Association Between Redox and Inflammatory Biomarkers with the Presence and Severity of Obstructive Sleep Apnea
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sleep Study
2.3. Laboratory Measurements
2.4. Statistical Analysis
3. Results
3.1. Control Group vs. Obstructive Sleep Apnea
3.1.1. Demographic, Clinical, and Biochemical Data Examination
3.1.2. Oxidative Stress Biomarkers Examination
3.1.3. Correlation Analysis
3.1.4. Regression and Principal Component Analyses
3.2. Examination in Patients with Obstructive Sleep Apnea
3.2.1. Demographic, Clinical, and Biochemistry Data According to the Apnea–Hypopnea Index
3.2.2. Redox Status and Inflammatory Biomarkers According to the Apnea–Hypopnea Index
3.2.3. Correlation Analysis in Patients with Obstructive Sleep Apnea
3.2.4. Regression and Principal Component Analyses in Patients with Obstructive Sleep Apnea
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OSA | Obstructive sleep apnea |
CIH | Chronic intermittent hypoxemia |
ROS | Reactive oxygen species |
TOS | Total oxidative status |
TBARS | Thiobarbiturate reactive substances |
TAS | Total antioxidant status |
AOPP | Advanced oxidation protein products |
CRP | C-reactive protein |
flRAGE | Full-length receptor for advanced glycation end products |
sRAGE | Soluble receptor for advanced glycation end products |
NF-κB | Nuclear factor kappa B |
TGF-β1 | Transforming growth factor-beta 1 |
PCA | Principal component analysis |
BMI | Body mass index |
AHI | Apnea–hypopnea index |
ODI | Oxygen desaturation index |
SaO2 | Oxygen saturation |
O2.− | Superoxide anion radical |
CV | Coefficient of variation |
tSH | Total protein sulfhydryl |
SOD | Superoxide dismutase |
PAB | Pro-oxidant-antioxidant balance |
IMA | Ischemia-modified albumin |
OSI | Oxidative stress index |
PBMC | Peripheral blood mononuclear cells |
RNA | Ribonucleic acid |
mRNA | Messenger ribonucleic acid |
VIF | Variance inflation factor |
CI | Confidence Interval |
OR | Odds ratio |
HIF-1α | Hypoxia-inducible factor 1-alpha |
ECM | Extracellular matrix |
References
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef]
- de Araujo Dantas, A.B.; Goncalves, F.M.; Martins, A.A.; Alves, G.Â.; Stechman-Neto, J.; Correa, C.D.C.; Santos, R.S.; Nascimento, W.V.; de Araujo, C.M.; Taveira, K.V.M. Worldwide prevalence and associated risk factors of obstructive sleep apnea: A meta-analysis and meta-regression. Sleep Breath. 2023, 27, 2083–2109. [Google Scholar] [CrossRef]
- Peracaula, M.; Torres, D.; Poyatos, P.; Luque, N.; Rojas, E.; Obrador, A.; Orriols, R.; Tura-Ceide, O. Endothelial dysfunction and cardiovascular risk in obstructive sleep apnea: A review article. Life 2022, 12, 537. [Google Scholar] [CrossRef]
- Gaspar, L.S.; Álvaro, A.R.; Moita, J.; Cavadas, C. Obstructive sleep apnea and hallmarks of aging. Trends Mol. Med. 2017, 23, 675–692. [Google Scholar] [CrossRef]
- Hynes, D.; Mansfield, D. Diagnosis and management of obstructive sleep apnoea in adults. Aust. Prescr. 2024, 47, 52. [Google Scholar] [CrossRef]
- Lavalle, S.; Masiello, E.; Iannella, G.; Magliulo, G.; Pace, A.; Lechien, J.R.; Calvo-Henriquez, C.; Cocuzza, S.; Parisi, F.M.; Favier, V.; et al. Unraveling the complexities of oxidative stress and inflammation biomarkers in obstructive sleep apnea syndrome: A comprehensive review. Life 2024, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Pooja, G.; Shweta, S.; Patel, P. Oxidative stress and free radicals in disease pathogenesis: A review. Discov. Med. 2025, 2, 104. [Google Scholar] [CrossRef]
