Factors Affecting Sleep and Wakefulness in People with Epilepsy: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Molecular Circadian System and Epilepsy
Authors | Study Model | Alterations of Molecular Circadian System | Tissues Examined | Alterations of Sleep–Wake and Circadian Markers |
---|---|---|---|---|
Liang et al., 2024 [9] | Pilocarpine-induced SE mouse model. | Bmal1, Clock, Cry1, Cry2 ↓ expression, Per1 and Per2 ↑ expression. | SCN and hippocampus. | Lower core body temperature oscillations. |
Wallace et al., 2018 [13] | Kcna1 knockout mouse model. | Clock, Per1 and Per2 ↓ expression. | Anterior hypothalamus. | Arrhythmic rest–activity patterns |
Matos et al., 2018 [8] | Pilocarpine induced SE rat model. | Phase advance of Bmal1 acrophase in epileptic condition; lack of rhythmicity of Cry1 and Cry2 expression in post-SE condition; lack of rhythmicity of Per1, Per2 expression in post-SE and epileptic condition, and Per3 expression in epileptic condition. | Hippocampus. | Intact circadian rhythm of rest–activity; higher activity in both light and dark phases; higher intracycle variability. |
Gerstner et al., 2014 [10] | Electroshock mouse model. | Bmal1 expression unaffected by seizures. | Hippocampus. | No diurnal profile of seizures in Bmal1 knockout mice compared to WT. |
Zhang et al., 2021 [12] | KA-induced acute and pilocarpine-induced chronic seizure mouse models. | Rev-erbα ↑ expression and Bmal1, Clock, E4bp, and Dbp expression ↓ in KA model. | Hippocampus, cortex in KA model mice. | Seizure reduction in Rev-erbα knockout mice in both KA and pilocarpine models. |
Rocha et al., 2017 [16] | Pilocarpine-induced SE model. | MT1 mRNA expression ↑ 2 and 11 h post-SE; MT2 mRNA expression ↑ 5 and 11 h post-SE; MT2 mRNA expression ↓ in the silent phase. | Hippocampus. | - |
Yamakawa et al., 2023 [14] | GEARS model. | Dysregulation of Per1, Cry1 and Clock, Bmal1. | Hypothalamus, hippocampus, liver, small intestine. | - |
Yamakawa et al., 2023 [14] | KA-induced SE model. | Dysregulation of Cry1, Clock, and Bmal1. | Hypothalamus, liver. | - |
Yamakawa et al., 2023 [14] | KA-induced SE model. | Dysregulation of Cry1 and Clock. | Hippocampus. | - |
4. Effects of Seizures and Interictal Activity on Sleep and Wakefulness and Circadian Rhythm
Authors | Epilepsy | Alterations of Sleep Architecture |
---|---|---|
Peter-Derex et al., 2020 [27] Pereira et al., 2012 [30] Arhan et al., 2021 [36] Zanzmera et al., 2012 [41] Yeh at al., 2021 [42] | Treatment-resistant epilepsy | WASO ↑, AI ↑, SE ↓, TST ↓, %REM ↓, %N3 ↓, REM latenc y↑ |
Calvello et al., 2023 [28] Arhan et al., 2021 [36] | Drug-naïve FE and GE | SE ↓ in FE and GE [28] Sleep stage shift ↑, awakenings ↑, WASO ↑, %N2 ↑ in FE [28] Sleep onset latency ↑, REM latency ↑, %N1 ↑, awakenings ↑ in FE [36] |
Mekky et al., 2017 [29] Roshan et al., 2017 [35] Krishnan et al., 2014 [44] | JME | %wake ↑, WASO ↑, SE ↓, sleep onset latency ↑ [29,35,44] REM latency and duration ↑, AI ↑, AI associated with disease duration and age of seizure onset, PLMI ↑ [29] %REM ↓, %N1 ↑ [35] |
Maganti et al., 2005 [32] Yadav et al., 2021 [37] Hamdy et al., 2020 [38] | Idiopathic GE | %N1 ↑, REM latency ↑ [32] REM duration ↓, AHI ↑, arousals ↑, % of oxygen desaturation ↑ [37] ↓ %REM and REM latency ↑ in drug-naïve patients [38] |
Nakamura et al., 2017 [31] | TLE | ↓ %REM in patients with left TLE |
Gogou et al., 2017 [34] Bruni et al., 2010 [43] | Self-limited epilepsy with centrotemporal spikes (Rolandic) | ↓ %REM, OAI and OAHI ↑ [34] REM latency ↑, SE ↓, TST ↓, reduced CAP rates [43] |
Hadar et al., 2024 [33] | FE | %N3 ↓ overall %N3 ↑, %REM ↑, %N2 ↓ in FE with generalization of seizures compared to FE without generalization |
Wang et al., 2024 [39] Shaheen et al., 2012 [40] | Mixed samples of epilepsy | SE ↓, TST ↓, %REM ↓, %N3 ↓, AI ↑, oxygen desaturation index ↑ in elderly patients with epilepsy [39] Greater frequency of seizures in OSA patients [40] |
5. Sleep Disturbances in Different Epilepsy Etiologies
5.1. Chromosomal Abnormalities
5.2. Gene Abnormalities
5.3. Structural Lesions
5.4. Metabolic Disorders
5.5. Autoimmune Disorders
6. Comorbidities
6.1. Mood Disorders, Psychosis and Anxiety
6.2. Neurodevelopmental Disorders
7. Antiseizure Medications
7.1. Activators of GABAA Receptors
7.2. ASMs with Multiple Mechanisms of Action
7.3. Sodium Channel Blockers
7.4. Inhibitors of Voltage-Gated Calcium Channel α2δ Subunits (Gabapentinoids)
7.5. Synaptic Vesicle Protein 2A Modulators
7.6. AMPA A-Type Glutamate Receptor Inhibitors
8. Discussion
9. Future Directions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Windred, D.P.; Burns, A.C.; Lane, J.M.; Saxena, R.; Rutter, M.K.; Cain, S.W.; Phillips, A.J.K. Sleep regularity is a stronger predictor of mortality risk than sleep duration: A prospective cohort study. Sleep 2024, 47, zsad253. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- Bergmann, M.; Tschiderer, L.; Stefani, A.; Heidbreder, A.; Willeit, P.; Högl, B. Sleep quality and daytime sleepiness in epilepsy: Systematic review and meta-analysis of 25 studies including 8196 individuals. Sleep Med. Rev. 2021, 57, 101466. [Google Scholar] [CrossRef] [PubMed]
- Finger, A.M.; Kramer, A. Peripheral clocks tick independently of their master. Genes Dev. 2021, 35, 304–306. [Google Scholar] [CrossRef]
- Sanchez, R.E.A.; Kalume, F.; de la Iglesia, H.O. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin. Cell Dev. Biol. 2022, 126, 3–14. [Google Scholar] [CrossRef]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Chan, F.; Liu, J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021, 62, S32–S48. [Google Scholar] [CrossRef]
- Matos, H.C.; Koike, B.D.V.; Pereira, W.D.S.; de Andrade, T.G.; Castro, O.W.; Duzzioni, M.; Kodali, M.; Leite, J.P.; Shetty, A.K.; Gitaí, D.L.G. Rhythms of Core Clock Genes and Spontaneous Locomotor Activity in Post-Status Epilepticus Model of Mesial Temporal Lobe Epilepsy. Front. Neurol. 2018, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liang, X.; Zhao, Y.; Ding, Y.; Zhu, X.; Zhou, J.; Qiu, J.; Shen, X.; Xie, W. Dysregulation of the Suprachiasmatic Nucleus Disturbs the Circadian Rhythm and Aggravates Epileptic Seizures by Inducing Hippocampal GABAergic Dysfunction in C57BL/6 Mice. J. Pineal Res. 2024, 76, e12993. [Google Scholar] [CrossRef]
- Gerstner, J.R.; Smith, G.G.; Lenz, O.; Perron, I.J.; Buono, R.J.; Ferraro, T.N. BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Front. Syst. Neurosci. 2014, 8, 121. [Google Scholar] [CrossRef]
