From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science
Abstract
1. Introduction
2. Material and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
2.4. Limitations
3. Discussions
3.1. Brief History of Complete Dentures
3.2. Current State-of-the-Art
3.2.1. Materials and Fabrication
- -
- High-impact PMMA resins incorporate rubber or other toughening agents to improve fracture resistance without significantly altering processing protocols [14].
- -
- -
- Flexible denture bases such as nylon-based polyamides (e.g., Valplast®) offer superior comfort and elasticity, especially for patients with undercuts or soft-tissue sensitivity. However, they can compromise long-term dimensional stability and are more difficult to adjust and reline [17].
- -
- Antimicrobially modified resins incorporating silver nanoparticles, chlorhexidine, or quaternary ammonium compounds are being investigated for their ability to reduce biofilm formation and maintain long-term oral hygiene [18].
3.2.2. Patient-Centered Care
4. Future Perspectives
4.1. Biomimetic and Regenerative Dentures
4.2. Smart Dentures
4.3. Artificial Intelligence and Digital Workflow
4.4. Sustainability in Denture Fabrication
5. Challenges and Considerations
6. Conclusions
6.1. Key Findings
6.2. Implications for Practice and Policy
6.3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Douglass, C.W.; Shih, A.; Ostry, L. Will there be a need for complete dentures in the United States in 2020? J. Prosthet. Dent. 2002, 87, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, N.U.; Hagmann, E.; Weiger, R. What is the prevalence of various types of prosthetic dental restorations in Europe? Clin Oral Implants Res. 2007, 18 (Suppl. 3), 20–33. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.E.; Yamamoto, T. Improving the oral health of older people: The approach of the WHO Global Oral Health Programme. Community Dent. Oral Epidemiol. 2005, 33, 81–92. [Google Scholar] [CrossRef]
- Emami, E.; de Souza, R.F.; Kabawat, M.; Feine, J.S. The impact of edentulism on oral and general health. Int. J. Dent. 2013, 2013, 498305. [Google Scholar] [CrossRef]
- Furtado, A.; Oliveira, P.; Ferreira, I.; Reis, J. Smart denture technology: Integrating flexible sensors and IoT connectivity in prosthodontics. J. Prosthet. Dent. 2024, 132, 210–218. [Google Scholar] [CrossRef]
- Revilla-León, M.; Özcan, M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J. Prosthodont. 2020, 29, 146–158. [Google Scholar] [CrossRef]
- Ring, M.E. A History of Dentistry, 3rd ed.; Medico-Dental Publishing Company: Chicago, IL, USA, 1985. [Google Scholar]
- Weinberger, B.W. Mosby:, St. An Introduction to the History of Dentistry; Mosby: St. Louis, MO, USA, 1948. [Google Scholar]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips' Science of Dental Materials, 12th ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2018, 119, 577–582. [Google Scholar] [CrossRef]
- Vojdani, M.; Giti, R.; Zareeian, M. The effect of different processing techniques on the flexural strength of acrylic denture base resins. J. Dent. 2012, 9, 144–151. [Google Scholar]
- Ryalat, S.T.; Al-Zaben, F.N.; Darwish, M.S.; Rasheed, R. Candida albicans adherence to different denture base materials. J. Appl. Oral Sci. 2011, 19, 511–515. [Google Scholar] [CrossRef]
- Phoenix, R.D.; Mansueto, M.A.; Ackerman, N.A.; Jones, R.E. Evaluation of mechanical and thermal properties of commonly used denture base resins. J. Prosthodont. 2003, 13, 17–27. [Google Scholar] [CrossRef]
- Polyzois, G.L.; Lagouvardos, P.E.; Papadogiannis, Y. Fracture resistance of modified denture base materials. Quintessence Int. 2011, 42, e29–e36. [Google Scholar]
- Sodagar, A.; Bahador, A.; Khalil, S.; Saffar Shahroudi, A.; Zaman Kassaee, M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly(methyl methacrylate) acrylic resins. J. Dent. 2016, 14, 272–278. [Google Scholar]
- Gad, M.M.; Abualsaud, R.; Fouda, S.M.; Rahoma, A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Al-Harbi, F.A. Effects of Denture Cleansers on the Flexural Strength of PMMA Denture Base Resin Modified with ZrO2 Nanoparticles. J. Prosthodont. 2021, 30, 235–244. [Google Scholar] [CrossRef]
- Singh, K.; Aeran, H.; Kumar, N.; Gupta, N. Flexible thermoplastic denture base materials for aesthetical removable partial denture framework. J. Clin. Diagn. Res. 2013, 7, 2372–2373. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; de Camargo, E.R.; Filho, A.C.; Barbosa, D.B. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles. J. Prosthodont. 2012, 21, 7–15. [Google Scholar] [CrossRef]
