The Role of Baseline PET/CT Parameters in Predicting Treatment Response in Patients with Locally Advanced Rectal Cancer Undergoing Total Neoadjuvant Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Treatment Protocols and 18F-FDG PET/CT Imaging and Analysis
2.3. Study Design and Statistical Analysis
3. Results
3.1. Characteristics of Patients
3.2. Pretreatment PET/CT Measurements and Treatment Response
3.3. Comparison of CR and Non-CR Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, J.; Ma, X.; Tan, L.; Yan, Y.; Xue, C.; Hui, B.; Liu, R.; Ma, H.; Ren, J. A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. Int. J. Biol. Sci. 2016, 12, 1022–1031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), iv22–iv40, Erratum in Ann. Oncol. 2018, 29 (Suppl. S4), iv263. https://doi.org/10.1093/annonc/mdy161. [Google Scholar] [CrossRef] [PubMed]
- Ciseł, B.; Pietrzak, L.; Michalski, W.; Wyrwicz, L.; Rutkowski, A.; Kosakowska, E.; Cencelewicz, A.; Spałek, M.; Polkowski, W.; Jankiewicz, M.; et al. Long-course preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: Long-term results of the randomized Polish II study. Ann. Oncol. 2019, 30, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.-K.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 29–42, Erratum in Lancet Oncol. 2021, 22, e42. https://doi.org/10.1016/S1470-2045(20)30781-6. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Tang, Y.; Hu, C.; Jiang, L.-M.; Jiang, J.; Li, N.; Liu, W.-Y.; Chen, S.-L.; Li, S.; Lu, N.-N.; et al. Multicenter, Randomized, Phase III Trial of Short-Term Radiotherapy Plus Chemotherapy Versus Long-Term Chemoradiotherapy in Locally Advanced Rectal Cancer (STELLAR). J. Clin. Oncol. 2022, 40, 1681–1692. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conroy, T.; Bosset, J.-F.; Etienne, P.-L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.C.; Soucisse, M.; Michael, M.; Tie, J.; Ngan, S.Y.; Leong, T.; McCormick, J.; Warrier, S.K.; Heriot, A.G. Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes. Ann. Surg. Oncol. 2021, 28, 7476–7486. [Google Scholar] [CrossRef] [PubMed]
- Riesco-Martinez, M.C.; Fernandez-Martos, C.; Gravalos-Castro, C.; Espinosa-Olarte, P.; La Salvia, A.; Robles-Diaz, L.; Modrego-Sanchez, A.; Garcia-Carbonero, R. Impact of Total Neoadjuvant Therapy vs. Standard Chemoradiotherapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis of Randomized Trials. Cancers 2020, 12, 3655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scott, A.J.; Kennedy, E.B.; Berlin, J.; Brown, G.; Chalabi, M.; Cho, M.T.; Cusnir, M.; Dorth, J.; George, M.; Kachnic, L.A.; et al. Management of Locally Advanced Rectal Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 3355–3375. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, T.; Xiao, L.; Yang, S.; Liu, Q.; Gao, Y.; Chen, G.; Xiao, W. Total Neoadjuvant Therapy (TNT) versus Standard Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, e1555–e1566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verheij, F.S.; Omer, D.M.; Williams, H.; Lin, S.T.; Qin, L.X.; Buckley, J.T. Long-Term Results of Organ Preservation in Patients with Rectal Adenocarcinoma Treated with Total Neoadjuvant Therapy: The Randomized Phase II OPRA Trial. J. Clin. Oncol. 2024, 42, 500–506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, H.; Lee, C.; Garcia-Aguilar, J. Nonoperative management of rectal cancer. Front. Oncol. 2024, 14, 1477510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pak, K.; Cheon, G.J.; Nam, H.-Y.; Kim, S.-J.; Kang, K.W.; Chung, J.-K.; Kim, E.E.; Lee, D.S. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: A systematic review and meta-analysis. J. Nucl. Med. 2014, 55, 884–890. [Google Scholar] [CrossRef]
