Transient-Evoked Otoacoustic Emissions May Reveal Damage to Outer Hair Cells Caused by Exposure to Recreational Noise: A Narrative Review
Abstract
1. Introduction
2. Principles of Otoacoustic Emission
3. Recreational Noise and Occupational Noise
4. Classification of OAEs and Application to NIHL
4.1. Distortion Product Otoacoustic Emissions (DPOAE)
Author | Jobs | Age | Indicators | Frequency Range of Measurement | Results |
---|---|---|---|---|---|
Gopal et al., 2019 [30] | adults | 18–31 | amplitudes | 499, 1003, 1409, 2000, 2822, 3991, and 5649 Hz | DPOAEs amplitudes reduced to 2 kHz, 3 kHz |
Narahari et al., 2017 [27] | students | 17–22 | amplitudes | 2–12 kHz | DPOAEs amplitudes reduced to 9–12 kHz |
Seixas et al., 2005 [24] | construction industry workers | not mentioned | amplitudes | 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz | DPOAEs changed to 4 kHz |
Wei et al., 2025 [25] | workers | <42 | amplitudes | 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, and 10 kHz | DPOAEs amplitudes reduced to 3, 4, 5 kHz |
Le Prell et al., 2018 [26] | colleges | 18–27 | amplitudes | 2210, 2782, 3506, 4416, 5565, 7013, and 8837 Hz | DPOAEs amplitudes reduced |
Pawlaczyk-Łuszczyńska et al., 2021 [31] | students | 19–32 | amplitudes, SNR | 750–9680 Hz | DPOAEs amplitudes reduced to 6 kHz, and near 8 kHz |
Plinkert et al., 1999 [32] | soldiers | 18–35 | amplitudes | 1–6 kHz | DPOAEs SNR reduced to 984 Hz, 6 kHz, and near 8 kHz |
Shupak et al., 2007 [23] | Ship workers | 18–20 | amplitudes | 928–12,012 Hz | DPOAEs alterations were not significant |
Dudarewicz et al., 2022 [33] | Ultrasonic device operators | 43.1 ± 10.8 | amplitudes, reproducibility, SNR | 1.5–10 kHz | DPOAEs cannot be used as an objective measure of pure-tone thresholds in early NIHL |
4.2. Transient-Evoked Otoacoustic Emissions (TEOAEs)
Author | Jobs | Age | Indicators | Frequency Range of Measurement | Results |
---|---|---|---|---|---|
Budak et al., 2021 [34] | carpenters | 25–60 | amplitudes | 1000, 1400, 2000, 2800, and 4000 Hz | TEOAEs amplitudes reduced to 2 kHz and 2.8 kHz |
Nambiar et al., 2024 [36] | artists | >18 | present or absent | 500–4 kHz | TEOAEs absent at 3 kHz and 4 kHz |
Sahin Ceylan et al., 2023 [35] | pilots | not mentioned | amplitudes | 1–4 kHz | TEOAE amplitudes reduced at 4 kHz |
Rosanowski et al., 2006 [37] | students | 20–25 | reproducibility, level, SNR | 0.5–4 kHz | The level and reproducibility decreased significantly at 3 kHz |
Pawlaczyk-Łuszczyńska et al., 2021 [31] | students | 19–32 | amplitudes, SNR | 1, 1.5, 2, 3, 4 kHz | TEOAEs SNR reduced at 1 kHz |
Plinkert et al., 1999 [32] | soldiers | 18–35 | amplitudes | 1–4 kHz | TEOAEs amplitudes altered more sensitively |
Shupak et al., 2007 [23] | Ship workers | 18–20 | amplitudes | 1, 1.5, 2, 3, and 4 kHz | TEOAEs changes more sensitively |
Dudarewicz et al., 2022 [33] | Ultrasonic device operators | 43.1 ± 10.8 | amplitudes, reproducibility, SNR | 1, 1.5, 2, 3, and 4 kHz | TEOAEs amplitudes fell at all frequencies |
4.3. Stimulated Frequency Otoacoustic Emissions (SFOAE)
5. OAEs Compared to Other Methods for Detecting RNIHL
Author | OAEs Type | Other Methods | Subjects | Indicators | Results |
---|---|---|---|---|---|
Helleman et al., 2010 [46] | DPOAEs and TEOAEs | PTA | workers | amplitudes | DPOAEs and TEOAEs show a decline in a larger frequency region than PTA |
Santaolalla Montoya et al., 2008 [54] | DPOAEs and TEOAEs | PTA | young adults exposed to MP3 player noise | present and amplitudes | TEOAEs and DPOAEs can detect cochlear impairment before the impairment becomes clinically apparent |