- AlHelal, A.; AlRumaih, H.; AlShammari, A.M. The use of CAD/CAM in complete denture fabrication: A systematic review. J. Prosthodont. 2017, 26, 656–663. [Google Scholar] [CrossRef]
- Zarb, G.A.; Bolender, C.L.; Eckert, S.E. Prosthodontic Treatment for Edentulous Patients: Complete Dentures and Implant-Supported Prostheses, 13th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Logozzo, S.; Zanetti, E.M.; Franceschini, G.; Kilpelä, A.; Mäkynen, A. Recent advances in dental optics–Part I: 3D intraoral scanners for restorative dentistry. Opt. Lasers Eng. 2014, 54, 203–221. [Google Scholar] [CrossRef]
- Yan, Y.; Yue, X.; Lin, X.; Geng, W. A completely digital workflow aided by cone beam computed tomography scanning to maintain jaw relationships for implant-supported fixed complete dentures: A clinical study. J. Prosthet. Dent. 2023, 129, 116–124. [Google Scholar] [CrossRef]
- Mericske-Stern, R.; Mojon, P.; Morais, J.; Naert, I.; Payne, A.G.; Penrod, J.; Stoker, G.T., Jr.; Tawse-Smith, A.; Taylor, T.D.; Thomason, J.M.T.; et al. The McGill Consensus Statement on overdentures. Int. J. Prosthodont. 2002, 15, 413–414. [Google Scholar]
- Thomason, J.M.; Kelly, S.A.; Bendkowski, A.; Ellis, J.S. Two implant retained overdentures—A review of the literature supporting the McGill and York consensus statements. J. Dent. 2009, 37, 12–20. [Google Scholar] [CrossRef]
- Kumar, R.; Arora, A.; Yadav, R. Immediate dentures: A case report and review. Int. J. Clin. Dent. Sci. 2011, 2, 62–65. [Google Scholar]
- Cooper, L.F. Immediate dentures: Clinical procedures and laboratory support. Dent. Clin. N. Am. 2014, 58, 93–110. [Google Scholar] [CrossRef]
- Bajunaid, S.O.; Alshahrani, A.S.; Aldosari, A.A.; Almojel, A.N.; Alanazi, R.S.; Alsulaim, T.M.; Habib, S.R. Patients’ satisfaction and oral health-related quality of life of edentulous patients using conventional complete dentures and implant-retained overdentures in Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 557. [Google Scholar] [CrossRef]
- Emami, E.; Heydecke, G.; Rompré, P.H.; de Grandmont, P.; Feine, J.S. Impact of implant support for mandibular dentures on satisfaction, oral and general health-related quality of life: A meta-analysis of randomized-controlled trials. Clin. Oral Implant. Res. 2009, 20, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Fenlon, M.R.; Sherriff, M. An investigation of factors influencing patients’ satisfaction with new complete dentures using structural equation modeling. J. Dent. 2008, 36, 427–434. [Google Scholar] [CrossRef]
- Ali, Z.; Baker, S.R.; Shahrbaf, S.; Martin, N.; Vettore, M.V. Oral health-related quality of life after prosthodontic treatment for patients with partial edentulism: A systematic review and meta-analysis. J. Prosthet. Dent. 2019, 121, 59–68.e3. [Google Scholar] [CrossRef]
- Baba, N.Z. Materials and Processes for CAD/CAM Complete Denture Fabrication. Curr. Oral. Health Rep. 2016, 3, 203–208. [Google Scholar] [CrossRef]
- Watanabe, Y.; Hasegawa, Y.; Sasaki, H. Development of biomimetic layered denture bases using hybrid polymer systems. Dent. Mater. J. 2015, 34, 47–54. [Google Scholar]
- Song, H.; Lee, K.; Park, J.; Park, Y.J. Therapeutic hydrogel-infused denture liners for enhanced mucosal health. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1621–1630. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef]
- Duailibi, M.T.; Duailibi, S.E.; Young, C.S.; Bartlett, J.D.; Vacanti, J.P.; Yelick, P.C. Bioengineered dental tissues from mesenchymal stem cells. J. Dent. Res. 2006, 85, 966–971. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Lee, M.; Kim, S.Y. Self-healing dental resins for enhanced durability. Dent. Mater. 2017, 33, 508–518. [Google Scholar] [CrossRef]
- Woodford, S.C.; Robinson, D.L.; Edelmann, C.; Mehl, A.; Röhrle, O.; Vee Sin Lee, P.; Ackland, D.C. Low-Profile Electromagnetic Field Sensors in the Measurement and Modelling of Three-Dimensional Jaw Kinematics and Occlusal Loading. Ann. Biomed. Eng. 2021, 49, 1561–1571. [Google Scholar] [CrossRef]
- Sultan, A.; Brignol, L.; Naimi, S. Emerging smart denture technologies for monitoring oral health: A review. Smart Mater. Med. 2020, 1, 83–95. [Google Scholar] [CrossRef]
- Vashist, S.K. Point-of-care diagnostics: Recent advances and trends. Biosensors 2017, 7, 62. [Google Scholar] [CrossRef]
- Kakinuma, H.; Koyama, S.; Kondo, T.; Harata, T.; Furukawa, H.; Egusa, H. In vitro evaluation of shape-memory hydrogels for removable dental prostheses and optimization of phase-transition temperature for intraoral use. J. Prosthet. Dent. 2024, 131, 708.e1–708.e8. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Radomski, K.; Lopez, D.; Liu, J.T.; Lee, J.D.; Lee, S.J. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent. J. 2023, 12, 1. [Google Scholar] [CrossRef]