- Preitner, N.; Damiola, F.; Lopez-Molina, L.; Zakany, J.; Duboule, D.; Albrecht, U.; Schibler, U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002, 110, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yu, F.; Xu, H.; Chen, M.; Chen, X.; Guo, L.; Zhou, C.; Xu, Y.; Wang, F.; Yu, J.; et al. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models. Nat. Commun. 2021, 12, 1216. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.; Wright, S.; Schoenike, B.; Roopra, A.; Rho, J.M.; Maganti, R.K. Altered circadian rhythms and oscillation of clock genes and sirtuin 1 in a model of sudden unexpected death in epilepsy. Epilepsia 2018, 59, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, G.R.; Patel, M.; Lin, R.; O’Brien, T.J.; Mychasiuk, R.; Casillas-Espinosa, P.M. Diurnal circadian clock gene expression is altered in models of genetic and acquired epilepsy. Epilepsia Open 2023, 8, 1523–1531. [Google Scholar] [CrossRef]
- Comai, S.; Gobbi, G. Melatonin, Melatonin Receptors and Sleep: Moving Beyond Traditional Views. J. Pineal Res. 2024, 76, e13011. [Google Scholar] [CrossRef]
- Rocha, A.K.A.A.; de Lima, E.; Amaral, F.; Peres, R.; Cipolla-Neto, J.; Amado, D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav. 2017, 71, 23–34. [Google Scholar] [CrossRef]
- Petkova, Z.; Tchekalarova, J.; Pechlivanova, D.; Moyanova, S.; Kortenska, L.; Mitreva, R.; Popov, D.; Markova, P.; Lozanov, V.; Atanasova, D.; et al. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav. 2014, 31, 198–208. [Google Scholar] [CrossRef]
- Deng, L.; Jiang, H.; Lin, J.; Xu, D.; Qi, A.; Guo, Q.; Li, P.P.; Wang, X.; Liu, J.S.; Fu, X.; et al. Clock knockout in inhibitory neurons reduces predisposition to epilepsy and influences anxiety-like behaviors in mice. Neurobiol. Dis. 2024, 193, 106457. [Google Scholar] [CrossRef]
- Li, P.; Fu, X.; Smith, N.A.; Ziobro, J.; Curiel, J.; Tenga, M.J.; Martin, B.; Freedman, S.; Cea-Del Rio, C.A.; Oboti, L.; et al. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017, 96, 387–401. [Google Scholar] [CrossRef]
- de Diego-Garcia, L.; Brennan, G.P.; Auer, T.; Menendez-Mendez, A.; Parras, A.; Martin-Gil, A.; Mitra, M.; Ollà, I.; Villalba-Benito, L.; Gil, B.; et al. CPEB4-CLOCK crosstalk during temporal lobe epilepsy. Epilepsia 2023, 64, 2827–2840. [Google Scholar] [CrossRef]
- Karoly, P.J.; Rao, V.R.; Gregg, N.M.; Worrell, G.A.; Bernard, C.; Cook, M.J.; Baud, M.O. Cycles in epilepsy. Nat. Rev. Neurol. 2021, 17, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Nobili, L.; Khatami, R.; Loddenkemper, T.; Cajochen, C.; Dijk, D.J.; Eriksson, S.H. Circadian rhythm and epilepsy. Lancet Neurol. 2018, 17, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Nobili, L.; de Weerd, A.; Rubboli, G.; Beniczky, S.; Derry, C.; Eriksson, S.; Halasz, P.; Högl, B.; Santamaria, J.; Khatami, R.; et al. Standard procedures for the diagnostic pathway of sleep-related epilepsies and comorbid sleep disorders: An EAN, ESRS and ILAE-Europe consensus review. Eur. J. Neurol. 2021, 28, 15–32. [Google Scholar] [CrossRef]
- Ayala-Guerrero, F.; Mexicano, G.; Gutiérrez-Chávez, C.A.; Lazo, L.A.; Mateos, E.L. Effect of gabapentin on sleep patterns disturbed by epilepsy. Epilepsy Behav. 2019, 92, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Unterberger, I.; Gabelia, D.; Prieschl, M.; Chea, K.; Hofer, M.; Högl, B.; Luef, G.; Frauscher, B. Sleep disorders and circadian rhythm in epilepsy revisited: A prospective controlled study. Sleep Med. 2015, 16, 237–242. [Google Scholar] [CrossRef]
- Choi, S.J.; Joo, E.Y.; Hong, S.B. Sleep-wake pattern, chronotype and seizures in patients with epilepsy. Epilepsy Res. 2016, 120, 19–24. [Google Scholar] [CrossRef]
- Peter-Derex, L.; Klimes, P.; Latreille, V.; Bouhadoun, S.; Dubeau, F.; Frauscher, B. Sleep Disruption in Epilepsy: Ictal and Interictal Epileptic Activity Matter. Ann. Neurol. 2020, 88, 907–920. [Google Scholar] [CrossRef]
- Calvello, C.; Fernandes, M.; Lupo, C.; Maramieri, E.; Placidi, F.; Izzi, F.; Castelli, A.; Pagano, A.; Mercuri, N.B.; Liguori, C. Sleep architecture in drug-naïve adult patients with epilepsy: Comparison between focal and generalized epilepsy. Epilepsia Open 2023, 8, 165–172. [Google Scholar] [CrossRef]
- Mekky, J.F.; Elbhrawy, S.M.; Boraey, M.F.; Omar, H.M. Sleep architecture in patients with Juvenile Myoclonic Epilepsy. Sleep Med. 2017, 38, 116–121. [Google Scholar] [CrossRef]
- Pereira, A.M.; Bruni, O.; Ferri, R.; Palmini, A.; Nunes, M.L. The impact of epilepsy on sleep architecture during childhood. Epilepsia 2012, 53, 1519–1525. [Google Scholar] [CrossRef]
- Nakamura, M.; Jin, K.; Kato, K.; Itabashi, H.; Iwasaki, M.; Kakisaka, Y.; Nakasato, N. Differences in sleep architecture between left and right temporal lobe epilepsy. Neurol. Sci. 2017, 38, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Maganti, R.; Sheth, R.D.; Hermann, B.P.; Weber, S.; Gidal, B.E.; Fine, J. Sleep architecture in children with idiopathic generalized epilepsy. Epilepsia 2005, 46, 104–109. [Google Scholar] [CrossRef]
- Hadar, P.N.; Westmeijer, M.; Sun, H.; Meulenbrugge, E.J.; Jing, J.; Paixao, L.; Tesh, R.A.; Da Silva Cardoso, M.; Arnal, P.; Au, R.; et al. Epilepsy is associated with the accelerated aging of brain activity in sleep. Front. Physiol. 2024, 15, 1458592. [Google Scholar] [CrossRef] [PubMed]
- Gogou, M.; Haidopoulou, K.; Eboriadou, M.; Pavlou, E. Sleep Disturbances in Children with Rolandic Epilepsy. Neuropediatrics 2017, 48, 30–35. [Google Scholar] [CrossRef]
- Roshan, S.; Puri, V.; Chaudhry, N.; Gupta, A.; Rabi, S.K. Sleep abnormalities in juvenile myoclonic epilepsy-A sleep questionnaire and polysomnography based study. Seizure 2017, 50, 194–201. [Google Scholar] [CrossRef]
- Arhan, E.; Uçar, H.K.; Aydın, K.; Hirfanoğlu, T.; Serdaroglu, A. How do children with drug-resistant epilepsy sleep? A clinical and video-PSG study. Epilepsy Behav. 2021, 114, 107320. [Google Scholar] [CrossRef]
- Yadav, V.; Nanda, S.; Kaushik, J.S.; Bala, K. Sleep Characteristics Among Children with Idiopathic Generalized Epilepsy: A Polysomnography-Based Study. Indian J. Pediatr. 2021, 88, 925–927. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, M.M.; Elfatatry, A.M.; Mekky, J.F.; Hamdy, E. Rapid eye movement (REM) sleep and seizure control in idiopathic generalized epilepsy. Epilepsy Behav. 2020, 107, 107064. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Wu, S.; Lin, F.; Ji, X.; Yan, J. A polysomnographic study of slow-wave sleep loss in elderly patients with epilepsy. Heliyon 2024, 10, e25904. [Google Scholar] [CrossRef]
