The Association of Khorana Risk Score with Venous Thromboembolism and Overall Survival in Patients with Metastatic Gastric Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Study Endpoints
2.2. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics in the Overall Study Population
3.2. Clinicopathological Characteristics Intermediate and High Khorana Scores
3.2.1. Khorana Score and VTE Prediction
3.2.2. Khorana Score and Overall Survival
3.2.3. Association Between Clinicopathological Factors and Overall SurvivalfF.T
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VTE | Venous thromboembolism |
KRS | The Khorana Risk Score |
DVT | Deep vein thrombosis |
PE | Pulmonary embolism |
BMI | Body Mass Index |
OS | Overall survival |
MMR | Mismatch repair |
pMMR | Proficient mismatch repair |
ECOG | Eastern Cooperative Oncology Group |
HER2 | Human epidermal growth factor receptor 2 |
CT | Chemotherapy |
FOLFOX | Oxaliplatin plus leucovorin and short-term infusional fluorouracil |
FOLFIRI | Irinotecan plus leucovorin and short-term infusional fluorouracil |
XELOX | Capecitabine and oxaliplatin |
FLOT | Oxaliplatin, leucovorin plus docetaxel and short-term infusional fluorouracil |
DCF | Docetaxel, cisplatin plus leucovorin and long term infusional fluorouracil |
CIS FU | Cisplatin and long term infusional fluorouracil |
HR | Hazard ratio |
CI | Confidence interval |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Soerjomataram, I.; Cabasag, C.; Bardot, A.; Fidler-Benaoudia, M.M.; Miranda-Filho, A.; Ferlay, J.; Parkin, D.M.; Ranganathan, R.; Piñeros, M.; Znaor, A.; et al. Cancer survival in Africa, central and south America, and Asia (SURVCAN-3): A population-based benchmarking study in 32 countries. Lancet Oncol. 2023, 24, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Hindi, N.; Cordero, N.; Espinosa, E. Thromboembolic disease in cancer patients. Support. Care Cancer 2013, 21, 1481–1486. [Google Scholar] [CrossRef]
- Ahmed, G.; Nasir, H.G.; Hall, K.; Weissmann, L. Validation of the Khorana Score to Assess Venous Thromboembolism and Its Association with Mortality in Cancer Patients: A Retrospective Community-based Observational Experience. Cureus 2020, 12, e7883. [Google Scholar] [CrossRef]
- Guntupalli, S.R.; Spinosa, D.; Wethington, S.; Eskander, R.; Khorana, A.A. Prevention of venous thromboembolism in patients with cancer. BMJ 2023, 381, e072715. [Google Scholar] [CrossRef]
- Anderson, L.A.; Moore, S.C.; Gridley, G.; Stone, B.J.; Landgren, O. Concomitant and antecedent deep venous thrombosis and cancer survival in male US veterans. Leuk. Lymphoma 2011, 52, 764–770. [Google Scholar] [CrossRef]
- Cronin-Fenton, D.P.; Søndergaard, F.; Pedersen, L.A.; Fryzek, J.P.; Cetin, K.; Acquavella, J.; Baron, J.A.; Sørensen, H.T. Hospitalisation for venous thromboembolism in cancer patients and the general population: A population-based cohort study in Denmark, 1997–2006. Br. J. Cancer 2010, 103, 947–953. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Overvad, T.F.; Ording, A.G.; Nielsen, P.B.; Skjøth, F.; Albertsen, I.E.; Noble, S.; Vistisen, A.K.; Gade, I.L.; Severinsen, M.T.; Piazza, G.; et al. Validation of the Khorana score for predicting venous thromboembolism in 40 218 patients with cancer initiating chemotherapy. Blood Adv. 2022, 6, 2967–2976. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Poniewierski, M.S.; Culakova, E.; Lyman, G.H.; Khorana, A.A.; Pabinger, I.; Agnelli, G.; Liebman, H.A.; Vicaut, E.; Meyer, G.; et al. Predictors of Venous Thromboembolism and Early Mortality in Lung Cancer: Results from a Global Prospective Study (CANTARISK). Oncologist 2018, 23, 247–255. [Google Scholar] [CrossRef]