- Im, H.J.; Pak, K.; Cheon, G.J.; Kang, K.W.; Kim, S.J.; Kim, I.J.; Chung, J.K.; Kim, E.E.; Lee, D.S. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: A meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Ebinç, S.; Güzel, Y.; Oruç, Z.; Kömek, H.; Kalkan, Z.; Can, C.; Taşdemir, B.; Urakçi, Z.; Kaplan, M.A.; Küçüköner, M.; et al. 18 F-FDG PET/CT parameters for prediction of response to neoadjuvant therapy and prognosis in rectal cancer. Nucl. Med. Commun. 2023, 44, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Park, H.L.; Yoon, N.; Kim, J.H.; Oh, J.K.; Buyn, J.H.; Choi, E.K.; Hong, J.H. Prognostic Impact of Total Lesion Glycolysis (TLG) from Preoperative 18F-FDG PET/CT in Stage II/III Colorectal Adenocarcinoma: Extending the Value of PET/CT for Resectable Disease. Cancers 2022, 14, 582. [Google Scholar] [CrossRef]
- Sakin, A.; Sahin, S.; Karyagar, S.S.; Karyagar, S.; Atci, M.; Akboru, M.H.; Cihan, S. The Predictive Value of Baseline Volumetric PET/CT Parameters on Treatment Response and Prognosis in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. J. Gastrointest. Cancer 2022, 53, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, J.G.; Lee, S.W.; Chae, Y.S.; Kang, B.W.; Lee, Y.J.; Park, J.S.; Choi, G.S. Clinical implications of initial FDG-PET/CT in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Cancer Chemother. Pharmacol. 2013, 71, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Pyo, D.H.; Choi, J.Y.; Lee, W.Y.; Yun, S.H.; Kim, H.C.; Huh, J.W.; Park, Y.A.; Shin, J.K.; Cho, Y.B. A Nomogram for Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy Using Semiquantitative Parameters Derived From Sequential PET/CT in Locally Advanced Rectal Cancer. Front. Oncol. 2021, 11, 742728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rymer, B.; Curtis, N.J.; Siddiqui, M.R.; Chand, M. FDG PET/CT Can Assess the Response of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy: Evidence From Meta-analysis and Systematic Review. Clin. Nucl. Med. 2016, 41, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, E.; Lambreton, F.; Yu, J.Q.; Li, T.; Denlinger, C.S.; Meyer, J.E.; Sigurdson, E.R.; Farma, J.M. Impact of PET/CT for Restaging Patients with Locally Advanced Rectal Cancer After Neoadjuvant Chemoradiation. J. Surg. Res. 2019, 243, 242–248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maffione, A.M.; Marzola, M.C.; Capirci, C.; Colletti, P.M.; Rubello, D. Value of (18)F-FDG PET for Predicting Response to Neoadjuvant Therapy in Rectal Cancer: Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2015, 204, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Gu, B.; Shi, L.; Wang, X.; Ye, W.; Zhou, W.; Sun, X. Prognostic value of CEA and CA19-9 in patients with local advanced rectal cancer receiving neoadjuvant chemoradiotherapy, radical surgery and postoperative chemotherapy. Transl. Cancer Res. 2021, 10, 88–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.N.; Ouyang, P.Y.; Xiao, W.W.; Yu, X.; You, K.Y.; Zeng, Z.F.; Xu, R.H.; Gao, Y.H. Elevated CA19-9 as the Most Significant Prognostic Factor in Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Medicine 2015, 94, e1793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kasi, A.; Abbasi, S.; Handa, S.; Al-Rajabi, R.; Saeed, A.; Baranda, J.; Sun, W. Total Neoadjuvant Therapy vs Standard Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2030097. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petrelli, F.; Trevisan, F.; Cabiddu, M.; Sgroi, G.; Bruschieri, L.; Rausa, E.; Ghidini, M.; Turati, L. Total Neoadjuvant Therapy in Rectal Cancer: A Systematic Review and Meta-analysis of Treatment Outcomes. Ann. Surg. 2020, 271, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, A.T.; Hunt, S.R. Watch and Wait: Is Surgery Always Necessary for Rectal Cancer? Curr. Treat Options Oncol. 2016, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Malcomson, L.; Emsley, R.; Gollins, S.; Maw, A.; Myint, A.S.; Rooney, P.S.; Susnerwala, S.; Blower, A.; Saunders, M.P.; et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): A propensity-score matched cohort analysis. Lancet Oncol. 2016, 17, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, D.E.; Georgescu, M.T.; Bobircă, F.T.; Georgescu, T.F.; Doran, H.; Pătraşcu, T. Synchronous Locally Advanced Rectal Cancer with Clinical Complete Remission and Important Downstaging after Neoadjuvant Radiochemotherapy—Personalised Therapeutic Approach. Chirurgia 2017, 112, 726–733. [Google Scholar] [CrossRef] [PubMed]
CR (n = 21) | Non-CR (n = 31) | Total (n = 52) | |
---|---|---|---|
Age (min–max) | 60 (41–82) | 62 (40–89) | 61 (40–89) |
Gender (%) | |||
Male | 15 (71.4) | 20 (64.5) | 35 (67.3) |
Female | 6 (28.5) | 11 (35.4) | 17 (32.6) |
ECOG PS (%) | |||
0–1 | 20 (95.2) | 28 (90.3) | 48 (92.3) |
2 | 1 (4.7) | 3 (9.6) | 4 (7.6) |
Tumor size (%) | |||
≤5 cm | 12 (57.1) | 17 (54.8) | 29 (55.7) |
>5 cm | 9 (42.8) | 14 (45.1) | 23 (44.2) |
Distance from Anal Verge | |||
≤5 cm | 12 (57.1) | 19 (61.2) | 31 (59.6) |
5–10 cm | 7 (33.3) | 7 (22.6) | 14 (26.9) |
10–15 cm | 2 (9.5) | 5 (16.1) | 7 (13.4) |
Microsatellite status (%) | |||
MSS | 16 (100) | 24 (100) | 40 (100) |
MSI/H | 0 (0) | 0 (0) | 0 (0) |
Unknown | 5 | 7 | 12 |
Clinical T Stage (%) | |||
T2 | 3 (14.2) | 5 (16.1) | 8 (15.4) |
T3 | 17 (80.9) | 24 (77.4) | 41 (78.8) |
T4 | 1 (4.7) | 2 (6.4) | 3 (5.7) |
Clinical N Stage (%) | |||
N0 | 2 (9.5) | 2 (6.4) | 4 (7.6) |
N1 | 15 (71.4) | 22 (70.9) | 37 (71.2) |
N2 | 4 (19) | 7 (22.5) | 11 (21.1) |
Radiotherapy | |||
Short-course | 2 (9.5) | 3 (9.6) | 5 (9.7) |
Long-course | 19 (90.4) | 28 (90.3) | 47 (90.3) |
Concurrent chemotherapy | |||
Capecitabine | 20 (95.2) | 29 (93.5) | 49 (94.2) |
5-Fluorouracil infusion | 1 (4.7) | 2 (6.4) | 3 (5.7) |
Chemotherapy regimens | |||
CAPOX | 20 (95.2) | 29 (93.5) | 49 (94.2) |
FOLFOX | 1 (4.7) | 2 (6.4) | 3 (5.7) |
Chemotherapy Cycles (Capox) (n = 49) | |||
4 cycles | 7 (35) | 11 (37.9) | 18 (36.7) |
5 cycles | 5 (25) | 5 (17.2) | 10 (20.4) |
6 cycles | 8 (40) | 13 (44.8) | 21 (42.8) |
CR (n = 21) | Non-CR (n = 31) | Total (n = 52) | |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
Lesion SUVmean | 8.54 ± 4.94 | 11.22 ± 5.76 | 10.14 ± 5.55 |
Lesion SUVmax | 14.86 ± 8.36 | 19.44 ± 9.93 | 17.59 ± 9.51 |
Lesion-to-liver SUVmean | 4.49 ± 2.19 | 5.42 ± 2.62 | 5.04 ± 2.48 |
Lesion-to-liver SUVmax | 5.59 ± 2.61 | 7.05 ± 3.03 | 6.46 ± 3.05 |
Metabolic Tumor Volume (MTV) | 15.92 ± 6.52 | 22.29 ± 11.37 | 19.72 ± 10.13 |
Total Lesion Glycolysis (TLG) | 129.91 ± 60.77 | 231.98 ± 158.77 | 190.76 ± 137.23 |
Patients (%) | |
---|---|
Surgery (n = 52) | |