- Olszewska, E.; Rogalska, J.; Brzóska, M.M. The association of oxidative stress in the uvular mucosa with obstructive sleep apnea syndrome: A clinical study. J. Clin. Med. 2021, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Mai, L.; Luo, J.; Shi, W.; Xiang, H.; Song, S.; Hong, L.; Long, W.; Mo, B.; Luo, M. Peripheral blood oxidative stress markers for obstructive sleep apnea—A meta-analysis. Sleep Breath. 2022, 26, 2045–2057. [Google Scholar] [CrossRef]
- Pau, M.C.; Zinellu, A.; Mangoni, A.A.; Paliogiannis, P.; Lacana, M.R.; Fois, S.S.; Mellino, S.; Fois, A.G.; Carru, C.; Zinellu, E.; et al. Evaluation of inflammation and oxidative stress markers in patients with Obstructive Sleep Apnea (OSA). J. Clin. Med. 2023, 12, 3935. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, Y.; Shi, L.; Li, L.; Zhang, D.; Gong, Z.; Wu, Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions–a review. Pharmacol. Res. 2024, 206, 107282. [Google Scholar] [CrossRef]
- Serban, A.I.; Stanca, L.; Geicu, O.I.; Munteanu, M.C.; Dinischiotu, A. RAGE and TGF-β1 cross-talk regulate extracellular matrix turnover and cytokine synthesis in AGEs exposed fibroblast cells. PLoS ONE 2016, 11, e0152376. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y.; Huang, Y.; Deng, H. Pathophysiology of RAGE in inflammatory diseases. Front. Immunol. 2022, 13, 931473. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar] [CrossRef]
- Song, J.S.; Kang, C.M.; Park, C.K.; Yoon, H.K.; Lee, S.Y.; Ahn, J.H.; Moon, H.S. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition. Exp. Mol. Med. 2011, 43, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Auclair, C.; Voisin, E. Nitroblue tetrazolium reduction. In Handbook of Methods for Oxygen Radical Research, 1st ed.; Greenwald, R.A., Ed.; CRC Press: Boca Raton, FL, USA, 1985; pp. 123–132. [Google Scholar]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.J.; Khan, N.; McLellan, B.A. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J. Trauma 1991, 31, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, D.H.; Paletas, K.; Pegiou, T.; Sarigianni, M.; Befani, C.; Koliakos, G. A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin. Biochem. 2007, 40, 248–254. [Google Scholar] [CrossRef]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia—A preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Vujović, A.; Spasojević-Kalimanovska, V.; Bogavac-Stanojević, N.; Spasić, S.; Kotur-Stevuljević, J.; Jelić-Ivanović, Z. Comparison of two RNA isolation methods’ for determination of SOD1 and SOD2 gene expression in human blood and mononuclear cells. Indian J. Biotechnol. 2013, 12, 468–474. [Google Scholar]
- Weidemann, A.; Johnson, R.S. Biology of HIF-1α. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 218. [Google Scholar] [CrossRef]
- Kang, H.H.; Kim, I.K.; Lee, S.H. Total oxidant and antioxidant status in patients with obstructive sleep apnea and the effect of continuous positive airway pressure. Chronobiol. Med. 2019, 1, 126–129. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total antioxidant capacity: Biochemical aspects and clinical significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef]