Capozzella at al., 2015 [47] | DPOAEs | PTA | workers | hearing loss detection rate | The higher effectiveness of DPOAEs in making an early diagnosis of hearing loss |
Seixas et al., 2005 [24] | DPOAEs | PTA | construction industry workers | amplitudes | DPOAEs is more sensitive to early changes than standard PTA |
Nambiar et al., 2024 [36] | TEOAEs | Extended high-frequency audiometry | artists | present | TEOAEs absent at 3 kHz and 4 kHz Extended high-frequency audiometry showed no response at the majority of thresholds |
Konopka et al., 2007 [48] | TEOAEs | PTA | workers | amplitudes | The reduction of TEOAEs was incommensurably greater than the changes in PTA |
Rezaee et al., 2012 [55] | TEOAEs | PTA | soldiers | amplitudes | TEOAEs is more sensitive than PTA in detecting early hearing loss after military shooting exercises |
Wang et al., 2021 [56] | DPOAEs and TEOAEs | ABR | adults | amplitudes | ABR wave I amplitudes decreased at 1 day post-acute recreational noise exposure at high intensity |
Fraenkel et al., 2003 [50] | TEOAEs | ABR | mice | amplitudes | TEOAEs were more sensitive in detecting changes |
Wang et al., 2010 [52] | DPOAEs | CM | sensorineural deafness | elicited rate | The elicited rate of CM was higher than DPOAEs |
Starr et al., 2001 [53] | TEOAEs | CM | auditory neuropathy patients | amplitudes, latencies | CM amplitudes elevated and TEOAEs are absent |
6. More Applications of OAEs in NIHL
7. Strengths and Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RNIHL | recreational noise-induced hearing loss |
OAE | otoacoustic emission |
DPOAE | distortion product-evoked otoacoustic emission |
TEOAE | transient-evoked otoacoustic emission |
NIHL | noise-induced hearing loss |
OHCs | outer hair cells |
SFOAE | simulated frequency otoacoustic emission |
MOCR | medial olivocochlear reflex |
ABR | auditory brainstem response |
PTA | pure-tone audiometry |
CM | cochlear microphonic potential |
References
- Xu, K.; Xu, B.; Gu, J.; Wang, X.; Yu, D.; Chen, Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023, 13, 3524–3549. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Henderson, E.; Testa, M.A.; Hartnick, C. Prevalence of noise-induced hearing-threshold shifts and hearing loss among US youths. Pediatrics 2011, 127, e39–e46. [Google Scholar] [CrossRef] [PubMed]
- Feder, K.; Marro, L.; Portnuff, C. Leisure noise exposure and hearing outcomes among Canadians aged 6 to 79 years. Int. J. Audiol. 2023, 62, 1031–1047. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.; Neitzel, R.L. Noise exposure limit for children in recreational settings: Review of available evidence. J. Acoust. Soc. Am. 2019, 146, 3922–3933. [Google Scholar] [CrossRef]
- Keppler, H.; Dhooge, I.; Vinck, B. Hearing in young adults. Part II: The effects of recreational noise exposure. Noise Health 2015, 17, 245–252. [Google Scholar] [CrossRef]
- Meng, Z.-L.; Chen, F.; Zhao, F.; Gu, H.-L.; Zheng, Y. Early detection of noise-induced hearing loss. World J. Clin. Cases 2022, 10, 1815–1825. [Google Scholar] [CrossRef]
- Liu, J.; Antisdel, J.; Liu, C.; Chen, M.; Dong, P.; Fahlman, R.; Ma, F.; Yu, Y. Extensive hearing loss induced by low-frequency noise exposure. Laryngoscope Investig. Otolaryngol. 2022, 7, 564–570. [Google Scholar] [CrossRef]
- Probst, R.; Lonsbury-Martin, B.L.; Martin, G.K. A review of otoacoustic emissions. J. Acoust. Soc. Am. 1991, 89, 2027–2067. [Google Scholar] [CrossRef]
- Biassoni, E.C.; Serra, M.R.; Hinalaf, M.; Abraham, M.; Pavlik, M.; Villalobo, J.P.; Curet, C.; Joekes, S.; Yacci, M.R.; Righetti, A. Hearing and loud music exposure in a group of adolescents at the ages of 14–15 and retested at 17–18. Noise Health 2014, 16, 331–341. [Google Scholar] [CrossRef]
