Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Evaluation
2.3. Biochemical Analyses
2.4. ABI Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DKK1 | dickkopf-1 |
PAD | peripheral artery disease |
CRP | C-reactive protein |
ASCVD | atherosclerotic cardiovascular disease |
VSMC | vascular smooth muscle cell |
ABI | ankle-brachial index |
BP | blood pressure |
SBP | systolic blood pressure |
DBP | diastolic blood pressure |
DM | diabetes mellitus |
BMI | body mass index |
BUN | blood urea nitrogen |
HDL-C | high-density lipoprotein cholesterol |
LDL-C | low-density lipoprotein cholesterol |
CRP | C-reactive protein |
eGFR | estimated glomerular filtration rate |
IQR | interquartile range |
AUC | area under the curve |
References
- Fuchs, F.D.; Whelton, P.K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.V.; Sadykhov, N.K.; Kartuesov, A.G.; Borisov, E.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment. Front. Cardiovasc. Med. 2022, 9, 959285. [Google Scholar] [CrossRef]
- Fryar, C.D.; Kit, B.; Carroll, M.D.; Afful, J. Key Findings Data from the National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/products/index.htm (accessed on 14 May 2025).
- Li, J.; Zhang, J.; Somers, V.K.; Covassin, N.; Zhang, L.; Xu, H. Trends and disparities in treatment and control of atherosclerotic cardiovascular disease in US adults, 1999 to 2018. J. Am. Heart Assoc. 2024, 13, e032527. [Google Scholar] [CrossRef]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart disease and stroke statistics-2022 Update: A report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar]
- Eid, M.A.; Mehta, K.; Barnes, J.; Wanken, Z.J.; Columbo, J.A.; Stone, D.H.; Goodney, P.P.; Smith, M.M. The global burden of peripheral artery disease. J. Vasc. Surg. 2022, 77, 1119–1126.e1. [Google Scholar] [CrossRef]
- Subherwal, S.; Patel, M.R.; Køber, L.; Peterson, E.D.; Bhatt, D.L.; Gislason, G.; Olsen, A.M.S.; Jones, W.S.; Torp-Pedersen, C.; Fosbøl, E.L. Peripheral artery disease is a coronary heart disease risk equivalent among both men and women: Results from a nationwide study. Eur. J. Prev. Cardiol. 2015, 22, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Belch, J.J.F.; Baumgartner, I.; Giovas, P.; Hoffmann, U. Morbidity and mortality associated with atherosclerotic peripheral artery disease: A systematic review. Atherosclerosis 2020, 293, 94–100. [Google Scholar] [CrossRef]
- Curcio, A.; Panarello, A.; Spaccarotella, C.; Indolfi, C. Cardiovascular prognosis in patients with peripheral artery disease and approach to therapy. Biomedicines 2023, 11, 3131. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, M.; Tian, J.; Gao, M.; Liu, M.; Fu, X.; Jin, T.; Pan, J.; Chen, F.; An, F. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J. Hypertens. 2022, 4, 1666–1681. [Google Scholar] [CrossRef]
- Afroz, R.; Goodwin, J.E. Wnt signaling in atherosclerosis: Mechanisms to therapeutic implications. Biomedicines 2024, 12, 276. [Google Scholar] [CrossRef] [PubMed]
- Kocełak, P.; Puzianowska-Kuźnicka, M.; Olszanecka-Glinianowicz, M.; Chudek, J. Wnt signaling pathway and sclerostin in the development of atherosclerosis and vascular calcification. Adv. Clin. Exp. Med. 2024, 33, 519–532. [Google Scholar] [CrossRef]
- Khan, K.; Yu, B.; Tardif, J.C.; Rhéaume, E.; Al-Kindi, H.; Filimon, S.; Pop, C.; Genest, J.; Cecere, R.; Schwertani, A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front. Cardiovasc. Med. 2024, 11, 1360380. [Google Scholar] [CrossRef]