- Shaheen, H.A.; Abd El-Kader, A.A.; El Gohary, A.M.; El-Fayoumy, N.M.; Afifi, L.M. Obstructive sleep apnea in epilepsy: A preliminary Egyptian study. Sleep Breath 2012, 16, 765–771. [Google Scholar] [CrossRef]
- Zanzmera, P.; Shukla, G.; Gupta, A.; Singh, H.; Goyal, V.; Srivastava, A.; Behari, M. Markedly disturbed sleep in medically refractory compared to controlled epilepsy—A clinical and polysomnography study. Seizure 2012, 21, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.C.; Lin, P.J.; Chuang, Y.C.; Hsu, C.Y. Quantitative evaluation of the microstructure of rapid eye movement sleep in refractory epilepsy: A preliminary study using electroencephalography and heart rate variability analysis. Sleep Med. 2021, 85, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Bruni, O.; Novelli, L.; Luchetti, A.; Zarowski, M.; Meloni, M.; Cecili, M.; Villa, M.; Ferri, R. Reduced NREM sleep instability in benign childhood epilepsy with centro-temporal spikes. Clin. Neurophysiol. 2010, 121, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.; Sinha, S.; Taly, A.B.; Ramachandraiah, C.T.; Rao, S.; Satishchandra, P. Altered polysomnographic profile in juvenile myoclonic epilepsy. Epilepsy Res. 2014, 108, 459–467. [Google Scholar] [CrossRef]
- Najar, L.L.; Santos, R.P.; Foldvary-Schaefer, N.; da Mota Gomes, M. Chronotype variability in epilepsy and clinical significance: Scoping review. Epilepsy Behav. 2024, 157, 109872. [Google Scholar] [CrossRef]
- Ardura, J.; Andres, J.; Garmendia, J.R.; Ardura, F. Melatonin in epilepsy and febrile seizures. J. Child. Neurol. 2010, 25, 888–891. [Google Scholar] [CrossRef]
- Bazil, C.W.; Short, D.; Crispin, D.; Zheng, W. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology 2000, 55, 1746–1748. [Google Scholar] [CrossRef]
- Dabak, O.; Altun, D.; Arslan, M.; Yaman, H.; Vurucu, S.; Yesilkaya, E.; Unay, B. Evaluation of Plasma Melatonin Levels in Children with Afebrile and Febrile Seizures. Pediatr. Neurol. 2016, 57, 51–55. [Google Scholar] [CrossRef]
- Ayça, S.; Aksoy, H.U.; Taştan, İ.; Polat, M. Levels of Melatonin in Continuous Spikes and Waves During Sleep. J. Child. Neurol. 2019, 34, 309–312. [Google Scholar] [CrossRef]
- Tarcin, G.; Aksu Uzunhan, T.; Kacar, A.; Kucur, M.; Saltik, S. The relationship between epileptic seizure and melatonin in children. Epilepsy Behav. 2020, 112, 107345. [Google Scholar] [CrossRef]
- Motta, E.; Czuczwar, S.J.; Ostrowska, Z.; Gołba, A.; Sołtyk, J.; Norman, R.; Woźnik, G. Circadian profile of salivary melatonin secretion and its concentration after epileptic seizure in patients with drug-resistant epilepsy–preliminary report. Pharmacol. Rep. 2014, 66, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Oster, H.; Abelson, J.L.; Huthsteiner, K.; Klucken, T.; Clow, A. The Cortisol Awakening Response: Regulation and Functional Significance. Endocr. Rev. 2025, 46, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Rider, F.; Turchinets, A.; Druzhkova, T.; Kustov, G.; Guekht, A.; Gulyaeva, N. Dissimilar Changes in Serum Cortisol after Epileptic and Psychogenic Non-Epileptic Seizures: A Promising Biomarker in the Differential Diagnosis of Paroxysmal Events? Int. J. Mol. Sci. 2024, 25, 7387. [Google Scholar] [CrossRef]
- Marinelli, I.; Walker, J.J.; Seneviratne, U.; D’Souza, W.; Cook, M.J.; Anderson, C.; Bagshaw, A.P.; Lightman, S.L.; Woldman, W.; Terry, J.R. Circadian distribution of epileptiform discharges in epilepsy: Candidate mechanisms of variability. PLoS Comput. Biol. 2023, 19, e1010508. [Google Scholar] [CrossRef]
- van Campen, J.S.; Valentijn, F.A.; Jansen, F.E.; Joëls, M.; Braun, K.P. Seizure occurrence and the circadian rhythm of cortisol: A systematic review. Epilepsy Behav. 2015, 47, 132–137. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Takaesu, Y.; Komada, Y.; Inoue, Y. Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 2012, 13, 1164–1170. [Google Scholar] [CrossRef]
- Ehlen, J.C.; Jones, K.A.; Pinckney, L.; Gray, C.L.; Burette, S.; Weinberg, R.J.; Evans, J.A.; Brager, A.J.; Zylka, M.J.; Paul, K.N.; et al. Maternal Ube3a Loss Disrupts Sleep Homeostasis but Leaves Circadian Rhythmicity Largely Intact. J. Neurosci. 2015, 35, 13587–13598. [Google Scholar] [CrossRef]
- Hoffmire, C.A.; Magyar, C.I.; Connolly, H.V.; Fernandez, I.D.; van Wijngaarden, E. High prevalence of sleep disorders and associated comorbidities in a community sample of children with Down syndrome. J. Clin. Sleep Med. 2014, 10, 411–419. [Google Scholar] [CrossRef]
- Carter, M.; McCaughey, E.; Annaz, D.; Hill, C.M. Sleep problems in a Down syndrome population. Arch. Dis. Child. 2009, 94, 308–310. [Google Scholar] [CrossRef]
- Lin, S.C.; Davey, M.J.; Horne, R.S.; Nixon, G.M. Screening for obstructive sleep apnea in children with Down syndrome. J. Pediatr. 2014, 165, 117–122. [Google Scholar] [CrossRef]
- Lovos, A.; Bottrill, K.; Sakhon, S.; Nyhuis, C.; Egleson, E.; Luongo, A.; Murphy, M.; Thurman, A.J.; Abbeduto, L.; Lee, N.R.; et al. Circadian Sleep-Activity Rhythm across Ages in Down Syndrome. Brain Sci. 2021, 11, 1403. [Google Scholar] [CrossRef]
- Budimirovic, D.B.; Protic, D.D.; Delahunty, C.M.; Andrews, H.F.; Choo, T.H.; Xu, Q.; Berry-Kravis, E.; Kaufmann, W.E. Sleep problems in fragile Xsyndrome: Cross-sectional analysis of a large clinic-based cohort. Am. J. Med. Genet A 2022, 188, 1029–1039. [Google Scholar] [CrossRef]
- Dueck, A.; Reis, O.; Bastian, M.; van Treeck, L.; Weirich, S.; Haessler, F.; Fiedler, A.; Koelch, M.; Berger, C. Feasibility of a Complex Setting for Assessing Sleep and Circadian Rhythmicity in a Fragile X Cohort. Front. Psychiatry 2020, 11, 361. [Google Scholar] [CrossRef]
- Wong, K.; Leonard, H.; Jacoby, P.; Ellaway, C.; Downs, J. The trajectories of sleep disturbances in Rett syndrome. J. Sleep Res. 2015, 24, 223–233. [Google Scholar] [CrossRef]
- Mangatt, M.; Wong, K.; Anderson, B.; Epstein, A.; Hodgetts, S.; Leonard, H.; Downs, J. Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome. Orphanet J. Rare Dis. 2016, 11, 39. [Google Scholar] [CrossRef]
- Sarber, K.M.; Howard, J.J.M.; Dye, T.J.; Pascoe, J.E.; Simakajornboon, N. Sleep-Disordered Breathing in Pediatric Patients with Rett Syndrome. J. Clin. Sleep Med. 2019, 15, 1451–1457. [Google Scholar] [CrossRef]