- Paping, D.E.; van der Schroef, M.; Helleman, H.W.; Goedegebure, A.; Baatenburg de Jong, R.J.; Vroegop, J.L. Distortion Product Otoacoustic Emissions in Screening for Early Stages of High-frequency Hearing Loss in Adolescents. Noise Health 2022, 24, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Laffoon, S.M.; Stewart, M.; Zheng, Y.; Meinke, D.K. Conventional audiometry, extended high-frequency audiometry, and DPOAEs in youth recreational firearm users. Int. J. Audiol. 2019, 58, S40–S48. [Google Scholar] [CrossRef] [PubMed]
- Ellison, J.C.; Keefe, D.H. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear. 2005, 26, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Brownell, W.E.; Bader, C.R.; Bertrand, D.; de Ribaupierre, Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 1985, 227, 194–196. [Google Scholar] [CrossRef]
- Lee-Feldstein, A. Five-year follow-up study of hearing loss at several locations within a large automobile company. Am. J. Ind. Med. 1993, 24, 41–54. [Google Scholar] [CrossRef]
- Seixas, N.S.; Neitzel, R.; Stover, B.; Sheppard, L.; Feeney, P.; Mills, D.; Kujawa, S. 10-Year prospective study of noise exposure and hearing damage among construction workers. Occup. Environ. Med. 2012, 69, 643–650. [Google Scholar] [CrossRef]
- Serra, M.R.; Biassoni, E.C.; Richter, U.; Minoldo, G.; Franco, G.; Abraham, S.; Carignani, J.A.; Joekes, S.; Yacci, M.R. Recreational noise exposure and its effects on the hearing of adolescents. Part I: An interdisciplinary long-term study. Int. J. Audiol. 2005, 44, 65–73. [Google Scholar] [CrossRef]
- Martínez-Wbaldo, M.d.C.; Soto-Vázquez, C.; Ferre-Calacich, I.; Zambrano-Sánchez, E.; Noguez-Trejo, L.; Poblano, A. Sensorineural hearing loss in high school teenagers in Mexico City and its relationship with recreational noise. Cad. De Saude Publica 2009, 25, 2553–2561. [Google Scholar] [CrossRef]
- Kuroda, T. Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears. Auris Nasus Larynx 2007, 34, 29–38. [Google Scholar] [CrossRef]
- Portugal, N.; Poling, G.L.; Dreisbach, L. Rethinking the clinical utility of distortion-product otoacoustic emission (DPOAE) signal-to-noise ratio. Int. J. Audiol. 2024, 63, 491–499. [Google Scholar] [CrossRef]
- Doosti, A.; Lotfi, Y.; Moosavi, A.; Bakhshi, E.; Talasaz, A.H. Distortion Product Otoacoustic Emission (DPOAE) as an Appropriate Tool in Assessment of Otoprotective Effects of Antioxidants in Noise-Induced Hearing Loss (NIHL). Indian J. Otolaryngol. Head Neck Surg. 2014, 66, 325–329. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, Z.; Zhou, L.; Hu, Y.; Zhang, M. Occupational noise-induced hearing loss in China: A systematic review and meta-analysis. BMJ Open 2020, 10, e039576. [Google Scholar] [CrossRef]
- Shupak, A.; Tal, D.; Sharoni, Z.; Oren, M.; Ravid, A.; Pratt, H. Otoacoustic emissions in early noise-induced hearing loss. Otol. Neurotol. 2007, 28, 745–752. [Google Scholar] [CrossRef]
- Seixas, N.S.; Goldman, B.; Sheppard, L.; Neitzel, R.; Norton, S.; Kujawa, S.G. Prospective noise induced changes to hearing among construction industry apprentices. Occup. Environ. Med. 2005, 62, 309–317. [Google Scholar] [CrossRef]
- Wei, F.; Zhao, W.; Gao, X.; Xue, P.; Xu, F.; Xie, H.; Yang, N.; Zou, H.; Qiu, W. Associations Between Noise Exposure Level, Noise Kurtosis, and Distortion Product Otoacoustic Emissions in Young Workers With Normal Hearing. Ear Hear. 2025, 46, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Le Prell, C.G.; Siburt, H.W.; Lobarinas, E.; Griffiths, S.K.; Spankovich, C. No Reliable Association Between Recreational Noise Exposure and Threshold Sensitivity, Distortion Product Otoacoustic Emission Amplitude, or Word-in-Noise Performance in a College Student Population. Ear Hear. 2018, 39, 1057–1074. [Google Scholar] [CrossRef] [PubMed]