- Khorana, A.A.; Francis, C.W. Risk prediction of cancer-associated thrombosis: Appraising the first decade and developing the future. Thromb. Res. 2018, 164 (Suppl. 1), S70–S76. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.; Falanga, A.; Khorana, A.A. A Validated Risk Score for Venous Thromboembolism Is Predictive of Cancer Progression and Mortality. Oncologist 2016, 21, 861–867. [Google Scholar] [CrossRef]
- Vathiotis, I.; Dimakakos, E.P.; Boura, P.; Ntineri, A.; Charpidou, A.; Gerotziafas, G.; Syrigos, K. Khorana Score: Νew Predictor of Early Mortality in Patients with Lung Adenocarcinoma. Clin. Appl. Thromb. Hemost. 2018, 24, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Ruf, W. Tissue factor and cancer. Thromb. Res. 2012, 130 (Suppl. 1), S84–S87. [Google Scholar] [CrossRef]
- Blom, J.W.; Doggen, C.J.; Osanto, S.; Rosendaal, F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005, 293, 715–722. [Google Scholar] [CrossRef]
- Song, J.; Morgan, A.A.; Abram, A.M.D.; Hong, D.; Kim, G.; Li, W.F.; Ahn, J.; Chang, Y.; Chi, K.Y.; Chiang, C.H. Khorana risk score in lung cancer patients treated with immune checkpoint inhibitors: A real-world study. J. Thromb. Thrombolysis 2025, 58, 497–502. [Google Scholar] [CrossRef]
- Shimoyama, R.; Imamura, Y.; Uryu, K.; Mase, T.; Ohtaki, M.; Ohtani, K.; Shiragami, M.; Fujimura, Y.; Hayashi, M.; Shinozaki, N.; et al. Analysis of thromboembolism and prognosis in metastatic pancreatic cancer from the Tokushukai REAl-world data project. Mol. Clin. Oncol. 2024, 21, 73. [Google Scholar] [CrossRef]
- Sohal, D.P.S.; Kuderer, N.M.; Shepherd, F.A.; Pabinger, I.; Agnelli, G.; Liebman, H.A.; Meyer, G.; Kalady, M.F.; McCrae, K.; Lyman, G.H.; et al. Clinical Predictors of Early Mortality in Colorectal Cancer Patients Undergoing Chemotherapy: Results from a Global Prospective Cohort Study. JNCI Cancer Spectr. 2017, 1, pkx009. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, G.D.; Huang, M.G.; Qiu, Z.Q.; Si, J.; Xu, M.Y. Association between the Khorana risk score and all-cause mortality in Japanese patients with gastric and colorectal cancer: A retrospective cohort study. World J. Gastrointest. Oncol. 2023, 15, 1784–1795. [Google Scholar] [CrossRef] [PubMed]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Tafur, A.J.; Wang, C.E.; Kourelis, T.V.; Wysokinska, E.M.; Yang, P. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J. Thromb. Haemost. 2016, 14, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Piver, R.N.; Wagner, V.M.; Levine, M.D.; Backes, F.J.; Chambers, L.J.; Cohn, D.E.; Copeland, L.J.; Cosgrove, C.M.; Nagel, C.I.; O’Malley, D.M.; et al. Use of the Khorana score to predict venous thromboembolism in patients undergoing chemotherapy for uterine cancer. Gynecol. Oncol. Rep. 2023, 46, 101156. [Google Scholar] [CrossRef]
- van Es, N.; Franke, V.F.; Middeldorp, S.; Wilmink, J.W.; Büller, H.R. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb. Res. 2017, 150, 30–32. [Google Scholar] [CrossRef]