- Öztürk, M.M.; Polat, M.; İntepe, Y.S.; Çiftçi, B. The Effects of a Continuous Positive Airway Pressure (CPAP) Therapy on Oxidative Stress in Patients with Obstructive Sleep Apnea. Cumhur. Sci. J. 2024, 45, 735–739. [Google Scholar] [CrossRef]
- Lavie, L.; Vishnevsky, A.; Lavie, P. Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 2004, 27, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Khoubnasabjafari, M.; Ansarin, K.; Jouyban, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Wang, Y.; Zhao, C.; Zhu, Q.; Dong, Z.; Ma, C. Incremental values of AOPP, IL-6, and GDF15 for identifying arteriosclerosis in patients with obstructive sleep apnea. Eur. J. Med. Res. 2024, 29, 137. [Google Scholar] [CrossRef]
- Šonka, K.; Fialová, L.; Volná, J.; Jiroutek, P.; Vávrová, J.; Kemlink, D.; Pretl, M.; Kalousová, M. Advanced oxidation protein products in obstructive sleep apnea. Prague Med. Rep. 2008, 109, 159–165. [Google Scholar]
- Kaneda, H.; Taguchi, J.; Ogasawara, K.; Aizawa, T.; Ohno, M. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis 2002, 162, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Olejarz, W.; Głuszko, A.; Cyran, A.; Bednarek-Rajewska, K.; Proczka, R.; Smith, D.F.; Ishman, S.L.; Migacz, E.; Kukwa, W. TLRs and RAGE are elevated in carotid plaques from patients with moderate-to-severe obstructive sleep apnea syndrome. Sleep Breath. 2020, 24, 1573–1580. [Google Scholar] [CrossRef]
- Marin-Oto, M.; Sanz-Rubio, D.; Santamaría-Martos, F.; Benitez, I.; Simon, A.L.; Forner, M.; Cubero, P.; Gil, A.; Sanchez-de-laTorre, M.; Barbe, F.; et al. Soluble RAGE in COPD, with or without coexisting obstructive sleep apnoea. Respir. Res. 2022, 23, 63. [Google Scholar] [CrossRef]
- Volna, J.; Kemlink, D.; Kalousova, M.; Vavrova, J.; Majerova, V.; Mestek, O.; Švarcová, J.; Šonka, K.; Zima, T. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med. Sci. Monit. 2011, 17, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Sun, J.F.; Liu, Y.; Xu, J.X.; Xiao, J.R.; Duan, X.M.; Liu, J.Y.; Zhang, W. Relationship between serum levels of endogenous secretory RAGE and blood pressure in male nondiabetic patients with obstructive sleep apnea. J. Hum. Hypertens. 2015, 29, 713–718. [Google Scholar] [CrossRef]
- Raposeiras-Roubín, S.; Rodiño-Janeiro, B.K.; Paradela-Dobarro, B.; Grigorian-Shamagian, L.; García-Acuña, J.M.; Aguiar-Souto, P.; Jacquet-Hervet, M.; Reino-Maceiras, M.V.; González-Juanatey, J.R.; Álvarez, E. Fluorescent advanced glycation end products and their soluble receptor: The birth of new plasmatic biomarkers for risk stratification of acute coronary syndrome. PLoS ONE 2013, 8, e74302. [Google Scholar] [CrossRef] [PubMed]
- Maresca, A.M.; Guasti, L.; Bozzini, S.; Mongiardi, C.; Tandurella, N.; Corso, R.; Zerba, F.G.; Squizzato, A.; Campiotti, L.; Dentali, F.; et al. sRAGE and early signs of cardiac target organ damage in mild hypertensives. Cardiovasc. Diabetol. 2019, 18, 17. [Google Scholar] [CrossRef]
- Grauen Larsen, H.; Marinkovic, G.; Nilsson, P.M.; Nilsson, J.; Engström, G.; Melander, O.; Orho-Melander, M.; Schiopu, A. High plasma sRAGE (soluble receptor for advanced glycation end products) is associated with slower carotid intima-media thickness progression and lower risk for first-time coronary events and mortality. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, H.B.; Luo, M.; Zheng, H. Serum soluble RAGE level inversely correlates with left ventricular hypertrophy in essential hypertension patients. Genet. Mol. Res. 2016, 15, 15. [Google Scholar] [CrossRef]
