Echocardiographic Evidence of Left Ventricular Dysfunction in COPD: Relationship with Disease Severity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Selection
2.3. Clinical and Pulmonary Assessment
2.4. Laboratory Investigations
2.5. Echocardiographic Evaluation
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. COPD Severity and Lung Function
3.3. Prevalence of Left Ventricular Dysfunction
3.4. Association Between COPD Severity and Cardiac Dysfunction
3.5. Subgroup Analyses
3.5.1. Smoking Status
3.5.2. Oxygen Saturation
3.5.3. Exacerbation Frequency
3.5.4. Pulmonary Function Correlation
3.6. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IHEC | The Institutional Human Ethics Committee |
GOLD | Global Initiative for Chronic Obstructive Lung Disease |
COPD | Chronic obstructive pulmonary disease |
FEV1 | Forced expiratory volume in 1 s |
FVC | Forced vital capacity |
ESR | Erythrocyte sedimentation rate |
ALT | Alanine transaminase |
AST | Aspartate aminotransferase |
ASE | American Society of Echocardiography |
LVSD | Left ventricular systolic dysfunction |
LVEF | Left ventricular ejection fraction |
SpO2 | Peripheral oxygen saturation |
BMI | Body mass index |
LA | Left atrium |
TRV | Tricuspid regurgitation velocity |
LVMi | Left ventricular mass index |
RV | Right ventricular |
LV | Left ventricular |
References
- World Health Organization (WHO). The Top 10 Causes of Death; WHO: Geneva, Switzerland, 2025. [Google Scholar]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef] [PubMed]
- Waschki, B.; Watz, H.; Holz, O.; Magnussen, H.; Olejnicka, B.; Welte, T.; Rabe, K.F.; Janciauskiene, S. Plasminogen Activator Inhibitor-1 Is Elevated in Patients with COPD Independent of Metabolic and Cardiovascular Function; Taylor & Francis: Abingdon, UK, 2017; pp. 981–987. [Google Scholar]
- Barnes, P.J.; Celli, B.R. Systemic Manifestations and Comorbidities of COPD; European Respiratory Society: Lausanne, Switzerland, 2009; Volume 33, pp. 1165–1185. [Google Scholar]
- Kibbler, J.; Wade, C.; Mussell, G.; Ripley, D.P.; Bourke, S.C.; Steer, J. Systematic Review and Meta-Analysis of Prevalence of Undiagnosed Major Cardiac Comorbidities in COPD. ERJ Open Res. 2023, 9, 548–2023. [Google Scholar] [CrossRef] [PubMed]
- MacNee, W.; Maclay, J.; McAllister, D. Cardiovascular Injury and Repair in Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2008, 5, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Goudis, C.A. Chronic Obstructive Pulmonary Disease and Atrial Fibrillation: An Unknown Relationship. J. Cardiol. 2017, 69, 699–705. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Dransfield, M.T. Chronic Obstructive Pulmonary Disease and Cardiovascular Disease; Elsevier: Amsterdam, The Netherlands, 2013; Volume 162, pp. 237–251. [Google Scholar]
- Fabbri, L.M.; Luppi, F.; Beghé, B.; Rabe, K.F. Complex Chronic Comorbidities of COPD; European Respiratory Society: Lausanne, Switzerland, 2007; Volume 31, pp. 204–212. [Google Scholar]
- Sin, D.D.; Man, S.P. Why Are Patients with Chronic Obstructive Pulmonary Disease at Increased Risk of Cardiovascular Diseases? The Potential Role of Systemic Inflammation in Chronic Obstructive Pulmonary Disease; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2003; Volume 107, pp. 1514–1519. [Google Scholar]