- Zhang, X.; Smits, M.; Curfs, L.; Spruyt, K. Sleep Respiratory Disturbances in Girls with Rett Syndrome. Int. J. Environ. Res. Public Health 2022, 19, 13082. [Google Scholar] [CrossRef]
- Wong, L.C.; Huang, C.H.; Chou, W.Y.; Hsu, C.J.; Tsai, W.C.; Lee, W.T. The clinical and sleep manifestations in children with FOXG1 syndrome. Autism Res. 2023, 16, 953–966. [Google Scholar] [CrossRef]
- Moavero, R.; Voci, A.; La Briola, F.; Matricardi, S.; Toldo, I.; Mancardi, M.M.; Negrin, S.; Messana, T.; Mazzone, L.; Valeriani, M.; et al. Sleep disorders and neuropsychiatric disorders in a pediatric sample of tuberous sclerosis complex: A questionnaire-based study. Sleep Med. 2022, 89, 65–70. [Google Scholar] [CrossRef]
- Licheni, S.H.; Mcmahon, J.M.; Schneider, A.L.; Davey, M.J.; Scheffer, I.E. Sleep problems in Dravet syndrome: A modifiable comorbidity. Dev. Med. Child. Neurol. 2018, 60, 192–198. [Google Scholar] [CrossRef]
- Van Nuland, A.; Ivanenko, A.; Meskis, M.A.; Villas, N.; Knupp, K.G.; Berg, A.T. Sleep in Dravet syndrome: A parent-driven survey. Seizure 2021, 85, 102–110. [Google Scholar] [CrossRef]
- De Giorgis, V.; Varesio, C.; Baldassari, C.; Piazza, E.; Olivotto, S.; Macasaet, J.; Balottin, U.; Veggiotti, P. Atypical Manifestations in Glut1 Deficiency Syndrome. J. Child. Neurol. 2016, 31, 1174–1180. [Google Scholar] [CrossRef]
- Evans, E.; Mowat, D.; Wilson, M.; Einfeld, S. Sleep disturbance in Mowat-Wilson syndrome. Am. J. Med. Genet. A 2016, 170, 654–660. [Google Scholar] [CrossRef]
- Di Pisa, V.; Provini, F.; Ubertiello, S.; Bonetti, S.; Ricci, E.; Ivanovski, I.; Caraffi, S.G.; Giordano, L.; Accorsi, P.; Savasta, S.; et al. Sleep in Mowat-Wilson Syndrome: A clinical and video-polysomnographic study. Sleep Med. 2019, 61, 44–51. [Google Scholar] [CrossRef]
- Yaranagula, S.D.; Asranna, A.; Nagappa, M.; Nayak, C.S.; Pratyusha, P.V.; Mundlamuri, R.C.; Raghavendra, K.; Arivazhagan, A.; Malla, B.R.; Bharath, R.D.; et al. Sleep profile and Polysomnography in patients with drug-resistant temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) and the effect of epilepsy surgery on sleep-a prospective cohort study. Sleep Med. 2021, 80, 176–183. [Google Scholar] [CrossRef]
- Romigi, A.; D’Aniello, A.; Caccamo, M.; Testa, F.; Vitrani, G.; Grammaldo, L.; De Risi, M.; Casciato, S.; Cappellano, S.; Esposito, V.; et al. Sleep macrostructure and cyclic alternating pattern in patients who underwent surgery for hippocampal sclerosis: A prospective controlled polysomnographic study. Sleep Med. 2022, 100, 419–426. [Google Scholar] [CrossRef]
- Tezer, F.I.; Pektezel, M.Y.; Gocmen, R.; Saygi, S. Unusual presentation of hypothalamic hamartoma with hypersomnia in an adult patient. Epileptic Disord. 2014, 16, 366–369. [Google Scholar] [CrossRef]
- Primiano, G.; Brunetti, V.; Vollono, C.; Losurdo, A.; Moroni, R.; Della Marca, G.; Servidei, S. Sleep-Disordered Breathing in Adult Patients With Mitochondrial Diseases: A Cohort Study. Neurology 2021, 96, e241–e249. [Google Scholar] [CrossRef]
- Mosquera, R.A.; Koenig, M.K.; Adejumo, R.B.; Chevallier, J.; Hashmi, S.S.; Mitchell, S.E.; Pacheco, S.E.; Jon, C. Sleep disordered breathing in children with mitochondrial disease. Pulm. Med. 2014, 2014, 467576. [Google Scholar] [CrossRef]
- Devine, M.F.; Feemster, J.C.; Lieske, E.A.; McCarter, S.J.; Sandness, D.J.; Steele, T.; Timm, P.C.; Mandrekar, J.; Boeve, B.F.; Silber, M.H.; et al. Objective sleep profile in LGI1/CASPR2 autoimmunity. Sleep 2022, 45, zsab297. [Google Scholar] [CrossRef]
- Ariño, H.; Muñoz-Lopetegi, A.; Martinez-Hernandez, E.; Armangue, T.; Rosa-Justicia, M.; Escudero, D.; Matos, N.; Graus, F.; Sugranyes, G.; Castro-Fornieles, J.; et al. Sleep disorders in anti-NMDAR encephalitis. Neurology 2020, 95, e671–e684. [Google Scholar] [CrossRef]
- Ribeiro, L.; Psimaras, D.; Vollhardt, R.; Honnorat, J.; Méneret, A.; Demeret, S.; Celier, A.; Valyraki, N.E.; Cousyn, L.; Le Guennec, L.; et al. REM and NREM Sleep Parasomnia in Anti-NMDA Receptor Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200203. [Google Scholar] [CrossRef]
- Yang, L.; Shu, X.; Mao, S.; Wang, Y.; Du, X.; Zou, C. Genotype-Phenotype Correlations in Angelman Syndrome. Genes 2021, 12, 987. [Google Scholar] [CrossRef]
- Fu, C.; Armstrong, D.; Marsh, E.; Lieberman, D.; Motil, K.; Witt, R.; Standridge, S.; Nues, P.; Lane, J.; Dinkel, T.; et al. Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr. Open 2020, 4, e000717. [Google Scholar] [CrossRef]
- Young, D.; Nagarajan, L.; de Klerk, N.; Jacoby, P.; Ellaway, C.; Leonard, H. Sleep problems in Rett syndrome. Brain Dev. 2007, 29, 609–616. [Google Scholar] [CrossRef]
- Lipton, J.O.; Yuan, E.D.; Boyle, L.M.; Ebrahimi-Fakhari, D.; Kwiatkowski, E.; Nathan, A.; Güttler, T.; Davis, F.; Asara, J.M.; Sahin, M. The Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation. Cell 2015, 161, 1138–1151. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, D.; Han, L.; Rensing, N.; Satoh, A.; Wong, M. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 2020, 134, 104615. [Google Scholar] [CrossRef]
- Sanchez, R.E.A.; Bussi, I.L.; Ben-Hamo, M.; Caldart, C.S.; Catterall, W.A.; De La Iglesia, H.O. Circadian regulation of sleep in a pre-clinical model of Dravet syndrome: Dynamics of sleep stage and siesta re-entrainment. Sleep 2019, 42, zsz173. [Google Scholar] [CrossRef]
- Cordelli, D.M.; Di Pisa, V.; Fetta, A.; Garavelli, L.; Maltoni, L.; Soliani, L.; Ricci, E. Neurological Phenotype of Mowat-Wilson Syndrome. Genes 2021, 12, 982. [Google Scholar] [CrossRef]
- Zhao, T.; Cui, X.; Zhang, X.; Zhao, M.; Rastegar-Kashkooli, Y.; Wang, J.; Li, Q.; Jiang, C.; Li, N.; Xing, F.; et al. Hippocampal sclerosis: A review on current research status and its mechanisms. Ageing Res. Rev. 2025, 108, 102716. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Xu, K.; Xie, M.; Tian, X.; Wang, X.; Feng, J.; Guan, Y.; Zhou, J.; Luan, G.; Qi, X.; et al. Clinical and pathologic features of Sturge-Weber syndrome in patients with refractory epilepsy. Am. J. Clin. Pathol. 2024, 161, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Harrison, V.S.; Oatman, O.; Kerrigan, J.F. Hypothalamic hamartoma with epilepsy: Review of endocrine comorbidity. Epilepsia 2017, 58, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Klopstock, T.; Kornblum, C.; Mancuso, M.; McFarland, R.; Sue, C.M.; Suomalainen, A.; Taylor, R.W.; et al. Mitochondrial disease in adults: Recent advances and future promise. Lancet Neurol. 2021, 20, 573–584. [Google Scholar] [CrossRef]