- Glinka, A.; Wu, W.; Delius, H.; Monaghan, A.P.; Blumenstock, C.; Niehrs, C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998, 391, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef]
- Ueland, T.; Otterdal, K.; Lekva, T.; Halvorsen, B.; Gabrielsen, A.; Sandberg, W.J.; Paulsson-Berne, G.; Pedersen, T.M.; Folkersen, L.; Gullestad, L.; et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Seifert-Held, T.; Pekar, T.; Gattringer, T.; Simmet, N.E.; Scharnagl, H.; Stojakovic, T.; Fazekas, F.; Storch, M.K. Circulating dickkopf-1 in acute ischemic stroke and clinically stable cerebrovascular disease. Atherosclerosis 2011, 218, 233–237. [Google Scholar] [CrossRef]
- He, X.W.; Wang, E.; Bao, Y.Y.; Wang, F.; Zhu, M.; Hu, X.F.; Jin, X. High serum levels of sclerostin and dickkopf-1 are associated with acute ischaemic stroke. Atherosclerosis 2016, 253, 22–28. [Google Scholar] [CrossRef]
- Teng, I.C.; Wang, J.H.; Lee, C.J.; Hou, J.S.; Hsu, B.G. Serum sclerostin as an independent marker of peripheral artery disease in elderly persons. Int. J. Clin. Exp. Pathol. 2018, 11, 2816–2821. [Google Scholar]
- Golledge, J.; Thanigaimani, S. Role of sclerostin in cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e187–e202. [Google Scholar] [CrossRef]
- Chen, Y.L.; Huang, P.Y.; Tsai, J.P.; Wang, J.S.; Hsu, B.G. Serum osteoprotegerin levels and the vascular reactivity index in patients with hypertension. Medicina 2023, 59, 1794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Hsiao, C.H.; Wang, J.S.; Hsu, B.G. Osteocalcin: A potential marker of peripheral arterial stiffness in hypertensive patients. Medicina 2024, 60, 835. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.G.; Liou, H.H.; Lee, C.J.; Chen, Y.C.; Ho, G.J.; Lee, M.C. Serum sclerostin as an independent marker of peripheral arterial stiffness in renal transplantation recipients: A cross-sectional study. Medicine 2016, 95, e3300. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Wu, D.A.; Chen, M.C.; Hsu, B.G. Correlation between sclerostin and dickkopf-1 with aortic arterial stiffness in patients with type 2 diabetes: A Prospective, cross-sectional study. Diab. Vasc. Dis. Res. 2019, 16, 281–288. [Google Scholar] [CrossRef]
- Chiu, L.T.; Lin, L.; Lin, H.J.; Lai, Y.H.; Lai, Y.H.; Hsu, B.G. Positive correlation of serum indoxyl sulfate level with peripheral arterial disease in hemodialysis patients. Vascular 2022, 30, 928–933. [Google Scholar] [CrossRef]
- Chiu, L.T.; Hsu, B.G.; Lai, Y.H.; Wang, C.H.; Tsai, J.P. High serum galectin-3 level as a potential biomarker of peripheral artery disease in patients undergoing hemodialysis. Rev. Cardiovasc. Med. 2024, 25, 124. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J. Atheroscler. Thromb. 2018, 25, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Nedosugova, L.V.; Markina, Y.V.; Bochkareva, L.A.; Kuzina, I.A.; Petunina, N.; Yudina, I.; Kirichenko, T.V. Inflammatory mechanisms of diabetes and its vascular complications. Biomedicines 2022, 10, 1168. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.F.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target Ther. 2023, 8, 152. [Google Scholar] [CrossRef]
