Peripheral Vascular Access in Infants: Is Ultrasound-Guided Cannulation More Effective than the Conventional Approach? A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Research Question
2.3. Inclusion and Exclusion Criteria
2.4. Literature Search Strategy
2.5. Synthesis of Results
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Main Results
4. Discussion
4.1. Clinical Efficacy and Procedural Outcomes
4.2. Technical Approaches, Complications, and Patient Selection
4.3. Clinical Judgment and Decision-Making Criteria
4.4. Emotional Impact and Staff Perceptions
4.5. Costs and Technological Alternatives
4.6. Long-Term Vascular Impact
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, B.K.G.; Martins, A.G.E.; Lopes, J.R.; Barbosa, H.A.; Souto, D.F.; Maciel, A.P.F.; Santos, B.E.; Martins, V.G.E.; Magalhães, D.O.L. Conhecimento da equipe de enfermagem sobre inserção, manutenção e complicações relacionados ao cateter venoso periférico. Rev. Eletrônica Acervo Saúde 2020, 12, e3408. [Google Scholar] [CrossRef]
- Mailhe, M.; Aubry, C.; Brouqui, P.; Michelet, P.; Raoult, D.; Parola, P.; Lagier, J.-C. Complications of peripheral venous catheters: The need to propose an alternative route of administration. Int. J. Antimicrob. Agents 2020, 55, 105875. [Google Scholar] [CrossRef] [PubMed]
- de la Vieja-Soriano, M.; Blanco-Daza, M.; Macip-Belmonte, S.; Dominguez-Muñoz, M.; López-Sánchez, E.; Pérez-Pérez, E. Difficult intravenous access in a paediatric intensive care unit. Enfermería Intensiv. Engl. Ed. 2022, 33, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Cheung, M. Intravenous access in children. Paediatr. Child Health 2020, 30, 224–229. [Google Scholar] [CrossRef]
- Nakayama, Y.; Takeshita, J.; Nakajima, Y.; Shime, N. Ultrasound-guided peripheral vascular catheterization in pediatric patients: A narrative review. Crit. Care 2020, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.; Muncaster, M.; Baring, C.L.; Manos, J.; Kleidon, T.M.; Ullman, A.J. The parent, child and young person experience of difficult venous access and recommendations for clinical practice: A qualitative descriptive study. J. Clin. Nurs. 2023, 32, 6690–6705. [Google Scholar] [CrossRef] [PubMed]
- Bahoush, G.; Salajegheh, P.; Anari, A.M.; Eshghi, A.; Aski, B.H. A review of peripherally inserted central catheters and various types of vascular access in very small children and pediatric patients and their potential complications. J. Med. Life 2021, 14, 298. [Google Scholar] [CrossRef] [PubMed]
- Han, J. The Effect of Using Picc Catheterization Technique in the Nursing of Tumor Patients. Arch. Clin. Psychiatry 2022, 49, 2022. [Google Scholar]
- Paterson, R.S.; Chopra, V.; Brown, E.; Kleidon, T.M.; Cooke, M.; Rickard, C.M.; Bernstein, S.J.; Ullman, A.J. Selection and Insertion of Vascular Access Devices in Pediatrics: A Systematic Review. Pediatrics 2020, 145, S243–S268. [Google Scholar] [CrossRef] [PubMed]
- Kleidon, T.M.; Schults, J.; Rickard, C.M.; Ullman, A.J. Techniques and Technologies to Improve Peripheral Intravenous Catheter Outcomes in Pediatric Patients: Systematic Review and Meta-Analysis. J. Hosp. Med. 2021, 16, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Ullman, A.J.; Bernstein, S.J.; Brown, E.; Aiyagari, R.; Doellman, D.; Faustino, E.V.S.; Gore, B.; Jacobs, J.P.; Jaffray, J.; Kleidon, T.; et al. The Michigan appropriateness guide for intravenous catheters in pediatrics: miniMAGIC. Pediatrics 2020, 145, S269–S284. [Google Scholar] [CrossRef] [PubMed]
- Szydlowski, B.; Nolte, J.; Vershilovsky, E. Recent Advances in Intraosseous Vascular Access. Curr. Emerg. Hosp. Med. Rep. 2021, 9, 82–88. [Google Scholar] [CrossRef]
