, for Whom, and for How Long. A Pragmatical Approach. Aging Clin. Exp. Res. 2025, 37, 70. [Google Scholar] [CrossRef]
- Hadji, P.; Aapro, M.; Costa, L.; Gnant, M. Antiresorptive Treatment Options and Bone Health in Cancer Patients—Safety Profiles and Clinical Considerations. Cancer Treat. Rev. 2012, 38, 815–824. [Google Scholar] [CrossRef]
- Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; Carlson, E.R.; Ward, B.B.; Kademani, D. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws—2022 Update. J. Oral Maxillofac. Surg. 2022, 80, 920–943. [Google Scholar] [CrossRef]
- Zhang, X.; Hamadeh, I.S.; Song, S.; Katz, J.; Moreb, J.S.; Langaee, T.Y.; Lesko, L.J.; Gong, Y. Osteonecrosis of the Jaw in the United States Food and Drug Administration’s Adverse Event Reporting System (FAERS). J. Bone Miner. Res. 2016, 31, 336–340. [Google Scholar] [CrossRef]
- Zhong, Y.; Dai, W.; Yin, L.; Wu, G.; Wang, X. Real-World Study of Medication-Related Osteonecrosis of the Jaw from 2010 to 2023 Based on Food and Drug Administration Adverse Event Reporting System. JBMR Plus 2025, 9, ziaf003. [Google Scholar] [CrossRef] [PubMed]
- McGowan, K.; McGowan, T.; Ivanovski, S. Risk Factors for Medication-related Osteonecrosis of the Jaws: A Systematic Review. Oral Dis. 2018, 24, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Wick, A.; Bankosegger, P.; Otto, S.; Hohlweg-Majert, B.; Steiner, T.; Probst, F.; Ristow, O.; Pautke, C. Risk Factors Associated with Onset of Medication-Related Osteonecrosis of the Jaw in Patients Treated with Denosumab. Clin. Oral Investig. 2022, 26, 2839–2852. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Gallego Albertos, C.; Del Castillo Pardo de Vera, J.L.; Viejo Llorente, A.; Cebrián Carretero, J.L. Medication Related Osteonecrosis of the Jaws (MRONJ): Factors Related to Recurrence after Treatment with Surgery and Platelet Rich Plasma (PRP) Placement. Med. Oral Patol. Oral Cirugia Bucal 2021, 26, e684–e690. [Google Scholar] [CrossRef]
- Wang, E.P.; Kaban, L.B.; Strewler, G.J.; Raje, N.; Troulis, M.J. Incidence of Osteonecrosis of the Jaw in Patients with Multiple Myeloma and Breast or Prostate Cancer on Intravenous Bisphosphonate Therapy. J. Oral Maxillofac. Surg. 2007, 65, 1328–1331. [Google Scholar] [CrossRef]
- Alawawda, O.; Urvasızoğlu, G.; Bayındır, F. Medication-Related Osteonecrosis of the Jaw: Risk Factors, Management and Prevention in Dental Practices. New Trends Med. Sci. 2025, 6, 26–36. [Google Scholar] [CrossRef]
- Kwoen, M.; Park, J.; Kim, K.; Lee, J.; Kim, J.; Lee, H.; Lee, H. Association between Periodontal Disease, Tooth Extraction, and Medication-related Osteonecrosis of the Jaw in Women Receiving Bisphosphonates: A National Cohort-based Study. J. Periodontol. 2023, 94, 98–107. [Google Scholar] [CrossRef]
- Vahtsevanos, K.; Kyrgidis, A.; Verrou, E.; Katodritou, E.; Triaridis, S.; Andreadis, C.G.; Boukovinas, I.; Koloutsos, G.E.; Teleioudis, Z.; Kitikidou, K.; et al. Longitudinal Cohort Study of Risk Factors in Cancer Patients of Bisphosphonate-Related Osteonecrosis of the Jaw. J. Clin. Oncol. 2009, 27, 5356–5362. [Google Scholar] [CrossRef]
- AlRowis, R.; Aldawood, A.; AlOtaibi, M.; Alnasser, E.; AlSaif, I.; Aljaber, A.; Natto, Z. Medication-Related Osteonecrosis of the Jaw (MRONJ): A Review of Pathophysiology, Risk Factors, Preventive Measures and Treatment Strategies. Saudi Dent. J. 2022, 34, 202–210. [Google Scholar] [CrossRef]
- Papapoulos, S.; Chapurlat, R.; Libanati, C.; Brandi, M.L.; Brown, J.P.; Czerwiński, E.; Krieg, M.-A.; Man, Z.; Mellström, D.; Radominski, S.C.; et al. Five Years of Denosumab Exposure in Women with Postmenopausal Osteoporosis: Results from the First Two Years of the FREEDOM Extension. J. Bone Miner. Res. 2012, 27, 694–701. [Google Scholar] [CrossRef]