- Selvin, E.; Halushka, M.K.; Rawlings, A.M.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. sRAGE and risk of diabetes, cardiovascular disease, and death. Diabetes 2013, 62, 2116–2121. [Google Scholar] [CrossRef]
- Peyssonnaux, C.; Cejudo-Martin, P.; Doedens, A.; Zinkernagel, A.S.; Johnson, R.S.; Nizet, V. Cutting edge: Essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J. Immunol. 2007, 178, 7516–7519. [Google Scholar] [CrossRef]
- Ling, E.; Robinson, D.S. Transforming growth factor-bβ1: Its anti-inflammatory and pro-fibrotic effects. Clin. Exp. Allergy 2002, 32, 175–178. [Google Scholar] [CrossRef]
- Díaz-García, E.; García-Tovar, S.; Casitas, R.; Jaureguizar, A.; Zamarrón, E.; Sánchez-Sánchez, B.; Sastre-Perona, A.; López-Collazo, E.; Garcia-Rio, F.; Cubillos-Zapata, C. Intermittent hypoxia mediates paraspeckle protein-1 upregulation in sleep apnea. Cancers 2021, 13, 3888. [Google Scholar] [CrossRef]
- Liu, Y.; Lao, M.; Chen, J.; Lu, M.; Luo, S.; Ou, Q.; Luo, Z.; Yuan, P.; Chen, J.; Ye, G.; et al. Short-term prognostic effects of circulating regulatory T-Cell suppressive function and vascular endothelial growth factor level in patients with non-small cell lung cancer and obstructive sleep apnea. Sleep Med. 2020, 70, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Jimenez, E.; Cubillos-Zapata, C.; Toledano, V.; de Diego, R.P.; Fernandez-Navarro, I.; Casitas, R.; Carpio, C.; Casas-Martin, J.; Valentin, J.; Varela-Serrano, A.; et al. Monocytes inhibit NK activity via TGF-β in patients with obstructive sleep apnoea. Eur. Respir. J. 2017, 49, 1602456. [Google Scholar] [CrossRef]
- Aihara, K.I.; Ikeda, Y.; Yagi, S.; Akaike, M.; Matsumoto, T. Transforming growth factor-β1 as a common target molecule for development of cardiovascular diseases, renal insufficiency and metabolic syndrome. Cardiol. Res. Pract. 2010, 2011, 175381. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, C.; Yang, H.; Zhang, P.Y. Transforming growth factor β and its role in heart disease. Exp. Ther. Med. 2017, 13, 2123–2128. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Ryu, J.; Liu, W.; Zou, H.; Zhang, R.; Yan, Y.; Dai, Z.; Zhang, D.; Sun, L.Z.; et al. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling. Diabetologia 2023, 66, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Kıran, T.R.; Otlu, Ö.; Erdem, M.; Geçkil, A.A.; Berber, N.K.; İn, E. The effects of disease severity and comorbidity on oxidative stress biomarkers in obstructive sleep apnea. Sleep Breath. 2024, 28, 151–163. [Google Scholar] [CrossRef]
- Fiedorczuk, P.; Olszewska, E.; Rogalska, J.; Brzóska, M.M. Osteoprotegerin, chitinase 3-like protein 1, and cardiotrophin-1 as potential biomarkers of obstructive sleep apnea in adults—A case-control study. Int. J. Mol. Sci. 2023, 24, 2607. [Google Scholar] [CrossRef]
- Yağmur, A.R.; Çetin, M.A.; Karakurt, S.E.; Turhan, T.; Dere, H.H. The levels of advanced oxidation protein products in patients with obstructive sleep apnea syndrome. Ir. J. Med. Sci. 2020, 189, 1403–1409. [Google Scholar] [CrossRef]