Yes | 39 (75) |
No | 13 (25) |
Complete Response (n = 21) | |
Pathological CR | 8 (38.1) |
Clinical CR | 13 (61.9) |
Pathologic T category (n = 38) | |
ypT0 | 9 (23.6) |
ypT1 | 1 (2.6) |
ypT2 | 6 (15.7) |
ypT3 | 21 (55.2) |
ypT4 | 1 (2.6) |
Pathologic N category (n = 38) | |
ypN0 | 27 (71) |
ypN1 | 9 (23.6) |
ypN2 | 2 (5.2) |
Tumor regression grading (n = 38) | |
0 | 8 (21) |
1 | 12 (31.5) |
2 | 10 (26.3) |
3 | 8 (21) |
CR (n = 21) | Non-CR (n = 31) | p Value | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Age (years) | 60.47 ± 11.95 | 62.93 ± 11.78 | 0.911 * |
Tumor size (cm) | 5.69 ± 2.03 | 6.14 ± 1.74 | 0.472 * |
Distance from Anal Verge (cm) | 5.16 ± 3.32 | 6.23 ± 4.03 | 0.477 * |
Lesion-to-liver SUVmean | 4.49 ± 2.19 | 5.42 ± 2.62 | 0.414 * |
Lesion-to-liver SUVmax | 5.59 ± 2.61 | 7.05 ± 3.03 | 0.355 * |
Metabolic Tumor Volume (cm3) | 15.92 ± 6.52 | 22.29 ± 11.37 | 0.022 * |
Total Lesion Glycolysis (SUV × cm3) | 129.91 ± 60.77 | 231.98 ± 158.77 | 0.003 * |
CEA (ng/mL) (median, min–max) | 4.2 (0–25.4) | 6.1 (0–87.5) | 0.077 ** |
CA19-9 (U/mL) (median, min–max) | 65 (0–525) | 117 (0–1358) | 0.040 ** |
n (%) | n (%) | p value | |
Gender | 0.602 *** | ||
Male | 15 (71.4) | 20 (64.5) | |
Female | 6 (28.5) | 11 (35.4) | |
Clinical T Stage | 0.105 *** | ||
T2 | 3 (14.2) | 5 (16.1) | |
T3 | 17 (80.9) | 24 (77.4) | |
T4 | 1 (4.7) | 2 (6.4) | |
Clinical N Stage | 0.228 *** | ||
N0 | 2 (9.5) | 2 (6.4) | |
N1 | 15 (71.4) | 22 (70.9) | |
N2 | 4 (19) | 7 (22.5) | |
Long-course Radiotherapy Dose (n = 47) | 0.149 *** | ||
56 Gy | 14 (70) | 16 (59.2) | |
50 Gy | 6 (30) | 11 (40.7) | |
Chemotherapy Cycles (Capox) (n = 49) | 0.415 *** | ||
4 cycles | 7 (35) | 11 (37.9) | |
5 cycles | 5 (25) | 5 (17.2) | |
6 cycles | 8 (40) | 13 (44.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güren, A.K.; Başkan, Z.; Balaban Genç, Z.C.; Bulun Akyol, T.; Kocaaslan, E.; Ağyol, Y.; Erel, P.; Paçacı, B.; Tunç, M.A.; Demirel, A.; et al. The Role of Baseline PET/CT Parameters in Predicting Treatment Response in Patients with Locally Advanced Rectal Cancer Undergoing Total Neoadjuvant Therapy. Medicina 2025, 61, 1449. https://doi.org/10.3390/medicina61081449
Güren AK, Başkan Z, Balaban Genç ZC, Bulun Akyol T, Kocaaslan E, Ağyol Y, Erel P, Paçacı B, Tunç MA, Demirel A, et al. The Role of Baseline PET/CT Parameters in Predicting Treatment Response in Patients with Locally Advanced Rectal Cancer Undergoing Total Neoadjuvant Therapy. Medicina. 2025; 61(8):1449. https://doi.org/10.3390/medicina61081449
Chicago/Turabian StyleGüren, Ali Kaan, Zilan Başkan, Zeynep Ceren Balaban Genç, Tuğçe Bulun Akyol, Erkam Kocaaslan, Yeşim Ağyol, Pınar Erel, Burak Paçacı, Mustafa Alperen Tunç, Ahmet Demirel, and et al. 2025. "The Role of Baseline PET/CT Parameters in Predicting Treatment Response in Patients with Locally Advanced Rectal Cancer Undergoing Total Neoadjuvant Therapy" Medicina 61, no. 8: 1449. https://doi.org/10.3390/medicina61081449
APA StyleGüren, A. K., Başkan, Z., Balaban Genç, Z. C., Bulun Akyol, T., Kocaaslan, E., Ağyol, Y., Erel, P., Paçacı, B., Tunç, M. A., Demirel, A., Majidova, N., Sever, N., Çelebi, A., Işık, S., Sarı, M., Köstek, O., Özgüven, S., Alkış, H., Adli, M., & Bayoğlu, İ. V. (2025). The Role of Baseline PET/CT Parameters in Predicting Treatment Response in Patients with Locally Advanced Rectal Cancer Undergoing Total Neoadjuvant Therapy. Medicina, 61(8), 1449. https://doi.org/10.3390/medicina61081449