- Melnikov, I.S.; Kozlov, S.G.; Saburova, O.S.; Avtaeva, Y.N.; Prokofieva, L.V.; Gabbasov, Z.A. Current position on the role of monomeric C-reactive protein in vascular pathology and atherothrombosis. Curr. Pharm. Des. 2019, 26, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. Role of C-reactive protein, an inflammatory biomarker in the development of atherosclerosis and its treatment. Int. J. Angiol. 2024, 33, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Boonanantanasarn, K.; Baek, K.; Woo, K.M.; Ryoo, H.M.; Baek, J.H.; Kim, G.S. Hyperglycemia increases the expression levels of sclerostin in a reactive oxygen species- and tumor necrosis factor-alpha-dependent manner. J. Periodontal Implant. Sci. 2015, 45, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Daniele, G.; Winnier, D.; Mari, A.; Bruder, J.; Fourcaudot, M.; Pengou, Z.; Tripathy, D.; Jenkinson, C.; Folli, F. Sclerostin and insulin resistance in prediabetes: Evidence of a cross talk between bone and glucose metabolism. Diabetes Care 2015, 38, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Roh, E.; Hong, S.; Lee, Y.B.; Kim, N.H.; Yoo, H.J.; Seo, J.A.; Kim, N.H.; Kim, S.G.; Baik, S.H.; et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean sarcopenic obesity study (KSOS). Bone 2019, 128, 115053. [Google Scholar] [CrossRef]
- Aznou, A.; Meijer, R.; van Raalte, D.; Den Heijer, M.; Heijboer, A.; de Jongh, R. Serum sclerostin is negatively associated with insulin sensitivity in obese but not lean women. Endocr. Connect. 2021, 10, 131–138. [Google Scholar] [CrossRef]
- Moysés, R.M.A.; Schiavi, S.C. Sclerostin, osteocytes, and chronic kidney disease—Mineral bone disorder. Semin. Dial. 2015, 28, 578–586. [Google Scholar] [CrossRef]
- Schiavi, S.C. Sclerostin and CKD-MBD. Curr. Osteoporos. Rep. 2015, 13, 159–165. [Google Scholar] [CrossRef]
- Asamiya, Y.; Tsuchiya, K.; Nitta, K. Role of sclerostin in the pathogenesis of chronic kidney disease-mineral bone disorder. Renal Replace. Ther. 2016, 2, 8. [Google Scholar] [CrossRef]
- Williams, M.; White, S.C.; Joseph, Z.O.; Hruska, K.A. Updates in the chronic kidney disease-mineral bone disorder show the role of osteocytic proteins, a potential mechanism of the bone—Vascular paradox, a therapeutic target, and a biomarker. Front. Physiol. 2023, 14, 1120308. [Google Scholar] [CrossRef]
- Laster, M.; Pereira, R.C.; Noche, K.; Gales, B.; Salusky, I.B.; Albrecht, L.V. Sclerostin, osteocytes, and Wnt signaling in pediatric renal osteodystrophy. Nutrients 2023, 15, 4127. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.B. Re-examining the high-density lipoprotein hypothesis. J. Diabetes Investig. 2016, 7, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Bellone, F.; Morabito, N.; Corica, F. Sclerostin and vascular pathophysiology. Int. J. Mol. Sci. 2020, 21, 4779. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, B.; Wyskida, K.; Ficek, J.; Kolonko, A.; Ficek, R.; Więcek, A.; Olszanecka-Glinianowicz, M.; Chudek, J. Relationship between plasma levels of sclerostin, calcium–phosphate disturbances, established markers of bone turnover, and inflammation in haemodialysis patients. Int. Urol. Nephrol. 2019, 51, 519–526. [Google Scholar] [CrossRef]
- González-Casaus, M.L. The hidden cross talk between bone and tissues through bone turnover. Adv. Lab. Med. 2023, 5, 24–34. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Huang, D.; Peng, L. Sclerostin as a new target of diabetes-induced osteoporosis. Front. Endocrinol. 2024, 15, 1491066. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Z.; Wang, J.; Wang, Y.; Chen, X.; Dong, B. The emerging role of bone-derived hormones in diabetes mellitus and diabetic kidney disease. Front. Endocrinol. 2022, 13, 938830. [Google Scholar] [CrossRef]