- Querrer, R.; Ferrare, N.; Melo, N.; Stefani, C.M.; dos Reis, P.E.D.; Mesquita, C.R.M.; Borges, G.A.; Leite, A.F.; Figueiredo, P.T. Differences between Bisphosphonate-Related and Denosumab-Related Osteonecrosis of the Jaws: A Systematic Review. Support. Care Cancer 2021, 29, 2811–2820. [Google Scholar] [CrossRef]
- Guarneri, V.; Miles, D.; Robert, N.; Diéras, V.; Glaspy, J.; Smith, I.; Thomssen, C.; Biganzoli, L.; Taran, T.; Conte, P. Bevacizumab and Osteonecrosis of the Jaw: Incidence and Association with Bisphosphonate Therapy in Three Large Prospective Trials in Advanced Breast Cancer. Breast Cancer Res. Treat. 2010, 122, 181–188. [Google Scholar] [CrossRef]
- Yarom, N.; Shapiro, C.L.; Peterson, D.E.; Van Poznak, C.H.; Bohlke, K.; Ruggiero, S.L.; Migliorati, C.A.; Khan, A.; Morrison, A.; Anderson, H.; et al. Medication-Related Osteonecrosis of the Jaw: MASCC/ISOO/ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 2270–2290. [Google Scholar] [CrossRef] [PubMed]
- Byrne, H.; O’Reilly, S.; Weadick, C.S.; Brady, P.; Ríordáin, R.N. How We Manage Medication-Related Osteonecrosis of the Jaw. Eur. J. Med. Res. 2024, 29, 402. [Google Scholar] [CrossRef] [PubMed]
- Ruan, H.-J.; Chen, H.; Hou, J.-S.; An, J.-G.; Guo, Y.-X.; Liu, B.; Tian, L.; Pan, J.; Li, J.-S.; Jiang, C.-H.; et al. Chinese Expert Consensus on the Diagnosis and Clinical Management of Medication-Related Osteonecrosis of the Jaw. J. Bone Oncol. 2024, 49, 100650. [Google Scholar] [CrossRef] [PubMed]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing Narrative Literature Reviews for Peer-Reviewed Journals: Secrets of the Trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef]
- Shin, J.W.; Kim, J.-E.; Huh, K.-H.; Yi, W.-J.; Heo, M.-S.; Lee, S.-S.; Choi, S.-C. Clinical and Panoramic Radiographic Features of Osteomyelitis of the Jaw: A Comparison between Antiresorptive Medication-Related and Medication-Unrelated Conditions. Imaging Sci. Dent. 2019, 49, 287. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.; O’Ryan, F.; Chavez, V.; Lathon, P.V.; Sanchez, G.; Hatcher, D.C.; Indresano, A.T.; Lo, J.C. Radiographic Findings in Bisphosphonate-Treated Patients with Stage 0 Disease in the Absence of Bone Exposure. J. Oral Maxillofac. Surg. 2010, 68, 2232–2240. [Google Scholar] [CrossRef]
- Kämmerer, P.W.; Thiem, D.; Eisenbeiß, C.; Dau, M.; Schulze, R.K.W.; Al-Nawas, B.; Draenert, F.G. Surgical Evaluation of Panoramic Radiography and Cone Beam Computed Tomography for Therapy Planning of Bisphosphonate-Related Osteonecrosis of the Jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, P.; Hinkmann, F.M.; Lell, M.M.; Fenner, M.; Vairaktaris, E.; Neukam, F.-W.; Nkenke, E. Panoramic Radiograph, Computed Tomography or Magnetic Resonance Imaging. Which Imaging Technique Should Be Preferred in Bisphosphonate-Associated Osteonecrosis of the Jaw? A Prospective Clinical Study. Clin. Oral Investig. 2010, 14, 311–317. [Google Scholar] [CrossRef]
- Assaf, A.T.; Amberg, V.; Smeets, R.; Wikner, J.; Hanken, H.; Semmusch, J.; Ewald, F.; Rashad, A.; FriEDRICH, R.E. Evaluation of Periodontal Space Widening in Patients with Antiresorptive Drug-Related Osteonecrosis of the Jaws (ARONJ) on Panoramic Radiographs. Anticancer Res. 2018, 38, 5305–5314. [Google Scholar] [CrossRef]
- Demir, A.; Pekiner, F. Radiographic Findings of Bisphosphonate-Related Osteonecrosis of the Jaws: Comparison with Cone-Beam Computed Tomography and Panoramic Radiography. Niger. J. Clin. Pract. 2017, 20, 346. [Google Scholar] [CrossRef]