- Capobianco, S.; Weiss, M.; Schraner, T.; Stimec, J.; Neuhaus, K.; Neuhaus, D. Checking the basis of intraosseous access—Radiological study on tibial dimensions in the pediatric population. Paediatr. Anaesth. 2020, 30, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Peguet, O.; Beissel, A.; Chassery, C.; Gueugniaud, P.Y.; Bouchut, J.C. Intraosseous devices in small children: The need for a clearly defined strategy. Resuscitation 2020, 146, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, A.; Akers, K.G.; Paxton, J.H. Complications of Intraosseous Catheterization in Adult Patients: A Review of the Literature. Curr. Emerg. Hosp. Med. Rep. 2023, 11, 35–48. [Google Scholar] [CrossRef]
- Bouhamdan, J.; Polsinelli, G.; Akers, K.G.; Paxton, J.H. A Systematic Review of Complications from Pediatric Intraosseous Cannulation. Curr. Emerg. Hosp. Med. Rep. 2022, 10, 116–124. [Google Scholar] [CrossRef]
- Acosta, C.M.; Tusman, G. Ultrasound-guided brachiocephalic vein access in neonates and pediatric patients. Rev. Esp. Anestesiol. Reanim. 2021, 68, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Y.; Gong, T.; Huang, Q.; Zhang, Q.Q. Systematic review of ultrasound-guided central venous catheter placement-related complications in neonates and infants aged <12 months. J. Int. Med. Res. 2024, 52, 3000605241287168. [Google Scholar] [CrossRef] [PubMed]
- Grandpierre, R.G.; Bobbia, X.; Muller, L.; Markarian, T.; Occéan, B.V.; Pommet, S.; Roger, C.; Lefrant, J.Y.; de la Coussaye, J.E.; Claret, P.G. Ultrasound guidance in difficult radial artery puncture for blood gas analysis: A prospective, randomized controlled trial. PLoS ONE 2019, 14, e0213683. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Z.; Zhong, M.; Wu, W.; Song, J.Q.; Zhu, D.M. A comparison of longitudinal and transverse approaches to ultrasound-guided axillary vein cannulation by experienced operators. J. Thorac. Dis. 2017, 9, 1133. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, R.; Laursen, C.B.; Konge, L.; Pietersen, P.I. Education in the placement of ultrasound-guided peripheral venous catheters: A systematic review. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 83. [Google Scholar] [CrossRef] [PubMed]
- Archer-Jones, A.; Sweeny, A.; Schults, J.A.; Rickard, C.M.; Johnson, L.; Gunter, A.; Watkins, S. Evaluating an ultrasound-guided peripheral intravenous cannulation training program for emergency clinicians: An Australian perspective. Australas. Emerg. Care 2020, 23, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Chang, J.; Xiao, S.; Pei, W.; Wang, L. A new inexpensive ultrasound-guided central venous catheterization simulation model. BMC Med. Educ. 2023, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Escobar Gimenes, F.R.; Menegueti, M.G.; Nunes, E.; Silva, R.P.; Marques, A.R.; Santos, V.B.; Boling, B.; Lopes, R.P.; Apablaza, M.F.S. Ultrasound-Guided Peripherally Inserted Central Catheter Insertion: A Nurse Training Initiative. J. Radiol. Nurs. 2025, 44, 210–214. [Google Scholar] [CrossRef]
- Escandell Rico, F.M.; Pérez Fernández, L. Simulación de realidad virtual en la formación de los estudiantes de Enfermería: Una revisión sistemática. Educ. Médica 2024, 25, 100866. [Google Scholar] [CrossRef]
- Lee, J.S. Implementation and Evaluation of a Virtual Reality Simulation: Intravenous Injection Training System. Int. J. Environ. Res. Public Health 2022, 19, 5439. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Moneo, B.; Gayo Bellido, M.; Barral Mena, E.; Pérez-Moneo Agapito, M.Á.; Correyero García, L.; Baños Fuerte, R. Realidad virtual en el paciente ambulatorio: Reduciendo la ansiedad y el miedo en la punción de vías venosas. Andes Pediatr. 2024, 95, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Choi, K.C. Effects of an Immersive Virtual Reality Intervention on Pain and Anxiety Among Pediatric Patients Undergoing Venipuncture: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e230001. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.Y.; Park, D.K.; Lee, Y.H.; Jo, H.S.; Lim, Y.S.; Park, R.W. Evaluation of practical exercises using an intravenous simulator incorporating virtual reality and haptics device technologies. Nurse Educ. Today 2012, 32, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.; Ng, L.; Kessler, D.O. Attitudes towards three ultrasound-guided vascular access techniques in a paediatric emergency department. Br. J. Nurs. 2017, 26, S26–S31. [Google Scholar] [CrossRef] [PubMed]
- López-Álvarez, J.M.; Pérez-Quevedo, O.; Naya-Esteban, J.; Ramirez-Lorenzo, T.; López-Manteola, S.A.G.; Lorenzo-Villegas, D.L. Evaluation of Training in Pediatric Ultrasound-guided Vascular Cannulation Using a Model. J. Med. Ultrasound 2020, 29, 171. [Google Scholar] [CrossRef] [PubMed]
- McKinney, A.; Steanson, K.; Lebar, K. A Standardized Training Program in Ultrasound-Guided Intravenous Line Placement: Improving Nurses’ Confidence and Success. Adv. Neonatal Care 2023, 23, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hackett, A.; Wells, C.; Zhang, Z.; Kero, J.; Soriano, J.; Rivera, J.; Brito, A.; Guiney, J.; Leibner, E.; Kohli-Seth, R. Development of a peripheral intravenous access training program for nurses in the pediatric intensive care units. J. Pediatr. Nurs. 2021, 61, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Urrútia, G.; Bonfill, X. Declaración PRISMA: Una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med. Clin. 2010, 135, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Castillo, P.G.; Corral, R.S. Análisis del dolor en la canalización arterial por técnica ecoguiada frente a la técnica convencional. Conoc. Enferm. 2023, 6, 38–46. [Google Scholar] [CrossRef]
- Takeshita, J.; Yoshida, T.; Nakajima, Y.; Nakayama, Y.; Nishiyama, K.; Ito, Y.; Shimizu, Y.; Takeuchi, M.; Shime, N. Superiority of Dynamic Needle Tip Positioning for Ultrasound-Guided Peripheral Venous Catheterization in Patients Younger Than 2 Years Old: A Randomized Controlled Trial. Pediatr. Crit. Care Med. 2019, 20, e410–e414. [Google Scholar] [CrossRef] [PubMed]
- Oulego-Erroz, I.; Mayordomo-Colunga, J.; González-Cortés, R.; Sánchez-Porras, M.; Llorente-de la Fuente, A.; Fernández-de Miguel, S.; Balaguer-Gargallo, M.; Frías-Pérez, M.; Rodríguez-Nuñez, A.; en representación del Grupo de Estudio RECANVA. Canalización arterial ecoguiada o por palpación del pulso en la unidad de cuidados intensivos. Pediatria Engl. Ed. 2021, 94, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Kleidon, T.M.; Schults, J.A.; Royle, R.H.; Gibson, V.; Ware, R.S.; Andresen, E.; Cattanach, P.; Dean, A.; Pitt, C.; Ramstedt, M.; et al. First-Attempt Success in Ultrasound-Guided vs Standard Peripheral Intravenous Catheter Insertion: The EPIC Superiority Randomized Clinical Trial. JAMA Pediatr. 2025, 179, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Triffterer, L.; Marhofer, P.; Willschke, H.; MacHata, A.M.; Reichel, G.; Benkoe, T.; Kettner, S.C. Ultrasound-guided cannulation of the great saphenous vein at the ankle in infants. Br. J. Anaesth. 2012, 108, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Gopalasingam, N.; Obad, D.S.; Kristensen, B.S.; Lundgaard, P.; Veien, M.; Gjedsted, J.; Sloth, E.; Juhl-Olsen, P. Ultrasound-guidance outperforms the palpation technique for peripheral venous catheterisation in anaesthetised toddlers: A randomised study. Acta Anaesthesiol. Scand. 2017, 61, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Andersen, N.L.; Jensen, R.O.; Posth, S.; Laursen, C.B.; Jørgensen, R.; Graumann, O. Teaching ultrasound-guided peripheral venous catheter placement through immersive virtual reality: An explorative pilot study. Medicine 2021, 100, e26394. [Google Scholar] [CrossRef] [PubMed]