- Krishna, S.M.; Seto, S.W.; Jose, R.J.; Li, J.; Morton, S.K.; Biros, E.; Wang, Y.; Nsengiyumva, V.; Lindeman, J.H.N.; Loots, G.G.; et al. Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II-induced aortic aneurysm and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 553–566. [Google Scholar] [CrossRef]
- Lee, D.K.; Nathan Grantham, R.; Trachte, A.L.; Mannion, J.D.; Wilson, C.L. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells. Biochem. Biophys. Res. Commun. 2006, 347, 109–116. [Google Scholar] [CrossRef]
- Glass, D.A.; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, H.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 2005, 8, 751–764. [Google Scholar] [CrossRef]
- Couffinhal, T.; Dufourcq, P.; Duplàa, C. β-catenin nuclear activation: Common pathway between Wnt and growth factor signaling in vascular smooth muscle cell proliferation? Circ. Res. 2006, 99, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Rodda, S.J.; McMahon, A.P. Distinct roles for hedgehog and caronical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006, 133, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.A.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Arderiu, G.; Espinosa, S.; Peña, E.; Aledo, R.; Badimon, L. Monocyte-secreted Wnt5a interacts with FZD5 in microvascular endothelial cells and induces angiogenesis through tissue factor signaling. J. Mol. Cell Biol. 2014, 6, 380–393. [Google Scholar] [CrossRef]
Characteristic | All Participants (n = 92) | Normal ABI Group (n = 78) | Low ABI Group (n = 14) | p Value |
---|---|---|---|---|
Age (years) | 64.76 ± 9.11 | 64.33 ± 8.71 | 67.14 ± 11.12 | 0.290 |
Height (cm) | 160.94 ± 8.22 | 160.98 ± 8.27 | 160.71 ± 8.19 | 0.912 |
Body weight (kg) | 69.37 ± 12.79 | 68.59 ± 12.65 | 73.71 ± 13.15 | 0.169 |
Body mass index (kg/m2) | 26.68 ± 3.82 | 26.37 ± 3.79 | 28.42 ± 3.67 | 0.065 |
Left ankle-brachial index | 1.08 ± 0.10 | 1.10 ± 0.07 | 0.92 ± 0.11 | <0.001 * |
Right ankle-brachial index | 1.06 ± 0.12 | 1.09 ± 0.08 | 0.88 ± 0.14 | <0.001 * |
Systolic blood pressure (mmHg) | 133.02 ± 16.53 | 132.51 ±17.25 | 135.86 ± 11.89 | 0.489 |
Diastolic blood pressure (mmHg) | 74.45 ± 9.71 | 74.81 ± 9.88 | 72.43 ± 8.77 | 0.402 |
Total cholesterol (mg/dL) | 172.98 ± 39.50 | 171.88 ± 39.56 | 179.07 ± 40.09 | 0.534 |
Triglyceride (mg/dL) | 129.00 (98.00–167.00) | 124.00 (94.00–176.00) | 137.00 (120.00–153.00) | 0.700 |
HDL-C (mg/dL) | 44.71 ± 12.76 | 44.47 ± 12.36 | 46.00 ± 15.24 | 0.683 |
LDL-C (mg/dL) | 102.41 ± 31.86 | 101.14 ± 32.03 | 109.50 ± 31.05 | 0.369 |
Fasting glucose (mg/dL) | 110.00 (97.00–144.75) | 107.50 (95.75–137.25) | 124.00 (101.50–187.50) | 0.150 |
Blood urea nitrogen (mg/dL) | 16.96 ± 5.06 | 16.96 ± 4.44 | 16.93 ± 7.92 | 0.982 |
Creatinine (mg/dL) | 1.11 ± 0.31 | 1.10 ± 0.28 | 1.21 ± 0.43 | 0.220 |
eGFR (mL/min) | 67.55 ± 18.96 | 68.47 ± 18.24 | 62.47 ± 22.68 | 0.278 |
Total calcium (mg/dL) | 9.13 ± 0.37 | 9.13 ± 0.38 | 9.16 ± 0.33 | 0.786 |
Phosphorus (mg/dL) | 3.52 ± 0.53 | 3.53 ± 0.53 | 3.43 ± 0.54 | 0.499 |
Intact parathyroid hormone (pg/mL) | 47.70 (32.40–58.53) | 45.75 (31.78–58.90) | 51.50 (43.33–61.43) | 0.325 |
CRP (mg/dL) | 0.21 (0.15–0.28) | 0.20 (0.15–0.24) | 0.26 (0.23–1.16) | 0.001 * |
Sclerostin (pmol/L) | 58.95 ± 25.04 | 54.59 ± 22.85 | 83.23 ± 23.40 | <0.001 * |
Dickkopf-1 (pmol/L) | 16.46 ± 10.79 | 16.23 ± 11.03 | 17.71 ± 9.56 | 0.639 |
Female, n (%) | 32 (34.8) | 27 (34.6) | 5 (35.7) | 0.937 |
Diabetes, n (%) | 31 (33.7) | 23 (29.5) | 8 (57.1) | 0.044 * |