- Goller-Bulut, D.; Ozcan, G.; Avci, F. Changes in Dimension of Neurovascular Canals in the Mandible and Maxilla: A Radiographic Finding in Patients Diagnosed with MRONJ. Med. Oral Patol. Oral Cirugia Bucal 2018, 23, E282–E289. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, D.; Wang, Y.; Peng, X.; Guo, C. Imaging Features of Medicine-Related Osteonecrosis of the Jaws: Comparison between Panoramic Radiography and Computed Tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, e69–e76. [Google Scholar] [CrossRef]
- Klingelhöffer, C.; Klingelhöffer, M.; Müller, S.; Ettl, T.; Wahlmann, U. Can Dental Panoramic Radiographic Findings Serve as Indicators for the Development of Medication-Related Osteonecrosis of the Jaw? Dentomaxillofac. Radiol. 2016, 45, 20160065. [Google Scholar] [CrossRef] [PubMed]
- Kubo, R.; Ariji, Y.; Taniguchi, T.; Nozawa, M.; Katsumata, A.; Ariji, E. Panoramic Radiographic Features That Predict the Development of Bisphosphonate-Related Osteonecrosis of the Jaw. Oral Radiol. 2018, 34, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.C.M.A.; Jaguar, G.C.; Moreira, C.R.; Neves, E.G.; Fonseca, F.P.; Pedreira, E.N. Radiographic Evaluation of Maxillofacial Region in Oncology Patients Treated with Bisphosphonates. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, S19–S25. [Google Scholar] [CrossRef]
- Şahin, O.; Odabaşı, O.; Demiralp, K.Ö.; Kurşun-Çakmak, E.Ş.; Aliyev, T. Comparison of Findings of Radiographic and Fractal Dimension Analyses on Panoramic Radiographs of Patients with Early-Stage and Advanced-Stage Medication-Related Osteonecrosis of the Jaw. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 78–86. [Google Scholar] [CrossRef]
- Soundia, A.; Hadaya, D.; Mallya, S.M.; Aghaloo, T.L.; Tetradis, S. Radiographic Predictors of Bone Exposure in Patients with Stage 0 Medication-Related Osteonecrosis of the Jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 537–544. [Google Scholar] [CrossRef]
- Treister, N.; Sheehy, N.; Bae, E.; Friedland, B.; Lerman, M.; Woo, S. Dental Panoramic Radiographic Evaluation in Bisphosphonate-associated Osteonecrosis of the Jaws. Oral Dis. 2009, 15, 88–92. [Google Scholar] [CrossRef]
- Walton, K.; Grogan, T.R.; Eshaghzadeh, E.; Hadaya, D.; Elashoff, D.A.; Aghaloo, T.L.; Tetradis, S. Medication Related Osteonecrosis of the Jaw in Osteoporotic vs Oncologic Patients—Quantifying Radiographic Appearance and Relationship to Clinical Findings. Dentomaxillofac. Radiol. 2019, 48, 20180128. [Google Scholar] [CrossRef] [PubMed]
- Wazzan, T.; Kashtwari, D.; Almaden, W.F.; Gong, Y.; Chen, Y.; Moreb, J.; Katz, J. Radiographic Bone Loss and the Risk of Medication-related Osteonecrosis of the Jaw (MRONJ) in Multiple Myeloma Patients—A Retrospective Case Control Study. Spec. Care Dentist. 2018, 38, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.U.; Nakamoto, T.; Tanimoto, K. A Retrospective Study of Digital Subtraction Technique to Detect Sclerotic Changes in Alveolar Bone on Intraoral Radiographs of Bisphosphonate-Treated Patients. Dentomaxillofac. Radiol. 2013, 42, 20130242. [Google Scholar] [CrossRef]
- Ristow, O.; Schnug, G.; Smielowksi, M.; Moratin, J.; Pilz, M.; Engel, M.; Freudlsperger, C.; Hoffmann, J.; Rückschloß, T. Diagnostic Accuracy Comparing OPT and CBCT in the Detection of Non-vital Bone Changes before Tooth Extractions in Patients with Antiresorptive Intake. Oral Dis. 2023, 29, 1039–1049. [Google Scholar] [CrossRef]
- Baba, A.; Goto, T.K.; Ojiri, H.; Takagiwa, M.; Hiraga, C.; Okamura, M.; Hasegawa, S.; Okuyama, Y.; Ogino, N.; Yamauchi, H.; et al. CT Imaging Features of Antiresorptive Agent-Related Osteonecrosis of the Jaw/Medication-Related Osteonecrosis of the Jaws. Dentomaxillofac. Radiol. 2018, 47, 20170323. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.R.; Chen, C.S.K.; Leroux, B.G.; Lee, P.P.; Hollender, L.G.; Santos, E.C.A.; Drew, S.P.; Hung, K.-C.; Schubert, M.M. Mandibular Cortical Bone Evaluation on Cone Beam Computed Tomography Images of Patients with Bisphosphonate-Related Osteonecrosis of the Jaw. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 695–703. [Google Scholar] [CrossRef]