- Yeun, J.Y.; Kaysen, G.A. C-reactive protein, oxidative stress, homocysteine, and troponin as inflammatory and metabolic predictors of atherosclerosis in ESRD. Curr. Opin. Nephrol. Hypertens. 2000, 9, 621–630. [Google Scholar] [CrossRef]
- Stanek, A.; Brożyna-Tkaczyk, K.; Myśliński, W. Oxidative stress markers among obstructive sleep apnea patients. Oxid. Med. Cell. Longev. 2021, 2021, 9681595. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guan, L.; Wu, C.; Zhao, Y.; Zhao, G. Continuous positive airway pressure may improve hypertension in patients with obstructive sleep apnea-hypopnea syndrome by inhibiting inflammation and oxidative stress. Arch. Med. Sci. 2022, 19, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-De-La-Torre, M.; Gracia-Lavedan, E.; Benitez, I.D.; Sánchez-De-La-Torre, A.; Moncusí-Moix, A.; Torres, G.; Loffler, K.; Woodman, R.; Adams, R.; Labarca, G.; et al. Adherence to CPAP treatment and the risk of recurrent cardiovascular events: A meta-analysis. JAMA 2023, 330, 1255–1265. [Google Scholar] [CrossRef]
Parameter | Non-OSA Patients N = 42 | OSA Patients N = 125 | p |
---|---|---|---|
Male, N (%) 1 | 24 (57.1) | 89 (71.2) | 0.092 |
Age, years | 51 (35–58) | 61 (51–68) | <0.001 |
BMI, kg/m2 | 27.6 (23.5–30.1) | 32.5 (28.3–36.6) | <0.001 |
SBP, mm Hg | 127 (120–135) | 134 (126–147) | 0.006 |
DBP, mm Hg | 80 (75–90) | 85 (80–90) | 0.099 |
AHI, n/h | 4.0 (3.1–5.4) | 30.4 (17.0–59.0) | <0.001 |
ODI, n/h | 1.6 (9.0–2.9) | 30.6 (15.7–64.5) | <0.001 |
Average SaO2, % | 96 (95–97) | 93 (90–95) | <0.001 |
Minimal SaO2, % | 91 (89–92) | 76 (64–86) | <0.001 |
Antihypertensive therapy, N (%) 1,2 | 18 (42.9) | 97 (77.6) | <0.001 |
Angiotensin-Converting Enzyme inhibitors N (%) | 15 (42.8) | 70 (35.2) | |
Angiotensin Receptor Blockers, N (%) | 0 (0) | 15 (7.5) | |
Beta blockers, N (%) | 8 (22.8) | 49 (24.6) | |
Calcium channel blockers, N (%) | 6 (17.1) | 32 (16.1) | |
Diuretics, N (%) | 6 (17.1) | 33 (16.6) | |
Antihyperlipemic therapy (Statins), N (%) 1 | 8 (19.0) | 26 (20.8) | 0.807 |
Type 2 diabetes, N (%) 1 | 6 (14.3) | 35 (28.0) | 0.074 |
Smoking status, N (%)1 | 15 (35.7) | 24 (19.2) | 0.053 |
Alcohol consumption, N (%) 1 | 15 (35.7) | 38 (30.4) | 0.473 |
Physical activity, N (%) 1 | 16 (38.1) | 39 (31.2) | 0.515 |
Glucose, mmol/L | 5.4 (4.7–5.9) | 5.9 (5.3–6.6) | <0.001 |
Total proteins, g/L 3 | 72 ± 4 | 72 ± 4 | 0.953 |
Albumin, g/L | 45 (43–48) | 44 (42–47) | 0.161 |
Total bilirubin, μmol/L | 11.6 (8.0–14.7) | 11.6 (9.2–15.6) | 0.472 |
Direct bilirubin, μmol/L | 2.1 (1.5–2.9) | 2.3 (1.8–2.8) | 0.127 |
CRP, mg/L | 1.9 (0.8–5.1) | 2.7 (1.5–6.0) | 0.001 |
Urea, mmol/L | 5.5 (4.1–6.4) | 5.9 (4.8–7.1) | 0.020 |
Creatinine, μmol/L 3 | 78 (67–91) | 79 (68–93) | 0.494 |
Uric acid, μmol/L 3 | 330 ± 81 | 399 ± 106 | <0.001 |
Non-OSA Patients | OSA Patients | p | |
---|---|---|---|
AOPP, μmol/L | 37.6 (50.3–75.9) | 50.0 (52.1–73.6) | 0.254 |
tSH groups, μmol/L | 0.461 (0.291–0.587) | 0.443 (0.312–0.562) | 0.748 |
SOD, U/L | 88 (76–133) | 100 (83–131) | 0.981 |
O2.−, μmol/L 1 | 38.80 (33.62–43.97) | 39.08 (36.34–41.09) | 0.928 |
TBARS, μmol/L | 2.96 (2.52–3.19) | 2.96 (2.67–3.26) | 0.879 |
PAB, HKU | 76 (63–93) | 73 (62–88) | 0.454 |
IMA, g/L 1 | 0.61 (0.52–0.70) | 0.58 (0.53–0.63) | 0.079 |
TOS, μmol/L | 24 (12–33) | 26 (17–30) | 0.631 |