- Narahari, P.G.; Bhat, J.; Nambi, A.; Arora, A. Impact of usage of personal music systems on oto-acoustic emissions among medical students. Noise Health 2017, 19, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Li, J.; Li, Z.; Wei, J.; Li, J.; Zhang, S.; Xu, S.; Liu, Z.; Wang, J. Effect of low-frequency noise exposure on cognitive function: A systematic review and meta-analysis. BMC Public Health 2024, 24, 125. [Google Scholar] [CrossRef]
- Baliatsas, C.; van Kamp, I.; van Poll, R.; Yzermans, J. Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies. Sci. Total Environ. 2016, 557–558, 163–169. [Google Scholar] [CrossRef]
- Gopal, K.V.; Mills, L.E.; Phillips, B.S.; Nandy, R. Risk Assessment of Recreational Noise-Induced Hearing Loss from Exposure through a Personal Audio System-iPod Touch. J. Am. Acad. Audiol. 2019, 30, 619–633. [Google Scholar] [CrossRef]
- Pawlaczyk-Łuszczyńska, M.; Zamojska-Daniszewska, M.; Dudarewicz, A.; Zaborowski, K. Pure-Tone Hearing Thresholds and Otoacoustic Emissions in Students of Music Academies. Int. J. Environ. Res. Public Health 2021, 18, 1313. [Google Scholar] [CrossRef]
- Plinkert, P.K.; Hemmert, W.; Wagner, W.; Just, K.; Zenner, H.P. Monitoring noise susceptibility: Sensitivity of otoacoustic emissions and subjective audiometry. Br. J. Audiol. 1999, 33, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Dudarewicz, A.; Zamojska-Daniszewska, M.; Zaborowski, K.; Pawlaczyk-Łuszczyńska, M. Hearing status of people occupationally exposed to ultrasonic noise. Int. J. Occup. Med. Environ. Health 2022, 35, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Budak, B.; Çoban, K.; Erbek, S.S. Evaluatıon of the hearıng status ın carpenters. Int. Arch. Occup. Environ. Health 2021, 94, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- Sahin Ceylan, D.; Sacli, Y.; Gultekin, G.; Avsar, B.; Ozver, A.G. Do Flights Affect Hearing in Hot Air Balloon Pilots? Am. J. Audiol. 2023, 33, 121. [Google Scholar] [CrossRef]
- Nambiar, M.; Gopalakrishnan, P.; Ganapathy, K.; Thamizhmani, L. Audiological Profile of Yakshagana Artists. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 4523–4527. [Google Scholar] [CrossRef]
- Rosanowski, F.; Eysholdt, U.; Hoppe, U. Influence of leisure-time noise on outer hair cell activity in medical students. Int. Arch. Occup. Environ. Health 2006, 80, 25–31. [Google Scholar] [CrossRef]
- Withnell, R.H.; Yates, G.K.; Kirk, D.L. Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear. Res. 2000, 139, 1–12. [Google Scholar] [CrossRef]
- Kemp, D.T. Otoacoustic emissions, their origin in cochlear function, and use. Br. Med. Bull. 2002, 63, 223–241. [Google Scholar] [CrossRef]
- Martin, G.K.; Lonsbury-Martin, B.L.; Probst, R.; Scheinin, S.A.; Coats, A.C. Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures. Hear. Res. 1987, 28, 191–208. [Google Scholar] [CrossRef]
- Lapsley Miller, J.A.; Marshall, L.; Heller, L.M.; Hughes, L.M. Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss. J. Acoust. Soc. Am. 2006, 120, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Zweig, G.; Shera, C.A. The origin of periodicity in the spectrum of evoked otoacoustic emissions. J. Acoust. Soc. Am. 1995, 98, 2018–2047. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; Shera, C.A. Measuring stimulus-frequency otoacoustic emissions using swept tones. J. Acoust. Soc. Am. 2013, 134, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Dewey, J.B.; Dhar, S. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans. J. Assoc. Res. Otolaryngol. 2017, 18, 89–110. [Google Scholar] [CrossRef]