- Koo, C.-H.; Lee, J.-H. Evaluation of Mandibular Cortical Bone Ratio on Computed Tomography Images in Patients Taking Bisphosphonates. Maxillofac. Plast. Reconstr. Surg. 2018, 40, 17. [Google Scholar] [CrossRef]
- Moreno Rabie, C.; Cavalcante Fontenele, R.; Oliveira Santos, N.; Nogueira Reis, F.; Van den Wyngaert, T.; Jacobs, R. Three-Dimensional Clinical Assessment for MRONJ Risk in Oncologic Patients Following Tooth Extractions. Dentomaxillofac. Radiol. 2023, 52, 20230238. [Google Scholar] [CrossRef]
- Gönen, Z.B.; Yillmaz Asan, C.; Zararsiz, G.; Kiliç, E.; Alkan, A. Osseous Changes in Patients with Medication-Related Osteonecrosis of the Jaws. Dentomaxillofac. Radiol. 2018, 47, 20170172. [Google Scholar] [CrossRef]
- Ogura, I.; Minami, Y.; Ono, J.; Kanri, Y.; Okada, Y.; Igarashi, K.; Haga-Tsujimura, M.; Nakahara, K.; Kobayashi, E. CBCT Imaging and Histopathological Characteristics of Osteoradionecrosis and Medication-Related Osteonecrosis of the Jaw. Imaging Sci. Dent. 2021, 51, 73. [Google Scholar] [CrossRef]
- Yfanti, Z.; Tetradis, S.; Nikitakis, N.G.; Alexiou, K.E.; Makris, N.; Angelopoulos, C.; Tsiklakis, K. Radiologic Findings of Osteonecrosis, Osteoradionecrosis, Osteomyelitis and Jaw Metastatic Disease with Cone Beam CT. Eur. J. Radiol. 2023, 165, 110916. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Muraoka, H.; Hirahara, N.; Sawada, E.; Hirohata, S.; Otsuka, K.; Okada, S.; Kaneda, T. Quantitative Assessment of Mandibular Bone Marrow Using Computed Tomography Texture Analysis for Detect Stage 0 Medication-Related Osteonecrosis of the Jaw. Eur. J. Radiol. 2021, 145, 110030. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Sawada, S.; Kojima, Y. Medication-Related Osteonecrosis of the Jaw without Osteolysis on Computed Tomography: A Retrospective and Observational Study. Sci. Rep. 2023, 13, 12890. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.A.; Schumann, P.; von Spiczak, J.; Wurnig, M.C.; Klarhöfer, M.; Finkenstaedt, T.; Bedogni, A.; Guggenberger, R. Medication-Related Osteonecrosis of the Jaw—Comparison of Bone Imaging Using Ultrashort Echo-Time Magnetic Resonance Imaging and Cone-Beam Computed Tomography. Investig. Radiol. 2020, 55, 160–167. [Google Scholar] [CrossRef]
- Guggenberger, R.; Fischer, D.R.; Metzler, P.; Andreisek, G.; Nanz, D.; Jacobsen, C.; Schmid, D.T. Bisphosphonate-Induced Osteonecrosis of the Jaw: Comparison of Disease Extent on Contrast-Enhanced MR Imaging, [ 18 F] Fluoride PET/CT, and Conebeam CT Imaging. Am. J. Neuroradiol. 2013, 34, 1242–1247. [Google Scholar] [CrossRef]
- Muraoka, H.; Ito, K.; Hirahara, N.; Okada, S.; Kondo, T.; Kaneda, T. The Value of Diffusion-Weighted Imaging in the Diagnosis of Medication-Related Osteonecrosis of the Jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 132, 339–345. [Google Scholar] [CrossRef]
- Schumann, P.; Morgenroth, S.; Huber, F.A.; Rupp, N.J.; Del Grande, F.; Guggenberger, R. Correlation of Dynamic Contrast-Enhanced Bone Perfusion with Morphologic Ultra-Short Echo Time MR Imaging in Medication-Related Osteonecrosis of the Jaw. Dentomaxillofac. Radiol. 2022, 51, 20210036. [Google Scholar] [CrossRef] [PubMed]
- García-Ferrer, L.; Bagán, J.V.; Martínez-Sanjuan, V.; Hernandez-Bazan, S.; García, R.; Jiménez-Soriano, Y.; Hervas, V. MRI of Mandibular Osteonecrosis Secondary to Bisphosphonates. Am. J. Roentgenol. 2008, 190, 949–955. [Google Scholar] [CrossRef]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and Management of Osteonecrosis of the Jaw: A Systematic Review and International Consensus. J. Bone Miner. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef]