Coronary artery disease, n (%) | 61 (66.3) | 50 (64.1) | 11 (78.6) | 0.292 |
Smoking, n (%) | 14 (15.2) | 10 (12.3) | 4 (36.4) | 0.037 * |
ACE inhibitor use, n (%) | 31 (33.7) | 26 (33.3) | 5 (35.7) | 0.862 |
ARB use, n (%) | 53 (57.6) | 45 (57.7) | 8 (57.1) | 0.969 |
β-blocker use, n (%) | 54 (58.7) | 44 (56.4) | 10 (71.4) | 0.293 |
CCB use, n (%) | 42 (45.7) | 37 (47.4) | 5 (35.7) | 0.418 |
Statin use, n (%) | 43 (46.7) | 38 (48.7) | 5 (35.7) | 0.369 |
Fibrate use, n (%) | 12 (13.0) | 9 (11.5) | 3 (21.4) | 0.312 |
Aspirin, n (%) | 55 (59.8) | 46 (59.0) | 9 (64.3) | 0.709 |
Variables | Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Sclerostin, 1 pmoL/L | 1.054 | 1.019–1.090 | 0.002 * |
C-reactive protein, 0.1 mg/dL | 1.115 | 0.964–1.289 | 0.142 |
Fasting glucose, 1 mg/dL | 0.992 | 0.967–1.018 | 0.535 |
Body mass index, 1 kg/m2 | 1.098 | 0.899–1.342 | 0.359 |
Diabetes mellitus, present | 7.792 | 0.694–87.506 | 0.096 |
Smoking, present | 6.305 | 0.791–50.219 | 0.082 |
Variables | Left ABI | Right ABI | Sclerostin (pmol/L) | |||
---|---|---|---|---|---|---|
Spearman Coefficient of Correlation | p Value | Spearman Coefficient of Correlation | p Value | Spearman Coefficient of Correlation | p Value | |
Age (years) | −0.103 | 0.330 | −0.142 | 0.177 | 0.204 | 0.051 |
Body mass index (kg/m2) | −0.080 | 0.447 | 0.021 | 0.840 | 0.231 | 0.027 * |
Left ABI | — | — | 0.617 | <0.001 * | −0.251 | <0.001 * |
Right ABI | 0.617 | <0.001 * | — | — | −0.371 | <0.001 * |
Sclerostin (pmol/L) | −0.251 | 0.016 * | −0.371 | <0.001 * | — | — |
Dickkopf-1 (pmol/L) | −0.058 | 0.584 | −0.013 | 0.903 | −0.045 | 0.668 |
SBP (mmHg) | 0.064 | 0.544 | −0.025 | 0.812 | 0.039 | 0.714 |
DBP (mmHg) | 0.134 | 0.203 | 0.035 | 0.739 | −0.203 | 0.052 |
Total cholesterol (mg/dL) | −0.189 | 0.071 | 0.014 | 0.893 | −0.179 | 0.088 |
Log-Triglyceride (mg/dL) | 0.037 | 0.723 | 0.084 | 0.423 | −0.082 | 0.435 |
HDL-C (mg/dL) | −0.068 | 0.518 | −0.070 | 0.505 | −0.210 | 0.044 * |
LDL-C (mg/dL) | −0.212 | 0.043 * | 0.017 | 0.875 | −0.077 | 0.466 |
Log-Glucose (mg/dL) | −0.002 | 0.981 | 0.011 | 0.917 | 0.038 | 0.716 |
Blood urea nitrogen (mg/dL) | −0.085 | 0.418 | 0.033 | 0.754 | 0.217 | 0.038 * |
Creatinine (mg/dL) | −0.030 | 0.774 | −0.076 | 0.471 | 0.275 | 0.008 * |
eGFR (mL/min) | 0.053 | 0.617 | 0.060 | 0.567 | −0.222 | 0.033 * |
Total calcium (mg/dL) | 0.016 | 0.882 | 0.004 | 0.972 | 0.001 | 0.999 |
Phosphorus (mg/dL) | 0.006 | 0.954 | 0.020 | 0.848 | −0.253 | 0.015 * |
Log-iPTH (pg/mL) | −0.120 | 0.254 | −0.126 | 0.230 | −0.074 | 0.483 |
Log-CRP (mg/dL) | −0.222 | 0.033 * | −0.357 | <0.001 * | 0.166 | 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chern, Y.-B.; Lee, P.-S.; Wang, J.-H.; Tsai, J.-P.; Hsu, B.-G. Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension. Medicina 2025, 61, 1204. https://doi.org/10.3390/medicina61071204
Chern Y-B, Lee P-S, Wang J-H, Tsai J-P, Hsu B-G. Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension. Medicina. 2025; 61(7):1204. https://doi.org/10.3390/medicina61071204
Chicago/Turabian StyleChern, Yahn-Bor, Po-Sheng Lee, Ji-Hung Wang, Jen-Pi Tsai, and Bang-Gee Hsu. 2025. "Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension" Medicina 61, no. 7: 1204. https://doi.org/10.3390/medicina61071204
APA StyleChern, Y.-B., Lee, P.-S., Wang, J.-H., Tsai, J.-P., & Hsu, B.-G. (2025). Increased Serum Sclerostin Level Is a Risk Factor for Peripheral Artery Disease in Patients with Hypertension. Medicina, 61(7), 1204. https://doi.org/10.3390/medicina61071204