- Uy, C.E.; Binks, S.; Irani, S.R. Autoimmune encephalitis: Clinical spectrum and management. Pract. Neurol. 2021, 21, 412–423. [Google Scholar] [CrossRef]
- Bensken, W.P.; Fernandez-Baca Vaca, G.; Jobst, B.C.; Williams, S.M.; Stange, K.C.; Sajatovic, M.; Koroukian, S.M. Burden of Chronic and Acute Conditions and Symptoms in People With Epilepsy. Neurology 2021, 97, e2368–e2380. [Google Scholar] [CrossRef]
- Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol. 2016, 15, 106–115. [Google Scholar] [CrossRef]
- Kerr, M.P.; Mensah, S.; Besag, F.; de Toffol, B.; Ettinger, A.; Kanemoto, K.; Kanner, A.; Kemp, S.; Krishnamoorthy, E.; LaFrance WCJr Mula, M.; et al. International League of Epilepsy (ILAE) Commission on the Neuropsychiatric Aspects of Epilepsy. International consensus clinical practice statements for the treatment of neuropsychiatric conditions associated with epilepsy. Epilepsia 2011, 52, 2133–2138. [Google Scholar] [CrossRef]
- Mula, M.; Brodie, M.J.; de Toffol, B.; Guekht, A.; Hecimovic, H.; Kanemoto, K.; Kanner, A.M.; Teixeira, A.L.; Wilson, S.J. ILAE clinical practice recommendations for the medical treatment of depression in adults with epilepsy. Epilepsia 2022, 63, 316–334. [Google Scholar] [CrossRef]
- Valente, K.D.; Reilly, C.; Carvalho, R.M.; Smith, M.L.; Mula, M.; Wirrell, E.C.; Wilmshurst, J.M.; Jetté, N.; Brigo, F.; Kariuki, S.M.; et al. Consensus-based recommendations for the diagnosis and treatment of anxiety and depression in children and adolescents with epilepsy: A report from the Psychiatric Pediatric Issues Task Force of the International League Against Epilepsy. Epilepsia 2024, 65, 3155–3185. [Google Scholar] [CrossRef]
- Palagini, L.; Domschke, K.; Benedetti, F.; Foster, R.G.; Wulff, K.; Riemann, D. Developmental pathways towards mood disorders in adult life: Is there a role for sleep disturbances? J. Affect. Disord. 2019, 243, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Geoffroy, P.A.; Miniati, M.; Perugi, G.; Biggio, G.; Marazziti, D.; Riemann, D. Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: A pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr. 2022, 27, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Kallestad, H.; Vedaa, O.; Sivertsen, B.; Etain, B. Sleep disturbances and first onset of major mental disorders in adolescence and early adulthood: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101429. [Google Scholar] [CrossRef]
- Hill Almeida, L.M.; Flicker, L.; Hankey, G.J.; Golledge, J.; Yeap, B.B.; Almeida, O.P. Disrupted sleep and risk of depression in later life: A prospective cohort study with extended follow up and a systematic review and meta-analysis. J. Affect. Disord. 2022, 309, 314–323. [Google Scholar] [CrossRef]
- Bagautdinova, J.; Mayeli, A.; Wilson, J.D.; Donati, F.L.; Colacot, R.M.; Meyer, N.; Fusar-Poli, P.; Ferrarelli, F. Sleep Abnormalities in Different Clinical Stages of Psychosis: A Systematic Review and Meta-analysis. JAMA Psychiatry 2023, 80, 202–210. [Google Scholar] [CrossRef]
- Sun, X.; Liu, B.; Liu, S.; Wu, D.J.H.; Wang, J.; Qian, Y.; Ye, D.; Mao, Y. Sleep disturbance and psychiatric disorders: A bidirectional Mendelian randomisation study. Epidemiol. Psychiatr. Sci. 2022, 31, e26. [Google Scholar] [CrossRef] [PubMed]
- Chellappa, S.L.; Aeschbach, D. Sleep and anxiety: From mechanisms to interventions. Sleep. Med. Rev. 2022, 61, 101583. [Google Scholar] [CrossRef]
- Niu, C.; Li, P.; Du, X.; Zhao, M.; Wang, H.; Yang, D.; Wu, M.; Jing, W. Risk factors for anxiety in patients with epilepsy: A meta-analysis. Epilepsy Behav. 2024, 153, 109665. [Google Scholar] [CrossRef]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Belli, A.; Breda, M.; Di Maggio, C.; Esposito, D.; Marcucci, L.; Bruni, O. Children with neurodevelopmental disorders: How do they sleep? Curr. Opin. Psychiatry 2022, 35, 345–351. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Huang, S.D.; Zou, J.J.; Wang, Q.X.; Naveed, M.; Bao, H.N.; Wang, W.; Fukunaga, K.; Han, F. Autism spectrum disorder (ASD): Disturbance of the melatonin system and its implications. Biomed. Pharmacother. 2020, 130, 110496. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Matsumoto, A.; Nakayama, K.; Jimbo, E.F.; Kojima, K.; Nagata, K.; Iwamoto, S.; Yamagata, T. Circadian-relevant genes are highly polymorphic in autism spectrum disorder patients. Brain Dev. 2016, 38, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Palagini, L.; Caruso, D.; Masci, I.; Nobili, L.; Vita, A.; Dell’Osso, L. Systematic Review of Sleep Disturbances and Circadian Sleep Desynchronization in Autism Spectrum Disorder: Toward an Integrative Model of a Self-Reinforcing Loop. Front. Psychiatry 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Cortese, S.; Wang, F.; Angriman, M.; Masi, G.; Bruni, O. Sleep Disorders in Children and Adolescents with Autism Spectrum Disorder: Diagnosis, Epidemiology, and Management. CNS Drugs 2020, 34, 415–423. [Google Scholar] [CrossRef]
- Gringras, P.; Nir, T.; Breddy, J.; Frydman-Marom, A.; Findling, R.L. Efficacy and Safety of Pediatric Prolonged-Release Melatonin for Insomnia in Children with Autism Spectrum Disorder. J. Am. Acad. Child. Adolesc. Psychiatry 2017, 56, 948–957. [Google Scholar] [CrossRef]
- Miano, S.; Parisi, P.; Villa, M.P. The sleep phenotypes of attention deficit hyperactivity disorder: The role of arousal during sleep and implications for treatment. Med. Hypotheses 2012, 79, 147–153. [Google Scholar] [CrossRef]
- Miano, S.; Amato, N.; Foderaro, G.; Pezzoli, V.; Ramelli, G.P.; Toffolet, L.; Manconi, M. Sleep phenotypes in attention deficit hyperactivity disorder. Sleep Med. 2019, 60, 123–131. [Google Scholar] [CrossRef]
- Akinci, G.; Oztura, I.; Hiz, S.; Akdogan, O.; Karaarslan, D.; Ozek, H.; Akay, A. Sleep Structure in Children with Attention-Deficit/Hyperactivity Disorder. J. Child. Neurol. 2015, 30, 1520–1525. [Google Scholar] [CrossRef]
- Darchia, N.; Campbell, I.G.; Basishvili, T.; Eliozishvili, M.; Tchintcharauli, T.; Oniani, N.; Sakhelashvili, I.; Shetekauri, T.; Oniani, T.; Feinberg, I. Longitudinal assessment of NREM sleep EEG in typically developing and medication-free ADHD adolescents: First year results. Sleep Med. 2021, 80, 171–175. [Google Scholar] [CrossRef]