- Balatsouras, D.G.; Kaberos, A.; Korres, S.; Kandiloros, D.; Ferekidis, E.; Economou, C. Detection of pseudohypacusis: A prospective, randomized study of the use of otoacoustic emissions. Ear Hear. 2003, 24, 518–827. [Google Scholar] [CrossRef]
- Helleman, H.W.; Jansen, E.J.M.; Dreschler, W.A. Otoacoustic emissions in a hearing conservation program: General applicability in longitudinal monitoring and the relation to changes in pure-tone thresholds. Int. J. Audiol. 2010, 49, 410–419. [Google Scholar] [CrossRef]
- Capozzella, A.; Loreti, B.; Sacco, C.; Casale, T.; Pimpinella, B.; Andreozzi, G.; Bernardini, A.; Nieto, H.A.; Scala, B.; Schifano, M.P.; et al. Early diagnosis of hearing loss: Otoacoustic emissions evoked by distortion products and pure-tone audiometry: Preliminary findings. La Clin. Ter. 2015, 166, e77–e80. [Google Scholar]
- Konopka, W.; Straszyński, P.; Jedrzejczak, W.; Olszewski, J. [Jet engine noise influence on TEOAE in jet engine servicing personnel]. Otolaryngol. Pol. 2007, 61, 868–871. [Google Scholar] [CrossRef]
- Kokash, J.; Rumschlag, J.A.; Razak, K.A. Cortical region-specific recovery of auditory temporal processing following noise-induced hearing loss. Neuroscience 2024, 560, 143–157. [Google Scholar] [CrossRef]
- Fraenkel, R.; Freeman, S.; Sohmer, H. Use of ABR threshold and OAEs in detection of noise induced hearing loss. J. Basic Clin. Physiol. Pharmacol. 2003, 14, 95–118. [Google Scholar] [CrossRef]
- Bao, J.; Jegede, S.L.; Hawks, J.W.; Dade, B.; Guan, Q.; Middaugh, S.; Qiu, Z.; Levina, A.; Tsai, T.-H. Detecting Cochlear Synaptopathy Through Curvature Quantification of the Auditory Brainstem Response. Front. Cell. Neurosci. 2022, 16, 851500. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Cao, K. [Study for cochlear microphonic potential test in patients with profound sensorineural hearing loss]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2010, 24, 592–597. [Google Scholar] [PubMed]
- Starr, A.; Sininger, Y.; Nguyen, T.; Michalewski, H.J.; Oba, S.; Abdala, C. Cochlear receptor (microphonic and summating potentials, otoacoustic emissions) and auditory pathway (auditory brain stem potentials) activity in auditory neuropathy. Ear Hear. 2001, 22, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Santaolalla Montoya, F.; Ibargüen, A.M.; Vences, A.R.; del Rey, A.S.; Fernandez, J.M.S. Evaluation of cochlear function in normal-hearing young adults exposed to MP3 player noise by analyzing transient evoked otoacoustic emissions and distortion products. J. Otolaryngol. Head Neck Surg. 2008, 37, 718–724. [Google Scholar]
- Rezaee, M.; Mojtahed, M.; Ghasemi, M.; Saedi, B. Assessment of impulse noise level and acoustic trauma in military personnel. Trauma Mon. 2012, 16, 182–187. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, L.; Qian, M.; Hong, Y.; Wang, X.; Huang, Z.; Wu, H. Acute Recreational Noise-Induced Cochlear Synaptic Dysfunction in Humans With Normal Hearing: A Prospective Cohort Study. Front. Neurosci. 2021, 15, 659011. [Google Scholar] [CrossRef]
- Zimatore, G.; Fetoni, A.R.; Paludetti, G.; Cavagnaro, M.; Podda, M.V.; Troiani, D. Post-processing analysis of transient-evoked otoacoustic emissions to detect 4 kHz-notch hearing impairment--a pilot study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2011, 17, MT41–MT49. [Google Scholar] [CrossRef]
- Madzivhandila, A.G.; le Roux, T.; Biagio de Jager, L. Neonatal hearing screening using a smartphone-based otoacoustic emission device: A comparative study. Int. J. Pediatr. Otorhinolaryngol. 2024, 177, 111862. [Google Scholar] [CrossRef]