TAS, μmol/L | 1242 (1142–1357) | 1311 (1209–1389) | 0.001 |
OSI | 1.82 (0.92–2.55) | 1.96 (1.18–2.41) | 0.662 |
sRAGE, pg/mL | 1242 (936–1584) | 940 (648–1446) | 0.001 |
Normalized flRAGE mRNA | 1.16 (0.90–1.78) | 1.04 (0.84–1.39) | 0.665 |
Normalized TGF-β1 mRNA | 1.36 (1.03–1.63) | 1.23 (1.02–1.49) | 0.335 |
AHI, n/h | ODI, n/h | Average SaO2, % | Minimal SaO2, % | |
---|---|---|---|---|
Age, years | 0.200 2 | 0.205 2 | −0.271 1 | −0.278 1 |
BMI, kg/m2 | 0.506 1 | 0.554 1 | −0.559 1 | −0.587 1 |
Glucose, mmol/L | 0.347 1 | 0.311 1 | −0.284 1 | −0.285 1 |
Total proteins, g/L | 0.103 | 0.104 | −0.111 | −0.159 3 |
Albumin, g/L | −0.016 | −0.049 | 0.140 | 0.098 |
Total bilirubin, μmol/L | −0.013 | −0.040 | 0.025 | 0.014 |
Direct bilirubin, μmol/L | 0.031 | 0.016 | −0.013 | −0.008 |
CRP, mg/L | 0.215 2 | 0.274 1 | −0.276 1 | −0.273 1 |
Urea, mmol/L | 0.181 3 | 0.193 3 | −0.189 3 | −0.217 2 |
Creatinine, μmol/L | 0.138 | 0.110 | −0.110 | −0.137 |
Uric acid, μmol/L | 0.260 2 | 0.387 1 | −0.391 1 | −0.421 1 |
AOPP, μmol/L | 0.160 3 | 0.157 3 | −0.209 2 | −0.240 2 |
tSH groups, μmol/L | 0.142 | 0.130 | −0.105 | −0.083 |
SOD, U/L | 0.085 | 0.057 | −0.082 | −0.128 |
O2.−, μmol/L | −0.104 | −0.120 | 0.167 3 | 0.154 3 |
TBARS, μmol/L | 0.070 | −0.066 | −0.089 | −0.101 |
PAB, HKU | −0.048 | −0.025 | −0.034 | −0.038 |
IMA, g/L | 0.151 | 0.129 | −0.092 | −0.128 |
TOS, μmol/L | 0.199 3 | 0.186 3 | −0.178 3 | −0.213 2 |
TAS, μmol/L | 0.085 | 0.122 | −0.157 3 | −0.172 3 |
OSI | 0.159 3 | 0.143 | −0.133 | −0.158 3 |
sRAGE, pg/mL | −0.305 1 | −0.313 | 0.352 1 | 0.266 2 |
Normalized flRAGE mRNA | −0.096 | −0.102 | 0.192 3 | 0.155 3 |
Normalized TGF-β1 mRNA | −0.028 | −0.019 | 0.062 | 0.037 |
Factors | Variables (Loadings) | Factor Variability |
---|---|---|
Redox status-related factor | TOS (0.920) SOD (0.749) AOPP (0.740) IMA (0.687) TAS (−0.652) tSH groups (0.582) | 27% |
Proinflammatory genes-related factor | Normalized TGF-β1 mRNA (0.751) Normalized flRAGE mRNA (0.719) | 13% |
sRAGE-ROS-related factor | sRAGE (0.761) O2.− (0.635) | 11% |
Pro-oxidant-related factor | PAB (0.817) TBARS (0.599) | 11% |
Predictors | B (SE) | Wald | Unadjusted OR (95%CI) | p |
---|---|---|---|---|
Redox status-related factor | −0.010 (0.198) | 0.002 | 0.990 (0.672–1.461) | 0.961 |
Proinflammatory genes-related factor | −0.286 (0.187) | 2.335 | 0.751 (0.520–1.084) | 0.126 |
sRAGE-ROS-related factor | −0.566 (0.217) | 6.801 | 0.568 (0.371–0.869) | 0.009 |
Pro-oxidant-related factor | −0.144 (0.192) | 0.567 | 0.866 (0.594–1.260) | 0.451 |
Mild OSA N = 29 | Moderate OSA N = 31 | Severe OSA N = 65 | p | |
---|---|---|---|---|
Male, N (%) 1 | 17 (58.5%) | 20 (64.5%) | 52 (80%) | 0.068 |
Age, years 3 | 59 ± 11 | 61 ± 10 | 57 ± 13 | 0.213 |
BMI, kg/m2 | 28 (26–32) | 31 (28–32) | 35 (32–41) a*,b* | <0.001 |
SBP, mm Hg | 130 (130–140) | 130 (120–150) | 135 (130–145) | 0.516 |
DBP, mm Hg | 80 (80–90) | 90 (80–100) | 85 (80–90) | 0.097 |
AHI, n/h | 9.6 (8.1–12.1) | 24.2 (19.4–25.6) a* | 54.7 (46.4–68.5) a*,b* | <0.001 |
ODI, n/h | 10.3 (7.3–12.7) | 22.9 (17.9–28.2) a* | 64.4 (51.2–73.6) a*,b* | <0.001 |
Average SaO2, % | 95 (94–96) | 94 (91–95) a*** | 90 (87–93) a*,b* | <0.001 |
Minimal SaO2, % | 86 (84–88) | 80 (71–86) a** | 68 (61–76) a*,b* | <0.001 |
Antihypertensive therapy, N (%) 1,2 | 22 (75.9) | 23 (74.2) | 52 (80.0) | 0.789 |