- Barrau, M.; Maoui, K.; Le Roy, B.; Roblin, X.; Mismetti, P.; Phelip, J.M.; Williet, N. Early venous thromboembolism is a strong prognostic factor in patients with advanced pancreatic ductal adenocarcinoma. J. Cancer Res. Clin. Oncol. 2021, 147, 3447–3454. [Google Scholar] [CrossRef]
- Chew, H.K.; Wun, T.; Harvey, D.; Zhou, H.; White, R.H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 2006, 166, 458–464. [Google Scholar] [CrossRef]
- Lyman, G.H.; Khorana, A.A.; Falanga, A.; Clarke-Pearson, D.; Flowers, C.; Jahanzeb, M.; Kakkar, A.; Kuderer, N.M.; Levine, M.N.; Liebman, H.; et al. American Society of Clinical Oncology guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J. Clin. Oncol. 2007, 25, 5490–5505. [Google Scholar] [CrossRef]
- Taghavi, S.; Jayarajan, S.N.; Davey, A.; Willis, A.I. Prognostic significance of signet ring gastric cancer. J. Clin. Oncol. 2012, 30, 3493–3498. [Google Scholar] [CrossRef]
- Kersy, O.; Loewenstein, S.; Lubezky, N.; Sher, O.; Simon, N.B.; Klausner, J.M.; Lahat, G. Omental Tissue-Mediated Tumorigenesis of Gastric Cancer Peritoneal Metastases. Front. Oncol. 2019, 9, 1267. [Google Scholar] [CrossRef]
- Meza-Perez, S.; Randall, T.D. Immunological Functions of the Omentum. Trends Immunol. 2017, 38, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Paul, N.; Surendran, S.; Yacob, M.; Thenmozhi, M.; Chandran, S.; Samarasam, I. Occult Omental Metastasis in Gastric Adenocarcinoma: An Analysis of Incidence, Predictors, and Outcomes. South Asian J. Cancer 2022, 11, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, X.; Guo, W.; Zheng, C.; Zhang, Y.; Jing, X.; Qiao, H. Metastasis patterns and prognosis in young gastric cancer patients: A propensity score-matched SEER database analysis. PLoS ONE 2024, 19, e0301834. [Google Scholar] [CrossRef]
- Tan, H.L.; Chia, C.S.; Tan, G.H.C.; Choo, S.P.; Tai, D.W.; Chua, C.W.L.; Ng, M.C.H.; Soo, K.C.; Teo, M.C.C. Metastatic gastric cancer: Does the site of metastasis make a difference? Asia Pac. J. Clin. Oncol. 2019, 15, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Grothe, W.; Haerting, J.; Kleber, G.; Grothey, A.; Fleig, W.E. Chemotherapy in advanced gastric cancer: A systematic review and meta-analysis based on aggregate data. J. Clin. Oncol. 2006, 24, 2903–2909. [Google Scholar] [CrossRef]
- Chen, X.L.; Chen, X.Z.; Yang, C.; Liao, Y.B.; Li, H.; Wang, L.; Yang, K.; Li, K.; Hu, J.K.; Zhang, B.; et al. Docetaxel, cisplatin and fluorouracil (DCF) regimen compared with non-taxane-containing palliative chemotherapy for gastric carcinoma: A systematic review and meta-analysis. PLoS ONE 2013, 8, e60320. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Ajani, J.A.; Moehler, M.; Shen, L.; Garrido, M.; Gallardo, C.; Wyrwicz, L.; Yamaguchi, K.; Cleary, J.M.; Elimova, E.; et al. First-Line Nivolumab Plus Chemotherapy for Advanced Gastric, Gastroesophageal Junction, and Esophageal Adenocarcinoma: 3-Year Follow-Up of the Phase III CheckMate 649 Trial. J. Clin. Oncol. 2024, 42, 2012–2020. [Google Scholar] [CrossRef]
- Rha, S.Y.; Oh, D.Y.; Yañez, P.; Bai, Y.; Ryu, M.H.; Lee, J.; Rivera, F.; Alves, G.V.; Garrido, M.; Shiu, K.K.; et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; De Vita, F.; Landers, G.; Yen, C.J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef]