- Troianos, C.A.; Hartman, G.S.; Glas, K.E.; Skubas, N.J.; Eberhardt, R.T.; Walker, J.D.; Reeves, S.T.; Councils on Intraoperative Echocardiography and Vascular Ultrasound of the American Society of Echocardiography. Guidelines for Performing Ultrasound Guided Vascular Cannulation: Recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J. Am. Soc. Echocardiogr. 2011, 24, 1291–1318. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.B.; Yan, J.H.; Ma, J.M.; Liu, X.N.; Dong, J.Y.; Sun, F.; Tang, L.W.; Li, J. Effects of long axis in-plane vs short axis out-of-plane techniques during ultrasound-guided vascular access. Am. J. Emerg. Med. 2016, 34, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Tan, Y.T.; Wei, T.; Li, H. Comparison between the long-axis in-plane and short-axis out-of-plane approaches for ultrasound-guided arterial cannulation: A meta-analysis and systematic review. BMC Anesth. 2023, 23, 120. [Google Scholar] [CrossRef] [PubMed]
- Zaki, H.A.; Elmelliti, H.; Ponappan, B.; Shaban, A.; Shaban, A.; Abosamak, M.F.; Shaban, E.E. Outcomes of POCUS-Guided Peripheral Intravenous Access in Difficult Venous Access Patients: A Systematic Review and Meta-Analysis. J. Clin. Ultrasound 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.T.; Francisco, M.D.; Yen, C.K.; Wang, S.Y.; Shiue, Y.L. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy. Sensors 2019, 19, 3573. [Google Scholar] [CrossRef] [PubMed]
Authors | Country | Study Type | Setting | Sample |
---|---|---|---|---|
Castillo and Corral [35] | Spain | Prospective observational study | Resuscitation Unit, Gregorio Marañón Hospital, Madrid | 107 arterial cannulations (new or replacement) |
Takeshita et al. [36] | Japan | Randomized controlled trial | Single center, Osaka Women and Children’s Hospital | 60 pediatric patients under 2 years requiring peripheral vascular catheterization in PICU |
Oulego-Erroz et al. [37] | Spain | Prospective multicenter study | 18 PICUs across Spain over a 6-month period | 161 procedures in 128 patients, with a median age of 11 months and a median weight of 10 kg |
Kleidon et al. [38] | Australia | Open-label, pragmatic, superiority, randomized trial | Queensland Children’s Hospital | 164 children, median age 24 (10–120) months; 85 ultrasound-guided, 80 conventional cannulations |
Triffterer et al. [39] | Austria | Prospective observational study | Surgical block | 90 infants ≤ 12 months undergoing elective surgery with no visible veins needing great saphenous vein cannulation; two groups (0–6 months and 7–12 months) |
Gopalasingam et al. [40] | Denmark | Randomized, controlled, crossover study | Surgical block | 50 pediatric patients under 4 years under anesthesia undergoing low-risk elective procedures |
Carrie Ng et al. [30] | United Kingdom | Cross-sectional study | Various pediatric emergency departments | 18 nursing professionals—17 from pediatric emergency care—were analyzed |
López-Álvarez et al. [31] | Spain | Descriptive observational study | Pediatric Intensive Care Unit, Maternal and Child University Hospital of the Canary Islands | 25 healthcare professionals (56% physicians, 44% nurses) |
McKinney et al. [32] | United States | Training program | NICU | 12 NICU nurses |
Hackett et al. [33] | United States | Training program | ICU of a quaternary urban university hospital | Eight nurses: six from PICU and two from the pediatric transport team |
Andersen et al. [41] | — | Pilot study designed as a randomized controlled trial | University of Southern Denmark | 19 students |
Theme | Study | Results/Conclusions |
---|---|---|
Stress reduction | Castillo and Corral [35] | No statistically significant differences were found between using and not using the ultrasound-guided technique; pain was mostly associated with the use of anesthetics. |