Angiotensin-Converting Enzyme inhibitors N (%) | 15 (34.9) | 16 (31.4) | 39 (46.4) | |
Angiotensin Receptor Blockers, N (%) | 4 (9.3) | 5 (9.80) | 6 (7.10) | |
Beta blockers, N (%) | 12 (27.9) | 13 (25.5) | 24 (28.6) | |
Calcium channel blockers, N (%) | 6 (14.0) | 8 (15.7) | 18 (21.4) | |
Diuretics, N (%) | 6 (14.0) | 9 (17.6) | 18 (21.4) | |
Antihyperlipemic therapy (Statins), N (%) 1 | 4 (13.8) | 6 (19.4) | 16 (24.6) | 0.478 |
Type 2 diabetes, N (%) 1 | 4 (13.8) | 7 (22.6) | 24 (36.9) | 0.052 |
Smoking status, N (%) 1 | 3 (10.3) | 6 (19.9) | 15 (23.1) | 0.507 |
Alcohol consumption, N (%) 1 | 6 (20.7) | 10 (32.3) | 22 (33.8) | 0.547 |
Physical activity, N (%) 1 | 11 (37.9) | 9 (29.0) | 19 (29.2) | 0.393 |
Glucose, mmol/L | 5.6 (5.2–6.0) | 6.0 (5.3–6.5) | 6.1 (5.6–7.0) a** | 0.019 |
Total proteins, g/L 3 | 72 ± 4 | 72 ± 4 | 73 ± 4 | 0.207 |
Albumin, g/L 3 | 45 ± 4 | 43 ± 3 | 45 ± 3 | 0.063 |
Total bilirubin, μmol/L | 12.6 (9.6–15.9) | 11.5 (10.1–17.8) | 11.6 (9.1–14.3) | 0.649 |
Direct bilirubin, μmol/L | 2.4 (2.0–3.4) | 2.3 (1.7–2.9) | 2.3 (1.8–2.8) | 0.433 |
CRP, mg/L | 2.2 (1.1–3.9) | 2.6 (1.5–5.9) | 3.1 (1.6–6.8) | 0.364 |
Urea, mmol/L | 5.5 (4.9–6.6) | 5.3 (4.6–6.6) | 6.2 (5.0–7.0) | 0.230 |
Creatinine, μmol/L | 76 (60–87) | 74 (62–93) | 85 (80–90) a*** | 0.055 |
Uric acid, μmol/L | 329 (275–454) | 360 (303–461) | 422 (366–480) a**,b*** | 0.005 |
Mild OSA N = 29 | Moderate OSA N = 31 | Severe OSA N = 65 | p | |
---|---|---|---|---|
AOPP, μmol/L | 53.7 (49.9–60.4) | 58.3 (52.8–71.3) | 62.7 (53.2–75.6) a,b* | 0.001 |
tSH groups, μmol/L | 0.418 (0.284–0.502) | 0.424 (0.289–0.502) | 0.491 (0.357–0.633) a,b* | 0.007 |
SOD, U/L 1 | 101 (89–113) | 101 (90–113) | 107 (99–116) | 0.631 |
O2.−, μmol/L | 40 (32–45) | 31 (25–44) | 40 (29–53) | 0.733 |
TBARS, μmol/L | 3.04 (2.74–3.26) | 2.89 (2.67–3.22) | 2.96 (2.67–3.26) | 0.688 |
PAB, HKU | 72 (62–91) | 77 (63–92) | 70 (61–86) | 0.504 |
IMA, g/L | 0.50 (0.34–0.65) | 0.53 (0.37–0.78) | 0.64 (0.43–0.79) | 0.470 |
TOS, μmol/L | 19 (11–26) | 26 (18–33) a* | 27 (21–33) a* | 0.004 |
TAS, μmol/L 1 | 1383 (1306–1460) | 1289 (1245–1333) | 1291 (1259–1323) | 0.058 |
OSI | 1.26 (0.76–2.06) | 1.99 (1.41–2.51) | 2.09 (1.54–2.66) a,b** | 0.012 |
sRAGE, pg/mL | 1015 (770–1611) | 1042 (710–1592) | 820 (546–1122) a*,b** | 0.006 |
Normalized flRAGE mRNA | 1.15 (0.85–1.52) | 1.03 (0.85–1.41) | 1.04 (0.80–1.35) | 0.996 |
Normalized TGF-β1 mRNA | 1.18 (1.03–1.46) | 1.09 (0.91–1.34) | 1.26 (1.07–1.52) b* | 0.010 |
AHI, n/h | ODI, n/h | Average SaO2, % | Minimal SaO2, % | |
---|---|---|---|---|
Age, years | −0.114 | −0.086 | −0.037 | −0.067 |
BMI, kg/m2 | 0.461 1 | 0.503 1 | 0.518 1 | 0.584 1 |
Glucose, mmol/L | 0.266 2 | 0.219 3 | −0.152 | −0.206 3 |
Total proteins, g/L | 0.172 | 0.156 | −0.186 3 | −0.237 2 |
Albumin, g/L | 0.121 | 0.077 | 0.066 | 0.040 |
Total bilirubin, μmol/L | −0.137 | −0.192 3 | 0.107 | 0.119 |
Direct bilirubin, μmol/L | −0.145 | −0.177 3 | 0.140 | 0.162 |
CRP, mg/L | 0.151 | 0.221 3 | −0.239 2 | −0.269 2 |
Urea, mmol/L | 0.079 | 0.095 | −0.130 | −0.140 |
Creatinine, μmol/L | 0.145 | 0.105 | −0.160 | −0.145 |
Uric acid, μmol/L | 0.235 2 | 0.273 2 | −0.371 1 | −0.395 1 |
AOPP, μmol/L | 0.270 2 | 0.259 2 | −0.246 2 | −0.385 1 |
tSH groups, μmol/L | 0.255 2 | 0.229 3 | −0.154 | −0.116 |
SOD, U/L | 0.122 | 0.071 | −0.031 | −0.106 |