- Miano, S.; Castelnovo, A.; Bruni, O.; Manconi, M. Sleep microstructure in attention deficit hyperactivity disorder according to the underlying sleep phenotypes. J. Sleep Res. 2022, 31, 13426. [Google Scholar] [CrossRef]
- Miano, S.; Donfrancesco, R.; Bruni, O.; Ferri, R.; Galiffa, S.; Pagani, J.; Montemitro, E.; Kheirandish, L.; Gozal, D.; Pia Villa, M. NREM sleep instability is reduced in children with attention-deficit/hyperactivity disorder. Sleep 2006, 29, 797–803. [Google Scholar] [PubMed]
- Özbudak, P.; Özaslan, A.; Temel, E.Ü.; Güney, E.; Serdaroğlu, A.; Arhan, E. New Electrographic Marker? Evaluation of Sleep Spindles in Children with Attention Deficit Hyperactivity Disorder. Clin. EEG Neurosci. 2024, 55, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Příhodová, I.; Paclt, I.; Kemlink, D.; Nevšímalová, S. Sleep microstructure is not altered in children with attention-deficit/hyperactivity disorder (ADHD). Physiol. Res. 2012, 61, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Danhofer, P.; Pejčochová, J.; Dušek, L.; Rektor, I.; Ošlejšková, H. The influence of EEG-detected nocturnal centrotemporal discharges on the expression of core symptoms of ADHD in children with benign childhood epilepsy with centrotemporal spikes (BCECTS): A prospective study in a tertiary referral center. Epilepsy Behav. 2018, 79, 75–81. [Google Scholar] [CrossRef]
- Silvestri, R.; Gagliano, A.; Calarese, T.; Aricò, I.; Cedro, C.; Condurso, R.; Germanò, E.; Vita, G.; Tortorella, G. Ictal and interictal EEG abnormalities in ADHD children recorded over night by video-polysomnography. Epilepsy Res. 2007, 75, 130–137. [Google Scholar] [CrossRef]
- Lozano-García, A.; González-Bono, E.; Cano-López, I. Impact of interaction among antiseizure medication polytherapy, clinical, sociodemographic and psychological factors on quality of life in patients with epilepsy: A systematic review. Epilepsy Behav. 2025, 162, 110170. [Google Scholar] [CrossRef]
- Manconi, M.; Ferri, R.; Miano, S.; Maestri, M.; Bottasini, V.; Zucconi, M.; Ferini-Strambi, L. Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin. Neurophysiol. 2017, 128, 875–881. [Google Scholar] [CrossRef]
- Buscemi, N.; Vandermeer, B.; Friesen, C.; Bialy, L.; Tubman, M.; Ospina, M.; Klassen, T.P.; Witmans, M. The efficacy and safety of drug treatments for chronic insomnia in adults: A meta-analysis of RCTs. J. Gen. Intern. Med. 2007, 22, 1335–1350. [Google Scholar] [CrossRef]
- Kobayashi, S.; Shinozaki, K.; Nagano, H.; Miyamori, A.; Muramatsu, T.; Kushiyama, A. Analysis of sleep medication-induced parasomnias using the Japanese Adverse Drug Event Report database. J. Sleep Res. 2025, 19, e70009. [Google Scholar] [CrossRef]
- Kwan, P.; Wang, W.; Wu, J.; Li, S.; Yang, H.; Ding, D.; Hong, Z.; Dai, X.; Yang, B.; Wang, T.; et al. Long-term outcome of phenobarbital treatment for epilepsy in rural China: A prospective cohort study. Epilepsia 2013, 54, 537–542. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, M.; Wang, Y.; Wang, L.; Xu, X.; Xiao, G.; Chen, J.; Zhang, T.; Zhou, N. Subjective sleep disturbance in Chinese adults with epilepsy: Associations with affective symptoms. Epilepsy Res. 2017, 135, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.; Röder-Wanner, U.U.; Brede, M. Influence of therapeutic phenobarbital and phenytoin medication on the polygraphic sleep of patients with epilepsy. Epilepsia 1984, 25, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Li, X.; Liu, G.; Wang, B.; Li, C. Effect of sodium valproate on the sleep structures of epileptic patients. Exp. Ther. Med. 2014, 7, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Javaheri, S.; Randerath, W.J.; Safwan Badr, M.; Javaheri, S. Medication-induced central sleep apnea: A unifying concept. Sleep 2024, 47, zsae038. [Google Scholar] [CrossRef]
- Schmitt, B.; Martin, F.; Critelli, H.; Molinari, L.; Jenni, O.G. Effects of valproic acid on sleep in children with epilepsy. Epilepsia 2009, 50, 1860–1867. [Google Scholar] [CrossRef]
- Wang, M.; Faust, M.; Abbott, S.; Patel, V.; Chang, E.; Clark, J.I.; Stella, N.; Muchowski, P.J. Effects of a cannabidiol/terpene formulation on sleep in individuals with insomnia: A double-blind, placebo-controlled, randomized, crossover study. J. Clin. Sleep Med. 2025, 21, 69–80. [Google Scholar] [CrossRef]
- Devinsky, O.; Nabbout, R.; Miller, I.; Laux, L.; Zolnowska, M.; Wright, S.; Roberts, C. Long-term cannabidiol treatment in patients with Dravet syndrome: An open-label extension trial. Epilepsia 2019, 60, 294–302. [Google Scholar] [CrossRef]
- Patel, A.D.; Mazurkiewicz-Bełdzińska, M.; Chin, R.F.; Gil-Nagel, A.; Gunning, B.; Halford, J.J.; Mitchell, W.; Scott Perry, M.; Thiele, E.A.; Weinstock, A.; et al. Long-term safety and efficacy of add-on cannabidiol in patients with Lennox-Gastaut syndrome: Results of a long-term open-label extension trial. Epilepsia 2021, 62, 2228–2239. [Google Scholar] [CrossRef]
- Thiele, E.A.; Bebin, E.M.; Filloux, F.; Kwan, P.; Loftus, R.; Sahebkar, F.; Sparagana, S.; Wheless, J. Long-term cannabidiol treatment for seizures in patients with tuberous sclerosis complex: An open-label extension trial. Epilepsia 2022, 63, 426–439. [Google Scholar] [CrossRef]
- Nayak, C.S.; Sinha, S.; Nagappa, M.; Thennarasu, K.; Taly, A.B. Effect of carbamazepine on the sleep microstructure of temporal lobe epilepsy patients: A cyclic alternating pattern-based study. Sleep Med. 2016, 27–28, 80–85. [Google Scholar] [CrossRef]
- Thelengana, A.; Shukla, G.; Srivastava, A.; Singh, M.B.; Gupta, A.; Rajan, R.; Vibha, D.; Pandit, A.K.; Prasad, K. Cognitive, behavioural and sleep-related adverse effects on introduction of levetiracetam versus oxcarbazepine for epilepsy. Epilepsy Res. 2019, 150, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Foldvary, N.; Perry, M.; Lee, J.; Dinner, D.; Morris, H.H. The effects of lamotrigine on sleep in patients with epilepsy. Epilepsia 2001, 42, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Placidi, F.; Marciani, M.G.; Diomedi, M.; Scalise, A.; Pauri, F.; Giacomini, P.; Gigli, G.L. Effects of lamotrigine on nocturnal sleep, daytime somnolence and cognitive functions in focal epilepsy. Acta Neurol. Scand. 2000, 102, 81–86. [Google Scholar] [CrossRef]
- Lupo, C.; Fernandes, M.; Spanetta, M.; Sarbu, O.E.; Carnovale, C.; Di Gioia, B.; Placidi, F.; Izzi, F.; Mercuri, N.B.; Liguori, C. The effect of lacosamide monotherapy on sleep architecture in patients with epilepsy: A preliminary evidence. J. Neural Transm. 2023, 130, 87–95. [Google Scholar] [CrossRef]