- Akasaka-Kihara, F.; Sueta, D.; Ishii, M.; Maki, Y.; Hirakawa, K.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; et al. Validation of the Khorana Venous Thromboembolism Risk Score in Japanese Cancer Patients. JACC Asia 2021, 1, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Shibata, K.; Tokushige, A.; Imamura, M.; Ikeda, Y.; Ohishi, M. Evaluating the Khorana risk score of gastrointestinal cancer patients during initial chemotherapy as a predictor of patient mortality: A retrospective study. J. Cardiol. 2022, 79, 655–663. [Google Scholar] [CrossRef] [PubMed]
Risk Factors | Points |
---|---|
Site of primary tumor | |
Very high risk (stomach, pancreas) | 2 |
High risk (lung, lymphoma, gynecologic, bladder, testicular) | 1 |
All other sites | 0 |
Pre-chemotherapy platelet count ≥ 350,000/microL | 1 |
Hemoglobin level < 10 g/dL or use of ESAs | 1 |
Pre-chemotherapy WBC > 11,000/microL | 1 |
BMI ≥ 35 kg/m2 | 1 |
Khorana Score | |||||
---|---|---|---|---|---|
Total (n = 337) | Intermediate (n = 153) | High (n = 184) | p Value | ||
Diagnosis age (year) | Median (min-max) | 62.0 (21–90) | 62 (23–90) | 62 (21–83) | 0.990 |
Gender | Female | 105 (31.2) | 44 (28.8) | 61 (33.2) | 0.410 |
Male | 232 (68.8) | 109 (71.2) | 123 (68.8) | ||
ECOG | 0–1 | 302 (89.6) | 138 (90.2) | 164 (89.1) | 0.179 |
2–3 | 35 (10.4) | 15 (9.8) | 20 (10.9) | ||
Primary tumor surgery (n = 336) | Present | 115 (34.2) | 61 (40.1) | 54 (29.3) | 0.490 |
Absent | 221 (65.8) | 91 (59.9) | 130 (70.7) | ||
Histological type of tumor (n = 336) | Adenocarcinoma and other subtypes | 255 (75.9) | 108 (71.0) | 147 (79.9) | 0.400 |
Adenocarcinoma, mucinous | 17 (5.1) | 7 (5.0) | 10 (5.4) | 0.422 | |
Adenocarcinoma, signet-ring cell | 64 (19.0) | 37 (24.0) | 27 (14.7) | 0.019 | |
Grade (n = 232) | Well-moderately differentiated | 80 (34.5) | 42 (36.8) | 38 (32.2) | |
Poorly- Undifferentiated | 152 (65.5) | 72 (63.2) | 80 (67.8) | 0.491 | |
Signet ring cell component | Present | 108 (32.0) | 59 (38.6) | 49 (26.6) | 0.026 |
Absent | 229 (68.0) | 94 (61.4) | 135 (73.4) | ||
HER2 status (n = 301) | positive | 74 (24.6) | 33 (24.6) | 41 (24.6) | 1.000 |
negative | 227 (75.4) | 101 (75.4) | 126 (75.4) | ||
Herceptin treatment (n = 74) | Yes | 58 (78.4) | 26 (78.8) | 32 (78.0) | 0.100 |
No | 16 (21.6) | 7 (21.2) | 9 (22.0) | ||
Denova metastatic | Yes | 257 (76.3) | 34 (30.1) | 25 (23.4) | 0.029 |
No | 80 (23.7) | 79 (69.9) | 82 (76.6) | ||
First line CT regimen | 0.895 | ||||
FOLFOX/XELOX | 143 (42.4) | 62 (40.5) | 81 (44.0) | ||
FLOT | 15 (4.5) | 8 (5.2) | 7 (3.8) | ||
FOLFIRI | 23 (6.8) | 12 (7.8) | 11 (6.0) | ||
DCF | 61 (18.1) | 30 (19.6) | 31 (16.8) | ||
CIS FU | 45 (13.4) | 20 (13.1) | 25 (13.6) | ||
Others | 50 (14.8) | 21 (13.7) | 29 (15.8) | ||
Ovarian metastasis | Present | 15 (4.5) | 5 (3.3) | 10 (5.4) | 0.430 |
Absent | 322 (95.5) | 148 (96.7) | 174 (94.6) | ||
Bone metastasis | Present | 41 (12.2) | 21 (13.7) | 20 (10.9) | 0.504 |
Absent | 296 (87.8) | 132 (86.3) | 164 (89.1) | ||
Lung metastasis | Present | 65 (19.3) | 34 (22.2) | 31 (16.8) | 0.216 |
Absent | 272 (80.7) | 119 (77.8) | 153 (83.2) | ||
Peritoneal metastasis | Present | 113 (33.5) | 52 (34) | 61 (33.2) | 0.908 |
Absent | 224 (66.5) | 101 (66) | 123 (66.5) | ||
Omental metastasis | Present | 47 (13.9) | 23 (13) | 24 (15) | 0.638 |
Absent | 290 (86.1) | 130 (85) | 160 (87) | ||
Liver metastasis | Present | 166 (49.3) | 63 (41.2) | 103 (56.0) | 0.009 |
Absent | 171 (50.7) | 90 (58.8) | 81 (44.0) |
Dependent | All | HR (Univariable) | HR (Multivariable) | |