- Ruggiero, S.L. Diagnosis and Staging of Medication-Related Osteonecrosis of the Jaw. Oral Maxillofac. Surg. Clin. N. Am. 2015, 27, 479–487. [Google Scholar] [CrossRef]
- Krishnan, A.; Arslanoglu, A.; Yildirm, N.; Silbergleit, R.; Aygun, N. Imaging Findings of Bisphosphonate-Related Osteonecrosis of the Jaw with Emphasis on Early Magnetic Resonance Imaging Findings. J. Comput. Assist. Tomogr. 2009, 33, 298–304. [Google Scholar] [CrossRef]
- Chiandussi, S.; Biasotto, M.; Dore, F.; Cavalli, F.; Cova, M.; Di Lenarda, R. Clinical and Diagnostic Imaging of Bisphosphonate-Associated Osteonecrosis of the Jaws. Dentomaxillofac. Radiol. 2006, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- De Antoni, C.C.; Matsumoto, M.A.; da Silva, A.A.; Curi, M.M.; Santiago Júnior, J.F.; Sassi, L.M.; Cardoso, C.L. Medication-Related Osteonecrosis of the Jaw, Osteoradionecrosis, and Osteomyelitis: A Comparative Histopathological Study. Braz. Oral Res. 2018, 32, e23. [Google Scholar] [CrossRef] [PubMed]
- Qaisi, M.; Montague, L. Bone Margin Analysis for Osteonecrosis and Osteomyelitis of the Jaws. Oral Maxillofac. Surg. Clin. N. Am. 2017, 29, 301–313. [Google Scholar] [CrossRef]
- Reinert, C.P.; Pfannenberg, C.; Gückel, B.; Dittmann, H.; la Fougère, C.; Nikolaou, K.; Reinert, S.; Schönhof, R.; Hoefert, S. Preoperative Assessment of Medication-Related Osteonecrosis of the Jaw Using [18F]Fluoride Positron Emission Tomography (PET)/CT and [18F]Fluorodeoxyglucose PET/MRI in Correlation with Histomorphometry and Micro-CT—A Prospective Comparative Study. Diagnostics 2024, 14, 428. [Google Scholar] [CrossRef]
- Koth, V.S.; Figueiredo, M.A.; Salum, F.G.; Cherubini, K. Bisphosphonate-Related Osteonecrosis of the Jaw: From the Sine qua Non Condition of Bone Exposure to a Non-Exposed BRONJ Entity. Dentomaxillofac. Radiol. 2016, 45, 20160049. [Google Scholar] [CrossRef] [PubMed]
- Yanaguizawa, W.H.; Velasco, S.K.; Petersen, R.L.; Alves, F.D.A.; Cavalcanti, M.G.P. Imaging Modalities in Medication-Related Osteonecrosis of the Jaw. Clin. Lab. Res. Dent. 2020, 1–7. [Google Scholar] [CrossRef]
- Watanabe, S.; Nakajima, K.; Mizokami, A.; Yaegashi, H.; Noguchi, N.; Kawashiri, S.; Inokuchi, M.; Kinuya, S. Bone Scan Index of the Jaw: A New Approach for Evaluating Early-Stage Anti-Resorptive Agents-Related Osteonecrosis. Ann. Nucl. Med. 2017, 31, 201–210. [Google Scholar] [CrossRef]
- Watanabe, S.; Nakajima, K.; Kinuya, S. ☆Symposium: Imaging Modalities for Drug-Related Osteonecrosis of the Jaw (5), Utility of Bone Scintigraphy and 18F-FDG PET/CT in Early Detection and Risk Assessment of Medication-Related Osteonecrosis of the Jaw (Secondary Publication). Jpn. Dent. Sci. Rev. 2019, 55, 76–79. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Ohga, N.; Asaka, T.; Sato, J.; Hata, H.; Helman, J.; Tsuboi, K.; Amizuka, N.; Kuge, Y.; Shiga, T. Imaging Modalities for Drug-Related Osteonecrosis of the Jaw (3), Positron Emission Tomography Imaging for the Diagnosis of Medication-Related Osteonecrosis of the Jaw. Jpn. Dent. Sci. Rev. 2019, 55, 65–70. [Google Scholar] [CrossRef]
- Miyashita, H.; Kameyama, K.; Morita, M.; Nakagawa, T.; Nakahara, T. Three-Dimensional Radiologic–Pathologic Correlation of Medication-Related Osteonecrosis of the Jaw Using 3D Bone SPECT/CT Imaging. Dentomaxillofac. Radiol. 2019, 48, 20190208. [Google Scholar] [CrossRef]