- Furey, S.A.; Hull, S.G.; Leibowitz, M.T.; Jayawardena, S.; Roth, T. A randomized, double-blind, placebo-controlled, multicenter, 28-day, polysomnographic study of gabapentin in transient insomnia induced by sleep phase advance. J. Clin. Sleep Med. 2014, 10, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Kapustin, D.; Bhatia, A.; McParland, A.; Trivedi, A.; Davidson, A.; Brull, R.; Singh, M. Evaluating the impact of gabapentinoids on sleep health in patients with chronic neuropathic pain: A systematic review and meta-analysis. Pain 2020, 161, 476–490. [Google Scholar] [CrossRef]
- Hindmarch, I.; Dawson, J.; Stanley, N. A double-blind study in healthy volunteers to assess the effects on sleep of pregabalin compared with alprazolam and placebo. Sleep 2005, 28, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Bazil, C.W.; Battista, J.; Basner, R.C. Effects of levetiracetam on sleep in normal volunteers. Epilepsy Behav. 2005, 7, 539–542. [Google Scholar] [CrossRef]
- Chaneva, O.G.; Viteva, E.I. Effect of levetiracetam on nocturnal sleep in patients with epilepsy. Neurol. Neurochir. Pol. 2022, 56, 357–364. [Google Scholar] [CrossRef]
- Cicolin, A.; Magliola, U.; Giordano, A.; Terreni, A.; Bucca, C.; Mutani, R. Effects of levetiracetam on nocturnal sleep and daytime vigilance in healthy volunteers. Epilepsia 2006, 47, 82–85. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Tang, X.D.; Huang, L.L.; Zhong, Z.Q.; Lei, F.; Zhou, D. The acute effects of levetiracetam on nocturnal sleep and daytime sleepiness in patients with partial epilepsy. J. Clin. Neurosci. 2012, 19, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Rocamora, R.; Álvarez, I.; Chavarría, B.; Principe, A. Perampanel effect on sleep architecture in patients with epilepsy. Seizure 2020, 76, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh RMJr Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Stallman, H.M.; Kohler, M.; White, J. Medication induced sleepwalking: A systematic review. Sleep Med. Rev. 2018, 37, 105–113. [Google Scholar] [CrossRef]
- Zetsen, S.P.G.; Schellekens, A.F.A.; Paling, E.P.; Kan, C.C.; Kessels, R.P.C. Cognitive Functioning in Long-Term Benzodiazepine Users. Eur. Addict. Res. 2022, 28, 377–381. [Google Scholar] [CrossRef]
- Wei, J.; Wang, M.; Guo, Y.; Liu, Y.; Dong, X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med. 2024, 113, 397–405. [Google Scholar] [CrossRef]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef]
- Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: Time to reconsider the indications of a time-honoured drug. Lancet Neurol. 2016, 15, 210–218. [Google Scholar] [CrossRef]
- Peng, J.; Fan, M.; An, C.; Ni, F.; Huang, W.; Luo, J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin. Pharmacol. Toxicol. 2022, 130, 439–456. [Google Scholar] [CrossRef]
- Linares, I.M.P.; Guimaraes, F.S.; Eckeli, A.; Crippa, A.C.S.; Zuardi, A.W.; Souza, J.D.S.; Hallak, J.E.; Crippa, J.A.S. No Acute Effects of Cannabidiol on the Sleep-Wake Cycle of Healthy Subjects: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Front. Pharmacol. 2018, 9, 315. [Google Scholar] [CrossRef]
- Gilmartin, C.G.S.; Dowd, Z.; Parker, A.P.J.; Harijan, P. Interaction of cannabidiol with other antiseizure medications: A narrative review. Seizure 2021, 86, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sadler, M. Lamotrigine associated with insomnia. Epilepsia 1999, 40, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.D.; Guptill, J.T.; Byrnes, W.; Yates, S.L.; Williams, P.; D’Cruz, O. Assessment of the effects of lacosamide on sleep parameters in healthy subjects. Seizure 2015, 25, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Foldvary-Schaefer, N.; Neme-Mercante, S.; Andrews, N.; Bruton, M.; Wang, L.; Morrison, S.; Bena, J.; Grigg-Damberger, M. Wake up to sleep: The effects of lacosamide on daytime sleepiness in adults with epilepsy. Epilepsy Behav. 2017, 75, 176–182. [Google Scholar] [CrossRef]
- Winkelman, J.W.; Berkowski, J.A.; DelRosso, L.M.; Koo, B.B.; Scharf, M.T.; Sharon, D.; Zak, R.S.; Kazmi, U.; Falck-Ytter, Y.; Shelgikar, A.V.; et al. Treatment of restless legs syndrome and periodic limb movement disorder: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2025, 21, 137–152. [Google Scholar] [CrossRef]
- Contreras-García, I.J.; Cárdenas-Rodríguez, N.; Romo-Mancillas, A.; Bandala, C.; Zamudio, S.R.; Gómez-Manzo, S.; Hernández-Ochoa, B.; Mendoza-Torreblanca, J.G.; Pichardo-Macías, L.A. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals 2022, 15, 475. [Google Scholar] [CrossRef]
- Taneja, R.; Hunter, K.; Burakgazi-Dalkilic, E.; Carran, M. Effect of sleep patterns on levetiracetam induced mood changes. Epilepsy Behav. 2017, 75, 237–240. [Google Scholar] [CrossRef]
- Potschka, H.; Trinka, E. Perampanel: Does it have broad-spectrum potential? Epilepsia 2019, 60, 22–36. [Google Scholar] [CrossRef]
- González-Cuevas, M.; Romero, O.; Toledo, M.; Quintana, M.; Cambrodí, R.; Santamarina, E.; Jurado, M.J.; Ferrer, A.; Salas-Puig, X. Effect of adjunctive perampanel on the quality of sleep and daytime somnolence in patients with epilepsy. Epilepsy Behav. Case Rep. 2016, 7, 13–15. [Google Scholar] [CrossRef]
- Fernandes, M.; Lupo, C.; Spanetta, M.; De Masi, C.; Placidi, F.; Izzi, F.; Mercuri, N.B.; Liguori, C. Sleep-wake cycle and daytime sleepiness in patients with epilepsy after initiating perampanel as adjunctive therapy. Neurol. Sci. 2023, 44, 1361–1368. [Google Scholar] [CrossRef]
- Schrader, L.A.; Ronnekleiv-Kelly, S.M.; Hogenesch, J.B.; Bradfield, C.A.; Malecki, K.M. Circadian disruption, clock genes, and metabolic health. J. Clin. Investig. 2024, 134, e170998. [Google Scholar] [CrossRef] [PubMed]
- Nazish, S. Obesity and metabolic syndrome in patients with epilepsy, their relation with epilepsy control. Ann. Afr. Med. 2023, 22, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Schuch, J.B.; Genro, J.P.; Bastos, C.R.; Ghisleni, G.; Tovo-Rodrigues, L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 181–198. [Google Scholar] [CrossRef]
- Benkirane, O.; Delwiche, B.; Mairesse, O.; Peigneux, P. Impact of Sleep Fragmentation on Cognition and Fatigue. Int. J. Environ. Res. Public Health 2022, 19, 15485. [Google Scholar] [CrossRef]