---|---|---|---|---|
Age | Mean (SD) | 61.1 (11.7) | 1.01 (0.99–1.02, p = 0.286) | 1.00 (0.99–1.02, p = 0.658) |
Khorana Risk Score | High | 184 (54.6) | - | - |
Intermediate | 153 (45.4) | 1.16 (0.91–1.46, p = 0.230) | 1.11 (0.86–1.43, p = 0.429) | |
Gender | Female | 105 (31.2) | - | - |
Male | 232 (68.8) | 0.87 (0.68–1.12, p = 0.285) | 0.90 (0.68–1.19, p = 0.476) | |
ECOG | 0–1 | 302 (89.6) | - | - |
1–2 | 35 (10.4) | 1.52 (1.06–2.20, p = 0.024) | 1.41 (0.94–2.13, p = 0.098) | |
Histological type of tumor (n = 336) | Adenocarcinoma and other subtypes | 255 (76.0) | - | - |
Adenocarcinoma, mucinous | 17 (5.0) | 1.66 (0.92–2.98, p = 0.092) | 1.25 (0.65–2.40, p = 0.502) | |
Adenocarcinoma, signet-ring cell | 64 (19.0) | 1.01 (0.76–1.34, p = 0.954) | 0.74 (0.47–1.18, p = 0.209) | |
Stone ring component | Absent | 229 (68.0) | - | - |
Present | 108 (32.0) | 1.11 (0.87–1.42, p = 0.409) | 1.13 (0.76–1.68, p = 0.557) | |
De novo metastatic | Yes | 257 (76.3) | - | - |
No | 80 (23.7) | 1.27 (0.96–1.68, p = 0.090) | 1.28 (0.95–1.72, p = 0.108) | |
Liver Metastasis | Absent | 171 (50.7) | - | - |
Present | 166 (49.3) | 0.81 (0.64–1.02, p = 0.070) | 0.81 (0.61–1.06, p = 0.128) | |
Peritoneal Metastasis | Absent | 224 (66.5) | - | - |
Present | 113 (33.5) | 1.26 (0.99–1.61, p = 0.065) | 1.05 (0.77–1.43, p = 0.772) | |
Omental Metastasis | Absent | 290 (86.1) | - | - |
Present | 47 (13.9) | 1.70 (1.22–2.36, p = 0.002) | 1.68 (1.12–2.53, p = 0.013) | |
Lung Metastasis | Absent | 272 (80.7) | - | - |
Present | 65 (19.3) | 1.04 (0.78–1.39, p = 0.778) | 1.11 (0.81–1.51, p = 0.522) | |
Over Metastasis | Absent | 322 (95.5) | - | - |
Present | 15 (4.5) | 0.98 (0.56–1.72, p = 0.957) | 0.85 (0.45–1.59, p = 0.610) | |
Bone Metastasis | Absent | 296 (87.8) | - | - |
Present | 41 (12.2) | 1.05 (0.74–1.48, p = 0.802) | 1.09 (0.75–1.60, p = 0.643) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkoglu, E.; Topal, G.A.; Yıldırım, S.; Kınıkoglu, O.; Sarıyar Busery, N.; Kaya, T.; Yıldız, H.S.; Turkoglu, F.; Tatar, C.; Sakin, A.; et al. The Association of Khorana Risk Score with Venous Thromboembolism and Overall Survival in Patients with Metastatic Gastric Cancer. Medicina 2025, 61, 1075. https://doi.org/10.3390/medicina61061075
Turkoglu E, Topal GA, Yıldırım S, Kınıkoglu O, Sarıyar Busery N, Kaya T, Yıldız HS, Turkoglu F, Tatar C, Sakin A, et al. The Association of Khorana Risk Score with Venous Thromboembolism and Overall Survival in Patients with Metastatic Gastric Cancer. Medicina. 2025; 61(6):1075. https://doi.org/10.3390/medicina61061075
Chicago/Turabian StyleTurkoglu, Ezgi, Goncagul Akdag Topal, Sedat Yıldırım, Oguzcan Kınıkoglu, Nisanur Sarıyar Busery, Tugba Kaya, Hacer Sahika Yıldız, Furkan Turkoglu, Cihad Tatar, Abdullah Sakin, and et al. 2025. "The Association of Khorana Risk Score with Venous Thromboembolism and Overall Survival in Patients with Metastatic Gastric Cancer" Medicina 61, no. 6: 1075. https://doi.org/10.3390/medicina61061075
APA StyleTurkoglu, E., Topal, G. A., Yıldırım, S., Kınıkoglu, O., Sarıyar Busery, N., Kaya, T., Yıldız, H. S., Turkoglu, F., Tatar, C., Sakin, A., Isık, D., Ay Ersoy, S., Basoglu, T., Odabas, H., & Turan, N. (2025). The Association of Khorana Risk Score with Venous Thromboembolism and Overall Survival in Patients with Metastatic Gastric Cancer. Medicina, 61(6), 1075. https://doi.org/10.3390/medicina61061075