- Hawkins, N.M.; Petrie, M.C.; Jhund, P.S.; Chalmers, G.W.; Dunn, F.G.; McMurray, J.J. Heart Failure and Chronic Obstructive Pulmonary Disease: Diagnostic Pitfalls and Epidemiology. Eur. J. Heart Fail. 2009, 11, 130–139. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Celli, B.R.; Decramer, M.; Wedzicha, J.A.; Wilson, K.C.; Agustí, A.; Criner, G.J.; MacNee, W.; Make, B.J.; Rennard, S.I.; Stockley, R.A.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Research Questions in COPD. Eur. Respir. J. 2015, 45, 879–905. [Google Scholar] [CrossRef]
- Houben-Wilke, S.; Jörres, R.A.; Bals, R.; Franssen, F.M.E.; Gläser, S.; Holle, R.; Karch, A.; Koch, A.; Magnussen, H.; Obst, A.; et al. Peripheral Artery Disease and Its Clinical Relevance in Patients with Chronic Obstructive Pulmonary Disease in the COPD and Systemic Consequences-Comorbidities Network Study. Am. J. Respir. Crit. Care Med. 2017, 195, 189–197. [Google Scholar] [CrossRef]
- Müllerova, H.; Agusti, A.; Erqou, S.; Mapel, D.W. Cardiovascular Comorbidity in COPD: Systematic Literature Review. Chest 2013, 144, 1163–1178. [Google Scholar] [CrossRef]
- Zaidi, S.A.J.; Ghafoor, A.; Kim, J.; Abbas, Z.; Lee, S.W. HeartEnsembleNet: An Innovative Hybrid Ensemble Learning Approach for Cardiovascular Risk Prediction. Healthcare 2025, 13, 507. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of Spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994; ISBN 978-0-429-24659-3. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Freixa, X.; Portillo, K.; Paré, C.; Garcia-Aymerich, J.; Gomez, F.P.; Benet, M.; Roca, J.; Farrero, E.; Ferrer, J.; Fernandez-Palomeque, C. Echocardiographic Abnormalities in Patients with COPD at Their First Hospital Admission. Eur. Respir. J. 2013, 41, 784–791. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Feng, Y.; Zhang, J.; Bai, L.; Huang, W.; Li, M. Impact of Chronic Obstructive Pulmonary Diseases on Left Ventricular Diastolic Function in Hospitalized Elderly Patients. CIA 2014, 10, 81–87. [Google Scholar] [CrossRef]
- Sabit, R.; Bolton, C.E.; Fraser, A.G.; Edwards, J.M.; Edwards, P.H.; Ionescu, A.A.; Cockcroft, J.R.; Shale, D.J. Sub-Clinical Left and Right Ventricular Dysfunction in Patients with COPD. Respir. Med. 2010, 104, 1171–1178. [Google Scholar] [CrossRef]
- Funk, G.-C.; Lang, I.; Schenk, P.; Valipour, A.; Hartl, S.; Burghuber, O.C. Left Ventricular Diastolic Dysfunction in Patients with COPD in the Presence and Absence of Elevated Pulmonary Arterial Pressure. Chest 2008, 133, 1354–1359. [Google Scholar] [CrossRef]
- Vonk-Noordegraaf, A.; Marcus, J.T.; Holverda, S.; Roseboom, B.; Postmus, P.E. Early Changes of Cardiac Structure and Function in COPD Patients with Mild Hypoxemia. Chest 2005, 127, 1898–1903. [Google Scholar] [CrossRef]
- Elwing, J.; Panos, R.J. Pulmonary Hypertension Associated with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2008, 3, 55–70. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An Update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; Man, S.F.P.; Senthilselvan, A.; Sin, D.D. Association between Chronic Obstructive Pulmonary Disease and Systemic Inflammation: A Systematic Review and a Meta-Analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure with Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Watz, H.; Waschki, B.; Meyer, T.; Kretschmar, G.; Kirsten, A.; Claussen, M.; Magnussen, H. Decreasing Cardiac Chamber Sizes and Associated Heart Dysfunction in COPD. Chest 2010, 138, 32–38. [Google Scholar] [CrossRef]
- Jörgensen, K.; Müller, M.F.; Nel, J.; Upton, R.N.; Houltz, E.; Ricksten, S.-E. Reduced Intrathoracic Blood Volume and Left and Right Ventricular Dimensions in Patients with Severe Emphysema. Chest 2007, 131, 1050–1057. [Google Scholar] [CrossRef]