Reduction in number of punctures | Takeshita et al. [36] | Dynamic ultrasound-guided cannulation reduced the number of punctures and time used compared to static guidance (success: 86.7% vs. 60%; time: 51.5″ vs. 71.5″). |
Oulego-Erroz et al. [37] | Significant difference in overall success rate (83.7% vs. 62.7%) and complication reduction (10.8% vs. 32.5%) in cannulations performed by staff with less than 5 years of PICU experience. | |
Kleidon et al. [38] | Success rate with ultrasound-guided cannulation was 85.7% (72 children) vs. 32.5% (26 children) with the conventional technique. | |
Triffterer et al. [39] | Success rate by age group: 0–6 months = 96%, 7–12 months = 100%. Overall success rate: 98%. | |
Gopalasingam et al. [40] | First-attempt success (ultrasound: 42/50 vs. conventional: 30/50; p = 0.029); overall success (50/50 vs. 42/50; p = 0.008). Number of punctures (60 vs. 84; p = 0.013); redirections (14 vs. 131; p < 0.001); longer distance from flexion fold (p < 0.001). No significant differences in the number of catheters used or total time. Needle handling time was longer in the ultrasound group (p = 0.011). Lower success rate in the palpation group with less visible/palpable veins (p = 0.006). | |
Nursing staff perception | Carrie Ng et al. [30] | The cannulation techniques were well received. In total, 82% performed at least one. The self-guided technique was favored by two professionals (65%) and continued to be used 3 months later (65%). |
López-Álvarez et al. [31] | Success rate: 79.7%; average attempts: 1.8 ± 1.2 globally, 1.49 ± 0.86 for ultrasound-guided; average time: 115.6 s ± 114.9 s; time to successful ultrasound-guided cannulation: 87.69 s ± 82.81 s. Reliability questionnaire scored 87.2%, with perceived utility rated highest (92.85%). | |
Training and education | McKinney et al. [32] | The program helped improve NICU nursing staff training. |
Hackett et al. [33] | The program increased PICU nursing staff success rate by 82.5%. | |
Andersen et al. [41] | Success rate was 73% (22 out of 30 cannulations) in the virtual reality group vs. 22% (6 out of 27) in the group without virtual reality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casal-Guisande, C.; López-Domene, E.; Fernández-Antorrena, S.; Fernández-García, A.; Torres-Durán, M.; Casal-Guisande, M.; Fernández-Villar, A. Peripheral Vascular Access in Infants: Is Ultrasound-Guided Cannulation More Effective than the Conventional Approach? A Systematic Review. Medicina 2025, 61, 1321. https://doi.org/10.3390/medicina61081321
Casal-Guisande C, López-Domene E, Fernández-Antorrena S, Fernández-García A, Torres-Durán M, Casal-Guisande M, Fernández-Villar A. Peripheral Vascular Access in Infants: Is Ultrasound-Guided Cannulation More Effective than the Conventional Approach? A Systematic Review. Medicina. 2025; 61(8):1321. https://doi.org/10.3390/medicina61081321
Chicago/Turabian StyleCasal-Guisande, Cristina, Esperanza López-Domene, Silvia Fernández-Antorrena, Alberto Fernández-García, María Torres-Durán, Manuel Casal-Guisande, and Alberto Fernández-Villar. 2025. "Peripheral Vascular Access in Infants: Is Ultrasound-Guided Cannulation More Effective than the Conventional Approach? A Systematic Review" Medicina 61, no. 8: 1321. https://doi.org/10.3390/medicina61081321
APA StyleCasal-Guisande, C., López-Domene, E., Fernández-Antorrena, S., Fernández-García, A., Torres-Durán, M., Casal-Guisande, M., & Fernández-Villar, A. (2025). Peripheral Vascular Access in Infants: Is Ultrasound-Guided Cannulation More Effective than the Conventional Approach? A Systematic Review. Medicina, 61(8), 1321. https://doi.org/10.3390/medicina61081321