- Okui, T.; Kobayashi, Y.; Isomura, M.; Tsujimoto, M.; Satoh, K.; Toyama, H. Histopathological Findings Affect Quantitative Values of Single Photon Emission Computed Tomography in Patients with Antiresorptive Agent-Related Osteonecrosis of the Jaws. Fujita Med. J. 2023, 9, 186–193. [Google Scholar] [CrossRef]
- Kobayashi, E.; Tezuka, Y.; Ono, J.; Okada, Y.; Ogura, I. Role of Preoperative SPECT/CT Standardized Uptake Values in Medication-Related Osteonecrosis of the Jaw: A Preliminary Study of SPECT/CT in Relation to Cone-Beam CT and Histopathological Findings of the Resected Bone of Mandibulectomy. Egypt. J. Radiol. Nucl. Med. 2023, 54, 106. [Google Scholar] [CrossRef]
- Ogawa, R.; Ogura, I. Analysis of Medication-Related Osteonecrosis of the Jaw with Bone SPECT/CT: Relationship between Patient Characteristics and Maximum Standardized Uptake Value. Dentomaxillofac. Radiol. 2021, 50, 20200516. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.N.M.; da Silva, H.E.C.; Ossege, F.E.L.; Figueiredo, P.T.d.S.; Melo, N.d.S.; Stefani, C.M.; Leite, A.F. Radiomics in Bone Pathology of the Jaws. Dentomaxillofac. Radiol. 2023, 52, 20220225. [Google Scholar] [CrossRef]
- Shen, X.; Luo, J.; Tang, X.; Chen, B.; Qin, Y.; Zhou, Y.; Xiao, J. Deep Learning Approach for Diagnosing Early Osteonecrosis of the Femoral Head Based on Magnetic Resonance Imaging. J. Arthroplasty 2023, 38, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Schoenhof, R.; Munz, A.; Yuan, A.; ElAyouti, A.; Boesmueller, H.; Blumenstock, G.; Reinert, S.; Hoefert, S. Microarchitecture of Medication-Related Osteonecrosis of the Jaw (MRONJ); a Retrospective Micro-CT and Morphometric Analysis. J. Cranio-Maxillofac. Surg. 2021, 49, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Oxford Centre for Evidence-Based Medicine. Levels of Evidence (March 2009); University of Oxford: Oxford, UK, 2009; Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/levels-of-evidence-march-2009 (accessed on 25 July 2025).
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
Reference | Year | Type of the Study | No. of Patients (Cases/Controls) | Drugs | Length of Therapy | Main Comorbidities |
---|---|---|---|---|---|---|
Shin et al. [22] | 2019 | Retro. cohort | 161/179 | BP + DNB | 4.5 y avg. | HTN, OP, DM |
Hutchinson et al. [23] | 2010 | Case–control | 30/975 | BP + DNB | Median 3.0 y (2.4–4.7) | OP, PCa, MM |
Kammerer et al. [24] | 2016 | Cross-sectional | 14 | BP | Not specified | OP, SLE, RA, DM |
Stockmann et al. [25] | 2009 | Cross-sectional | 28 | BP | Not specified | MM, other malignancies, OP |
Assaf et al. [26] | 2018 | Cross-sectional | 32 | BP + DNB, (+CS in 25%) | Not specified | Multiple systemic diseases (hyperthyroidism, arrhythmias, cancers, etc.) |
Demir et al. [27] | 2017 | Cross-sectional | 27 | BP | 1 to 10 y | DM |
Goller-Bulut et al. [28] | 2018 | Case–control | 56/56 | BP | Not specified | MM, PCa + BC w/metastases |
Guo et al. [29] | 2016 | Cross-sectional | 40 | BP | Mean: 37.92 (10–96 mo). | BC w/mets, MM, OP |
Klingelhoffer et al. [30] | 2016 | Case–control | 60/60 | BP | ~4.75 y | OP, bone mets, MM |
Kubo et al. [31] | 2017 | Case–control | 24/179/200 B– | BP | 67.9 ± 37.1 mo (ONJ +) vs. 40.4 ± 47.9 (ONJ–) | OP, bone mets |
Rocha et al. [32] | 2012 | Case–control | 30/30 | BP | 16 mo | Met. cancers, periodontal dz, history of oral surgery |
Sahin et al. [33] | 2019 | Cross-sectional | 66 | BP + DNB | 21 mo (early); 48 mo (adv) | OP, cancers (BC, lung, PCa, etc.), MM |
Soundia et al. [34] | 2018 | Cross-sectional | 23 | BP + DNB | 52 mo | OP, cancers, sarcoma, GCT |
Treister et al. [35] | 2009 | Cross-sectional | 39 (234 sextants) | BP | Not specified | Multiple cancers, Gaucher’s dz, OP |
Walton et al. [36] | 2019 | Cross-sectional | 70 | BP + DNB | Not specified | Multiple cancers, OP |