- Goudis, C.A.; Konstantinidis, A.K.; Ntalas, I.V.; Korantzopoulos, P. Electrocardiographic Abnormalities and Cardiac Arrhythmias in Chronic Obstructive Pulmonary Disease. Int. J. Cardiol. 2015, 199, 264–273. [Google Scholar] [CrossRef]
- Chang, C.L.; Robinson, S.C.; Mills, G.D.; Sullivan, G.D.; Karalus, N.C.; McLachlan, J.D.; Hancox, R.J. Biochemical Markers of Cardiac Dysfunction Predict Mortality in Acute Exacerbations of COPD. Thorax 2011, 66, 764–768. [Google Scholar] [CrossRef]
- Kunisaki, K.M.; Dransfield, M.T.; Anderson, J.A.; Brook, R.D.; Calverley, P.M.A.; Celli, B.R.; Crim, C.; Hartley, B.F.; Martinez, F.J.; Newby, D.E.; et al. Exacerbations of Chronic Obstructive Pulmonary Disease and Cardiac Events. A Post Hoc Cohort Analysis from the SUMMIT Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2018, 198, 51–57. [Google Scholar] [CrossRef]
- Ergan, B.; Nava, S. Long-Term Oxygen Therapy in COPD Patients Who Do Not Meet the Actual Recommendations. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 351–366. [Google Scholar] [CrossRef]
- Robertson, N.M.; Centner, C.S.; Siddharthan, T. Integrating Artificial Intelligence in the Diagnosis of COPD Globally: A Way Forward. Chronic Obstr. Pulm. Dis. J. COPD Found. 2023, 11, 114. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Age (years) | 62.1 ± 9.5 (mean ± SD) |
Male (n = 80) | 70.2% |
Female (n = 34) | 29.8% |
Body mass index (BMI) (kg/m2) | 21.4 ± 3.8 (mean ± SD) |
Current/former smoker (n = 80) | 70.2% |
Never smoker (n = 34) | 29.8% |
Pack-years (smokers) | 25.0 ± 8.3 (mean ± SD) |
Biomass exposure (females) (n = 9) | 26.5% |
Cough (n = 91) | 79.8% |
Dyspnea (n = 82) | 71.9% |
Fever (n = 47) | 41.2% |
Sputum production (n = 44) | 38.6% |
Respiratory rate (breaths/min) | 27.1 ± 3.4 (mean ± SD) |
Mean oxygen saturation (SpO2) (%) | 83.9 ± 6.2 (mean ± SD) |
Number of exacerbations in the previous year | |
None (n = 34) | 29.8% |
One (n = 31) | 27.2% |
Two (n = 24) | 21.1% |
Three or more (n = 25) | 21.9% |
Inhaler use (n = 57) | 50.0% |
Parameter | Value |
---|---|
Forced expiratory volume in 1 s (FEV1) (L) | 1.02 ± 0.38 (mean ± SD) |
FEV1% predicted | 34.6 ± 10.4 (mean ± SD) |
Forced vital capacity (FVC) (L) | 1.91 ± 0.59 (mean ± SD) |
FEV1/FVC ratio (%) | 53.6 ± 7.8 (mean ± SD) |
Classification of participants based on the GOLD guideline | |
GOLD I (n = 0) | 0.0% |
GOLD II (n = 17) | 14.9% |
GOLD III (n = 46) | 40.4% |
GOLD IV (n = 51) | 44.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharjee, R.; Deb, T.; Roy, P.; Bhattacharjee, P.; Rosas, I.M.; Roychoudhury, S. Echocardiographic Evidence of Left Ventricular Dysfunction in COPD: Relationship with Disease Severity. Medicina 2025, 61, 1260. https://doi.org/10.3390/medicina61071260
Bhattacharjee R, Deb T, Roy P, Bhattacharjee P, Rosas IM, Roychoudhury S. Echocardiographic Evidence of Left Ventricular Dysfunction in COPD: Relationship with Disease Severity. Medicina. 2025; 61(7):1260. https://doi.org/10.3390/medicina61071260
Chicago/Turabian StyleBhattacharjee, Rounak, Tanushree Deb, Prosenjit Roy, Prithwiraj Bhattacharjee, Israel Maldonado Rosas, and Shubhadeep Roychoudhury. 2025. "Echocardiographic Evidence of Left Ventricular Dysfunction in COPD: Relationship with Disease Severity" Medicina 61, no. 7: 1260. https://doi.org/10.3390/medicina61071260
APA StyleBhattacharjee, R., Deb, T., Roy, P., Bhattacharjee, P., Rosas, I. M., & Roychoudhury, S. (2025). Echocardiographic Evidence of Left Ventricular Dysfunction in COPD: Relationship with Disease Severity. Medicina, 61(7), 1260. https://doi.org/10.3390/medicina61071260