- Wang, T.-C.; Chang, T.-Y.; Tyler, R.; Lin, Y.-J.; Liang, W.-M.; Shau, Y.-W.; Lin, W.-Y.; Chen, Y.-W.; Lin, C.-D.; Tsai, M.-H. Noise Induced Hearing Loss and Tinnitus-New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention. Brain Sci. 2020, 10, 732. [Google Scholar] [CrossRef]
- Dias, A.; Cordeiro, R. Association between hearing loss level and degree of discomfort introduced by tinnitus in workers exposed to noise. Braz. J. Otorhinolaryngol. 2008, 74, 876–883. [Google Scholar] [CrossRef]
- Johnson, O.; Andrew, B.; Walker, D.; Morgan, S.; Aldren, A. British university students’ attitudes towards noise-induced hearing loss caused by nightclub attendance. J. Laryngol. Otol. 2014, 128, 29–34. [Google Scholar] [CrossRef]
- Halevi-Katz, D.N.; Yaakobi, E.; Putter-Katz, H. Exposure to music and noise-induced hearing loss (NIHL) among professional pop/rock/jazz musicians. Noise Health 2015, 17, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Vardonikolaki, A.; Kikidis, D.; Iliadou, E.; Markatos, N.; Pastiadis, K.; Bibas, A. Audiological findings in professionals exposed to music and their relation with tinnitus. Prog. Brain Res. 2021, 260, 327–353. [Google Scholar] [PubMed]
- Fernandes, L.d.C.; Santos, T.M.M.d. Tinnitus and normal hearing: A study on the transient otoacoustic emissions suppression. Braz. J. Otorhinolaryngol. 2009, 75, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Paglialonga, A.; Del Bo, L.; Ravazzani, P.; Tognola, G. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: Multiparametric recording of evoked otoacoustic emissions and contralateral suppression. Auris Nasus Larynx 2010, 37, 291–298. [Google Scholar] [CrossRef]
- Bramhall, N.F.; Kampel, S.D.; Reavis, K.M.; Konrad-Martin, D. Contralateral inhibition of distortion product otoacoustic emissions in young noise-exposed Veterans. J. Acoust. Soc. Am. 2022, 152, 3562–3575. [Google Scholar] [CrossRef]
- Megha, K.N.; Kappadi, S.; Kaverappa, G.M.; Konadath, S. Effects of Aging Versus Noise Exposure on Auditory System in Individuals With Normal Audiometric Thresholds. J. Int. Adv. Otol. 2021, 17, 335–342. [Google Scholar] [CrossRef]
- Maison, S.F.; Usubuchi, H.; Liberman, M.C. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 5542–5552. [Google Scholar] [CrossRef]
- Elangovan, T.; Selvarajan, H.G.; McPherson, B. Contralateral Suppression of Transient-evoked Otoacoustic Emissions in Leisure Noise Exposed Individuals. Noise Health 2022, 24, 145–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Shen, X.; Wang, L.; Chen, X.; Li, T.; Liu, B.; Xiao, H. Transient-Evoked Otoacoustic Emissions May Reveal Damage to Outer Hair Cells Caused by Exposure to Recreational Noise: A Narrative Review. Medicina 2025, 61, 1538. https://doi.org/10.3390/medicina61091538
Zhou Z, Shen X, Wang L, Chen X, Li T, Liu B, Xiao H. Transient-Evoked Otoacoustic Emissions May Reveal Damage to Outer Hair Cells Caused by Exposure to Recreational Noise: A Narrative Review. Medicina. 2025; 61(9):1538. https://doi.org/10.3390/medicina61091538
Chicago/Turabian StyleZhou, Ziqi, Xingqian Shen, Linlin Wang, Xiaoye Chen, Ting Li, Bo Liu, and Hongjun Xiao. 2025. "Transient-Evoked Otoacoustic Emissions May Reveal Damage to Outer Hair Cells Caused by Exposure to Recreational Noise: A Narrative Review" Medicina 61, no. 9: 1538. https://doi.org/10.3390/medicina61091538
APA StyleZhou, Z., Shen, X., Wang, L., Chen, X., Li, T., Liu, B., & Xiao, H. (2025). Transient-Evoked Otoacoustic Emissions May Reveal Damage to Outer Hair Cells Caused by Exposure to Recreational Noise: A Narrative Review. Medicina, 61(9), 1538. https://doi.org/10.3390/medicina61091538