Wazzan et al. [37] | 2018 | Case–control | 16/100 | BP | 2 y vs. 1 y | MM, smoking, DM, steroid use |
Zaman et al. [38] | 2013 | Cohort | 43 | BP | 17–74 mo | BC, hepatic cancer, MM, OP |
Ristow et al. [39] | 2021 | Retro. cohort | 130 | BP + DNB | 47.9 mo (1–189) | Multiple cancers, OP |
Baba et al. [40] | 2018 | Prosp. cohort | 74 | BP + DNB | 0.2–15 y (avg. 3.44 y) | Multiple cancers, OP |
Torres et al. [41] | 2012 | Case–control | 12/64 | BP | Not specified | Cancer-related bone metastases |
Koo et al. [42] | 2018 | Case–control | 63/32 | BP + DNB | 6.3 ± 5.3 y vs. 4.8 ± 4.4 y | Malignant and benign bone conditions |
Moreno-Rabie et al. [43] | 2023 | Case–control | 47/50 | BP + DNB | MRONJ +: 40.4 mo; MRONJ–: 29.5 mo | BC, MM, PCa, renal cancer, other cancers |
Gönen et al. [44] | 2018 | Case–control | 25/25 | BP | 1–120 mo | Not reported |
Ogura et al. [45] | 2021 | Cross-sectional | 10 | BP + DNB | Not specified | Met. cancers |
Yfanti et al. [46] | 2023 | Retro. cohort | 335 | BP + DNB | Not specified | OP, bone mets, oral surgeries |
Ito et al. [47] | 2021 | Case–control | 25 | BP | 4–9 y (avg. ~6.5 y) | Steroids, DM |
Sakamoto et al. [48] | 2023 | Retro. cohort | 18 | BP + DNB | 9–24 mo (non-osteolytic); 25.8 ± 19.3 mo (osteolytic) | DM, steroids, cancers, OP |
Huber et al. [49] | 2019 | Cross-sectional | 19 | BP | Not specified | Cancers, DM |
Guggenberger et al. [50] | 2013 | Cross-sectional | 10 | BP | Median 48 mo (7–60 mo) | Cancers, OP |
Muraoka et al. [51] | 2021 | Case–control | 38/10 | BP + DNB | Not specified | OP/osteopenia, bone mets |
Schumann et al. [52] | 2022 | Cross-sectional | 20 | BP + DNB | Not specified | OP, PCa, other cancers |
Garcia-Ferrer et al. [53] | 2008 | Cross-sectional | 14 | BP | 18–60 mo (~32.4 ± 14.7) | OP, cancers |
Modality | Early Diagnosis (Stage 0) | Late Diagnosis (Stages I–III) | Management and Follow-Up |
---|---|---|---|
X-Ray | [24,25,28,29,33,35,39,40] | [23,27,28,29,30,31,32,34,36,37] | [24,25,26] |
CBCT | [24,35,40,44,48] | [28,29,30,32,37,41,42,43,44,45,46,47,50,51] | [24,25,26] |
MRI | [48,52] | [49,51,52,53,54] | [26] |
Early | Late | |
---|---|---|
Osteosclerosis | 120 | 348 |
Osteolysis | 58 | 360 |
Periosteal reaction | 19 | 115 |
Sequestration | 29 | 296 |
Lamina dura thickening | 31 | 143 |
Cortical erosion/irregularity | 29 | 7 |
Persistent socket | 19 | 59 |
Prominent inferior alveolar canal | 7 | 95 |
Fragmentation/fracture | 0 | 14 |
Imaging Method | Diagnostic Limitations | Accessibility and Daily Use | Economic and Organizational Considerations |
---|---|---|---|
Panoramic radiography | Low sensitivity (~54%) for early MRONJ [1,2]. Requires major bone loss to detect changes, missing early marrow involvement. Two-dimensional images fail to show cortical breaches or sequestra [3,55]. | Common, low-cost tool in dental practice with minimal radiation [5]. Often insufficient alone; advanced imaging needed for full evaluation [4]. | Low-cost, in-office imaging; no referral needed. Common first-line tool with minimal logistical demands. May necessitate follow-up with advanced imaging, adding downstream costs. |
Conventional CT | Detects bone lesions well (~96%) [1], but lacks soft-tissue/marrow detail [6]. May overestimate necrosis; artifacts from dental metals reduce accuracy [7,8]. | Available in hospitals, costly, and high-radiation. Used mainly in advanced cases or surgical planning, not routine screening [25,40,50]. | CT entails higher institutional costs and radiation exposure compared to dental imaging [61]. It requires referral to hospital-based radiology, often causing delays and additional coordination. Despite its diagnostic benefits, logistical and economic constraints limit its routine use. |