- Yan, B.; Wu, Y.; Fan, X.; Lu, Q.; Ma, X.; Bai, L. Sleep fragmentation and incidence of congestive heart failure: The Sleep Heart Health Study. J. Clin. Sleep. Med. 2021, 17, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Sun, S.; He, X.; Yang, J.; Ma, X.; Yan, B. Sleep fragmentation and the risk of obesity: The Sleep Heart Health Study. Obesity 2021, 29, 1387–1393. [Google Scholar] [CrossRef]
- Pottkämper, J.C.M.; Hofmeijer, J.; van Waarde, J.A.; van Putten, M.J.A.M. The postictal state—What do we know? Epilepsia 2020, 61, 1045–1061. [Google Scholar] [CrossRef] [PubMed]
- Liguori, C.; Spanetta, M.; Fernandes, M.; Izzi, F.; Placidi, F.; Mercuri, N.B. More than sleep and wake disturbances: An actigraphic study showing the sleep-wake pattern dysregulation in epilepsy. Seizure 2022, 94, 95–99. [Google Scholar] [CrossRef]
- Bermeo-Ovalle, A. Psychiatric comorbidities go untreated in patients with epilepsy: Ignorance or denial? Epilepsy Behav. 2019, 98, 306–308. [Google Scholar] [CrossRef]
- Dell, K.L.; Payne, D.E.; Kremen, V.; Maturana, M.I.; Gerla, V.; Nejedly, P.; Worrell, G.A.; Lenka, L.; Mivalt, F.; Boston, R.C.; et al. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: A longitudinal electroencephalography investigation. EClinicalMedicine 2021, 37, 100934. [Google Scholar] [CrossRef]
- Lee, S.A.; Han, S.H.; No, Y.J.; Jo, K.D.; Kwon, J.H.; Kim, J.Y.; Shin, D.J. Sleep hygiene and its association with mood and quality of life in people with epilepsy. Epilepsy Behav. 2015, 52, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Nobili, L.; Beniczky, S.; Eriksson, S.H.; Romigi, A.; Ryvlin, P.; Toledo, M.; Rosenzweig, I. Expert Opinion: Managing sleep disturbances in people with epilepsy. Epilepsy Behav. 2021, 124, 108341. [Google Scholar] [CrossRef] [PubMed]
Authors | Syndrome | Sleep Problems and Disorders |
---|---|---|
Takaesu et al., 2012 [57] Ehlen et al., 2015 [58] | Angelman syndrome | Circadian rhythm dysregulation; Disruption of sleep homeostasis. |
Hoffmire et al., 2014 [59] Carter et al., 2009 [60] Lin et al., 2014 [61] Lovos et al., 2021 [62] | 21 chromosome trisomy | Insomnia; OSA; Parasomnias; Circadian rhythm dysregulation. |
Budimirovic et al., 2022 [63] Dueck et al., 2020 [64] | Fragile X syndrome | Insomnia; Bruxism; Snoring; Possible circadian rhythm dysregulation. |
Wong et al., 2015 [65] Mangatt et al., 2016 [66] Sarber et al., 2019 [67] Zhang et al., 2022 [68] Wong et al., 2023 [69] | Rett and Rett-like syndromes | Insomnia; Laughing and night screaming; Sleep-disordered breathing. |
Moavero et al., 2022 [70] | Tuberous sclerosis complex | Sleep–wake transition disorders; Insomnia; Sleep-disordered breathing. |
Licheni et al., 2018 [71] Van Nuland et al., 2021 [72] | Dravet syndrome | Sleep–wake transition disorders; Insomnia; Sleep-disordered breathing. |
De Giorgis et al., 2016 [73] | GLUT1 transporter deficiency | Excessive daytime sleepiness. |
Evans et al., 2016 [74] Di Pisa et al., 2019 [75] | Mowat-Wilson syndrome | Insomnia; Sleep–wake transition disorders. |
Yaranagula et al., 2021 [76] Romigi et al., 2022 [77] | Hippocampal sclerosis | Worse subjective sleep quality; Sleep instability in polysomnographic studies. |
Tezer et al., 2014 [78] | Hypothalamic hamartoma | Possible secondary hypersomnia. |
Primiano et al., 2021 [79] Mosquera et al., 2014 [80] | Mitochondrial disorders | Sleep-disordered breathing. |
Devine et al., 2022 [81] | LGI1/CASPR2 antibody encephalitis | Insomnia; Sleep-disordered breathing; REM behavioral disorder. |
Ariño H et al., 2020 [82] Ribeiro et al., 2024 [83] | NMDAR antibody encephalitis | Insomnia at onset; Hypersomnia in the recovery phase; REM and NREM parasomnias. |
Authors | Antiseizure Medication | Impact on Sleep and Wakefulness | Sleep Strucure Alterations |
---|---|---|---|
Manconi et al., 2017 [127] Buscemi et al., 2007 [128] Kobayashi et al., 2025 [129] | Benzodiazepines | Excessive daytime sleepiness; NREM parasomnias. | ↑ REM sleep latency; ↑ %1 NREM sleep; ↓ CAP rate. |
Kwan et al., 2022 [130] Shen et al., 2017 [131] Wolf et al., 1984 [132] | Phenobarbital | Excessive daytime sleepiness. | ↓ sleep latency; ↓ arousability; ↓ REM sleep; ↑ light sleep. |
H. Zhang et al., 2014 [133] Javaheri et al., 2024 [134] Schmitt et al., 2009 [135] | Valproic acid | - | ↓ of REM; ↑ N1 sleep; ↑ arousals; ↑ TST; Central sleep apnea patterns. |
Wang et al., 2025 [136] Devinsky et al., 2019 [137] Patel et al., 2021 [138] Thiele et al., 2022 [139] | Cannabidiol | Excessive daytime sleepiness. | ↑ SWS; ↑ REM sleep. |
Nayak et al., 2016 [140] | Carbamazepine | Poor subjective sleep quality. | ↑ CAP rate. |
Thelengana et al., 2019 [141] | Oxcarbazepine | - | ↑ TST. |
Foldvary et al., 2001 [142] Placidi et al., 2000 [143] | Lamotrigine | - | ↑ %REM sleep; ↓ SWS; ↑ 2 NREM sleep. |
Lupo et al., 2023 [144] | Lacosamide | - | ↑ SE; ↓ N1 sleep; ↓ N3 sleep. |
Furey et al., 2014 [145] Kapustin et al., 2020 [146] | Gabapentin | Excessive daytime sleepiness. | ↓ WASO; ↓ %N1 sleep; ↑ REM sleep. |
Hindmarch et al., 2005 [147] Kapustin et al., 2020 [146] | Pregabalin | Excessive daytime sleepiness. | ↑ SWS; ↓ sleep latency; ↑ SE. |
Bazil et al., 2005 [148] Chaneva & Viteva, 2022 [149] Cicolin et al., 2006 [150] Zhou et al., 2012 [151] | Levetiracetam | Awakenings at night; Excessive daytime sleepiness. | ↑ arousals; ↑ N2 sleep; ↓ N3 sleep; ↓ %REM sleep; ↑ TST, SE, SWS in some studies. |
Rocamora et al., 2020 [152] | Perampanel | - | ↑ TST; ↑ SE; ↑ SWS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burkojus, D.; Gelžinienė, G.; Pajėdienė, E.; Stankevičienė, G.; Misevičienė, V.; Jurkevičienė, G. Factors Affecting Sleep and Wakefulness in People with Epilepsy: A Narrative Review. Medicina 2025, 61, 1000. https://doi.org/10.3390/medicina61061000
Burkojus D, Gelžinienė G, Pajėdienė E, Stankevičienė G, Misevičienė V, Jurkevičienė G. Factors Affecting Sleep and Wakefulness in People with Epilepsy: A Narrative Review. Medicina. 2025; 61(6):1000. https://doi.org/10.3390/medicina61061000
Chicago/Turabian StyleBurkojus, Dovydas, Giedrė Gelžinienė, Evelina Pajėdienė, Gineta Stankevičienė, Valdonė Misevičienė, and Giedrė Jurkevičienė. 2025. "Factors Affecting Sleep and Wakefulness in People with Epilepsy: A Narrative Review" Medicina 61, no. 6: 1000. https://doi.org/10.3390/medicina61061000
APA StyleBurkojus, D., Gelžinienė, G., Pajėdienė, E., Stankevičienė, G., Misevičienė, V., & Jurkevičienė, G. (2025). Factors Affecting Sleep and Wakefulness in People with Epilepsy: A Narrative Review. Medicina, 61(6), 1000. https://doi.org/10.3390/medicina61061000