O2.−, μmol/L | 0.069 | 0.008 | 0.069 | 0.039 |
TBARS, μmol/L | 0.022 | 0.011 | −0.083 | −0.086 |
PAB, HKU | 0.017 | 0.062 | −0.046 | −0.114 |
IMA, g/L | 0.245 2 | 0.224 3 | −0.150 | −0.176 |
TOS, μmol/L | 0.308 2 | 0.278 2 | −0.162 | −0.261 2 |
TAS, μmol/L | −0.055 | −0.011 | −0.167 | −0.154 |
OSI | 0.272 1 | 0.241 2 | −0.106 | −0.191 2 |
sRAGE, pg/mL | −0.283 2 | −0.276 2 | 0.297 2 | 0.217 2 |
Normalized RAGE mRNA | −0.031 | −0.031 | 0.201 3 | 0.093 |
Normalized TGF-β1 mRNA | 0.109 | 0.102 | −0.025 | −0.065 |
Predictors | β (SE) | Wald | Unadjusted OR (95%CI) | p |
---|---|---|---|---|
TOS, μmol/L | 0.041 (0.015) | 7.877 | 1.042 (1.012–1.071) | 0.005 |
OSI | 0.389 (0.160) | 5.923 | 1.475 (1.079–2.017) | 0.015 |
sRAGE, pg/mL | −0.001 (0) | 4.690 | 0.579 (0.352–0.949) | 0.030 |
AOPP, μmol/L | 0.028 (0.012) | 5.849 | 1.028 (1.005–1.052) | 0.016 |
IMA, g/L | 1.636 (0.758) | 4.657 | 5.134 (1.162–22.692) | 0.031 |
tSH groups | 1.787 (0.816) | 4.791 | 5.972 (1.206–29.577) | 0.029 |
Models | β (SE) | Wald | Adjusted OR (95%CI) | p |
TOS, μmol/L | 0.037 (0.017) | 4.509 | 1.037 (1.003–1.073) | 0.034 |
OSI | 0.319 (0.181) | 3.099 | 1.375 (0.965–1.926) | 0.078 |
sRAGE, pg/mL | 0 (0) | 1.961 | 0.691 (0.412–0.691 | 0.161 |
AOPP, μmol/L | 0.020 (0.012) | 2.912 | 1.020 (0.997–0.967) | 0.088 |
IMA, g/L | 1.291 (0.733) | 3.104 | 3.636 (0.965–15.287) | 0.078 |
tSH groups | 1.518 (1.004) | 2.258 | 4.563 (0.638–32.622) | 0.131 |
Predictors | β (SE) | Wald | Unadjusted OR (95%CI) | p |
---|---|---|---|---|
Redox status-related factor | 0.469 (0.215) | 4.762 | 1.598 (1.049–2.435) | 0.029 |
Proinflammatory genes-related factor | 0.165 (0.205) | 0.645 | 1.179 (0.788–1.765) | 0.422 |
sRAGE-ROS-related factor | −0.195 (0.184) | 1.128 | 0.822 (0.574–1.179) | 0.288 |
Pro-oxidant-related factor | −0.094 (0.184) | 0.608 | 0.910 (0.634–1.305) | 0.608 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninić, A.; Rajkov, B.; Kotur-Stevuljević, J.; Erceg, S.; Sopić, M.; Munjas, J.; Spasojević-Kalimanovska, V.; Mitrović, M.; Memon, L.; Gardijan, V.; et al. Association Between Redox and Inflammatory Biomarkers with the Presence and Severity of Obstructive Sleep Apnea. Medicina 2025, 61, 1557. https://doi.org/10.3390/medicina61091557
Ninić A, Rajkov B, Kotur-Stevuljević J, Erceg S, Sopić M, Munjas J, Spasojević-Kalimanovska V, Mitrović M, Memon L, Gardijan V, et al. Association Between Redox and Inflammatory Biomarkers with the Presence and Severity of Obstructive Sleep Apnea. Medicina. 2025; 61(9):1557. https://doi.org/10.3390/medicina61091557
Chicago/Turabian StyleNinić, Ana, Branislava Rajkov, Jelena Kotur-Stevuljević, Sanja Erceg, Miron Sopić, Jelena Munjas, Vesna Spasojević-Kalimanovska, Marija Mitrović, Lidija Memon, Vera Gardijan, and et al. 2025. "Association Between Redox and Inflammatory Biomarkers with the Presence and Severity of Obstructive Sleep Apnea" Medicina 61, no. 9: 1557. https://doi.org/10.3390/medicina61091557
APA StyleNinić, A., Rajkov, B., Kotur-Stevuljević, J., Erceg, S., Sopić, M., Munjas, J., Spasojević-Kalimanovska, V., Mitrović, M., Memon, L., Gardijan, V., Brajković, M., Klašnja, S., & Zdravković, M. (2025). Association Between Redox and Inflammatory Biomarkers with the Presence and Severity of Obstructive Sleep Apnea. Medicina, 61(9), 1557. https://doi.org/10.3390/medicina61091557