Cone-Beam CT | High-resolution 3D bone imaging, more accurate than panoramic X-rays (~88% vs. ~56% AUC) [9]. Cannot show marrow edema; artifacts possible [24,27,33,39]. | Widely available in dental settings, lower cost/dose than CT. Preferred for jaw evaluation but limited for extensive or soft-tissue disease. | CBCT is more cost-effective and accessible than conventional CT, and often available within dental or OMFS practices [61]. It minimizes referral burden and integrates efficiently into outpatient workflows, supporting faster diagnosis with lower organizational complexity. |
Magnetic Resonance Imaging (MRI) | Best for early marrow and soft-tissue changes in MRONJ [6]. Poor for fine bone detail; variable image quality and dental artifacts limit use [8]. | Not available in dental offices. Time-consuming and costly, used selectively for early or soft-tissue cases with inconclusive CT [25,50,56]. | MRI demands specialized facilities and higher costs, both for acquisition and scheduling. Access is restricted to imaging centers or hospitals, posing significant logistical barriers. Its use is typically limited to complex cases due to these institutional challenges [62]. |
Bone Scintigraphy/SPECT | High sensitivity to early changes [12] but low specificity [13,14]. Limited spatial detail; false positives are common. SPECT improves localization [14]. | Requires nuclear medicine setup and IV tracer. Time-intensive and moderately radioactive; reserved for complex or unclear cases [15,45,63,64]. | SPECT requires nuclear medicine infrastructure and radiotracer logistics, which limits access to tertiary centers. Multistep procedures increase organizational burden, reducing feasibility for routine assessment despite high sensitivity [62]. |
PET/CT | Shows metabolic activity in MRONJ [16], but uptake overlaps with infections or healing. Tends to overestimate lesion extent; lacks standard criteria [13]. | Expensive, high-radiation, limited to tertiary centers. Rarely used in routine care—mostly for oncology or unresolved cases [50,63,65]. | PET/CT involves substantial institutional investment in tracers, scanners, and staff. Its complexity restricts availability to major hospitals or research centers. Used selectively; its cost and workflow demands preclude routine clinical application in MRONJ [50]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manole, M.C.; Nicoară, M.; Burde, A.V.; Hedeșiu, I.; Bele, D.N.; Hedeșiu, M.; Crișan, F.; Grecu, A.; Sinescu, C.; Negrutiu, M.L. Imaging Modalities in Medication-Related Osteonecrosis of the Jaw: A Narrative Review of Diagnostic Findings and Staging. Medicina 2025, 61, 1578. https://doi.org/10.3390/medicina61091578
Manole MC, Nicoară M, Burde AV, Hedeșiu I, Bele DN, Hedeșiu M, Crișan F, Grecu A, Sinescu C, Negrutiu ML. Imaging Modalities in Medication-Related Osteonecrosis of the Jaw: A Narrative Review of Diagnostic Findings and Staging. Medicina. 2025; 61(9):1578. https://doi.org/10.3390/medicina61091578
Chicago/Turabian StyleManole, Marius Ciprian, Mihnea Nicoară, Alexandru Victor Burde, Ioana Hedeșiu, Dan Nicolae Bele, Mihaela Hedeșiu, Florin Crișan, Alexandru Grecu, Cosmin Sinescu, and Meda Lavinia Negrutiu. 2025. "Imaging Modalities in Medication-Related Osteonecrosis of the Jaw: A Narrative Review of Diagnostic Findings and Staging" Medicina 61, no. 9: 1578. https://doi.org/10.3390/medicina61091578
APA StyleManole, M. C., Nicoară, M., Burde, A. V., Hedeșiu, I., Bele, D. N., Hedeșiu, M., Crișan, F., Grecu, A., Sinescu, C., & Negrutiu, M. L. (2025). Imaging Modalities in Medication-Related Osteonecrosis of the Jaw: A Narrative Review of Diagnostic Findings and Staging. Medicina, 61(9), 1578. https://doi.org/10.3390/medicina61091578