- Gheisarifar, M.; Shembesh, M.; Koseoglu, M.; Fang, Q.; Afshari, F.S.; Yuan, J.C.; Sukotjo, C. Evaluating the validity and consistency of artificial intelligence chatbots in responding to patients' frequently asked questions in prosthodontics. J. Prosthet. Dent. 2025, in press. [CrossRef]
- Schwendicke, F.; Mohammad Rahimi, H.; Tichy, A. Artificial Intelligence in Prosthodontics. Dent. Clin. North Am. 2025, 69, 315–326. [Google Scholar] [CrossRef]
- Li, C.; Jin, Y.; Du, Y.; Luo, K.; Fiorenza, L.; Chen, H.; Tian, S.; Sun, Y. Efficient complete denture metal base design via a dental feature-driven segmentation network. Comput. Biol. Med. 2024, 175, 108550. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Dubey, S.A.; Gorripati, J.P. Comparative evaluation of speech quality before and after functional palatal recontouring in complete dentures using artificial intelligence: A study protocol. Cureus 2024, 16, e69127. [Google Scholar] [CrossRef]
- Ali, I.E.; Tanikawa, C.; Chikai, M.; Ino, S.; Sumita, Y.; Wakabayashi, N. Applications and performance of artificial intelligence models in removable prosthodontics: A literature review. J. Prosthodont. Res. 2024, 68, 358–367. [Google Scholar] [CrossRef]
- Shinkai, R.S.A.; Biazevic, M.G.H.; Michel-Crosato, E.; de Campos, T.T. Environmental sustainability related to dental materials and procedures in prosthodontics: A critical review. J. Prosthet. Dent. 2023, S0022-3913(23)00370-0. [Google Scholar] [CrossRef]
- Neves, C.B.; Costa, J.; Portugal, J.; Bettencourt, A.F. Understanding the mechanical, surface, and color behavior of oral bioactive prosthetic polymers under biodegradation processes. Polymers 2023, 15, 2549. [Google Scholar] [CrossRef] [PubMed]
- Techapiroontong, S.; Limpuangthip, N.; Prawatvatchara, W.; Yongyosrungrueng, D.; Kaewkamnerdpong, I. Workflows and Laboratory Cost for Removable Digital Complete Denture: Two Case Reports with and without Existing Denture. Case Rep. Dent. 2024, 2024, 1564153. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour, D.; Haricharan, P.B.; de Souza, R.F. CAD/CAM versus traditional complete dentures: A systematic review and meta-analysis of patient- and clinician-reported outcomes and costs. J. Oral Rehabil. 2024, 51, 1911–1924. [Google Scholar] [CrossRef]
- Preshaw, P.M.; Walls, A.W.G.; Jakubovics, N.S.; Moynihan, P.J.; Jepson, N.J.; Loewy, Z.G.; Seymour, R.A. Association of removable partial denture use with oral and systemic health. J. Dent. 2011, 39, 711–719. [Google Scholar] [CrossRef]
Aspect | Traditional Dentures | Current Advances | Future Perspectives |
---|---|---|---|
Materials | Heat-polymerized PMMA | High-impact PMMA, flexible resins, antimicrobial additives | Biodegradable, bioactive, tissue-integrating materials |
Fabrication Method | Manual processing, flasking | CAD–CAM milling, limited 3D printing | Full 3D bioprinting, AI-driven automated design |
Support Mechanism | Mucosal support | Implant-supported overdentures (2–4 implants) | Tissue-integrated smart prosthetics |
Impression Technique | Conventional (alginate, silicone) | Digital intraoral scanning (with analog backup) | Fully digital dynamic scanning with real-time modeling |
Patient Experience Focus | Basic function, esthetics | Quality of life (QoL), comfort, speech, esthetics | Personalized, data-driven care with predictive outcomes |
Maintenance | Frequent relines, hygiene issues | Better hygiene with antimicrobial bases | Self-monitoring dentures with embedded biosensors |
Cost and Accessibility | Affordable but basic | Higher cost, improved results | Aim to democratize advanced care globally |
Sustainability | High material waste | More efficient CAD–CAM use | Green materials and low-carbon fabrication methods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bors, A.; Mucenic, S.; Monea, A.; Ormenisan, A.; Beresescu, G. From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science. Medicina 2025, 61, 1104. https://doi.org/10.3390/medicina61061104
Bors A, Mucenic S, Monea A, Ormenisan A, Beresescu G. From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science. Medicina. 2025; 61(6):1104. https://doi.org/10.3390/medicina61061104
Chicago/Turabian StyleBors, Andrea, Simona Mucenic, Adriana Monea, Alina Ormenisan, and Gabriela Beresescu. 2025. "From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science" Medicina 61, no. 6: 1104. https://doi.org/10.3390/medicina61061104
APA StyleBors, A., Mucenic, S., Monea, A., Ormenisan, A., & Beresescu, G. (2025). From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science. Medicina, 61(6), 1104. https://doi.org/10.3390/medicina61061104