Artificial Intelligence and Novel Technologies for the Diagnosis of Upper Tract Urothelial Carcinoma
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Masson-Lecomte, A.; Birtle, A.; Pradere, B.; Capoun, O.; Compérat, E.; Domínguez-Escrig, J.L.; Liedberg, F.; Makaroff, L.; Mariappan, P.; Moschini, M.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: Summary of the 2025 Update. Eur. Urol. 2025, in press. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, W.; Zhuang, X.; Wang, X.; He, Y.; Li, L.; Lyu, G. Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review). Oncol. Rep. 2024, 51, 46. [Google Scholar] [CrossRef]
- Cai, G.; Huang, F.; Gao, Y.; Li, X.; Chi, J.; Xie, J.; Zhou, L.; Feng, Y.; Huang, H.; Deng, T.; et al. Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: A multicentre, retrospective cohort study. Lancet Digit. Health 2024, 6, e176–e186. [Google Scholar] [CrossRef] [PubMed]
- Kartasalo, K.; Bulten, W.; Delahunt, B.; Chen, P.C.; Pinckaers, H.; Olsson, H.; Ji, X.; Mulliqi, N.; Samaratunga, H.; Tsuzuki, T.; et al. Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps. Eur. Urol. Focus 2021, 7, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Marletta, S.; Eccher, A.; Martelli, F.M.; Santonicco, N.; Girolami, I.; Scarpa, A.; Pagni, F.; L’Imperio, V.; Pantanowitz, L.; Gobbo, S.; et al. Artificial intelligence-based algorithms for the diagnosis of prostate cancer: A systematic review. Am. J. Clin. Pathol. 2024, 161, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.O.; Pradere, B.; Teoh, J.Y.; European Association of Urology—Young Academic Urologists (EAU-YAU) Urothelial Carcinoma Working Group. The use of artificial intelligence for the diagnosis of bladder cancer: A review and perspectives. Curr. Opin. Urol. 2021, 31, 397–403. [Google Scholar] [CrossRef]
- Chen, C.C.; Yen, T.H.; Li, J.R.; Chen, C.J.; Yang, C.S.; Lai, J.Y.; Lin, S.J.; Yeh, C.H.; Hsu, S.W.; Lin, M.Y.; et al. Artificial intelligence algorithms enhance urine cytology reporting confidence in postoperative follow-up for upper urinary tract urothelial carcinoma. Int. Urol. Nephrol. 2024, 57, 801–808. [Google Scholar] [CrossRef]
- Chang, K.Y.; Yang, C.S.; Lai, J.Y.; Lin, S.J.; Li, J.R.; Liu, T.J.; Yang, W.L.; Lin, M.Y.; Yeh, C.H.; Hsu, S.W.; et al. An Artificial Intelligence-assisted Diagnostic System Improves Upper Urine Tract Cytology Diagnosis. In Vivo 2024, 38, 3016–3021. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, H.; Fu, S.; Wang, H.; Li, X.; Li, Z.; Hai, B.; Zhang, J. Development and validation of a radiomics-based nomogram for predicting pathological grade of upper urinary tract urothelial carcinoma. BMC Cancer 2024, 24, 1546. [Google Scholar] [CrossRef]
- Alqahtani, A.; Bhattacharjee, S.; Almopti, A.; Li, C.; Nabi, G. Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: A step towards virtual biopsy. Int. J. Surg. 2024, 110, 3258–3268. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, H.; Fu, S.; Wang, H.; Wang, J.; Li, X.; Li, Z.; Hai, B.; Zhang, J. A computed tomography urography-based machine learning model for predicting preoperative pathological grade of upper urinary tract urothelial carcinoma. Cancer Med. 2024, 13, e6901. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Reed, A.; Pace, N.; Luckenbaugh, A.N.; Pallauf, M.; Singla, N.; Oguz, I.; Kavoussi, N. Automated Upper Tract Urothelial Carcinoma Tumor Segmentation During Ureteroscopy Using Computer Vision Techniques. J. Endourol. 2024, 38, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Lazo, J.F.; Marzullo, A.; Moccia, S.; Catellani, M.; Rosa, B.; de Mathelin, M.; De Momi, E. Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Łaszkiewicz, J.; Krajewski, W.; Tomczak, W.; Chorbińska, J.; Nowak, Ł.; Chełmoński, A.; Krajewski, P.; Sójka, A.; Małkiewicz, B.; Szydełko, T. Performance of ChatGPT in providing patient information about upper tract urothelial carcinoma. Contemp. Oncol./Współczesna Onkol. 2024, 28, 172–181. [Google Scholar] [CrossRef]
- Angeloni, M.; van Doeveren, T.; Lindner, S.; Volland, P.; Schmelmer, J.; Foersch, S.; Matek, C.; Stoehr, R.; Geppert, C.I.; Heers, H.; et al. A deep-learning workflow to predict upper tract urothelial carcinoma protein-based subtypes from H&E slides supporting the prioritization of patients for molecular testing. J. Pathol. Clin. Res. 2024, 10, e12369. [Google Scholar]
- Liu, J.; Wu, P.; Lai, S.; Wang, J.; Hou, H.; Zhang, Y. Prognostic models for upper urinary tract urothelial carcinoma patients after radical nephroureterectomy based on a novel systemic immune-inflammation score with machine learning. BMC Cancer 2023, 23, 574. [Google Scholar] [CrossRef]
- Iwamura, H.; Mizuno, K.; Akamatsu, S.; Hatakeyama, S.; Tobisawa, Y.; Narita, S.; Narita, T.; Yamashita, S.; Kawamura, S.; Sakurai, T.; et al. Machine learning diagnosis by immunoglobulin N-glycan signatures for precision diagnosis of urological diseases. Cancer Sci. 2022, 113, 2434–2445. [Google Scholar] [CrossRef]
- Chukwudebe, O.; Lynch, E.; Vira, M.; Vaickus, L.; Khan, A.; Shaheen Cocker, R. A review of the performance of urinary cytology with a focus on atypia, upper tract and updates on novel ancillary testing. J. Am. Soc. Cytopathol. 2025, 14, 23–35. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Malik, S.; Wu, J.; Bodnariuc, N.; Narayana, K.; Gupta, N.; Malik, M.; Kwong, J.C.C.; Khondker, A.; Johnson, A.E.W.; Kulkarni, G.S. Existing trends and applications of artificial intelligence in urothelial cancer A scoping review. Can. Urol. Assoc. J. 2023, 17, E395–E401. [Google Scholar] [CrossRef]
- Staehler, M.; Ivanova, T.; Blajan, I.; Aydogdu, C.; Graser, A.; Hofmann, M.; Schulz, G.B. Artificial intelligence and identifying prognostic patterns in upper tract urothelial carcinoma (UTUC). JCO 2024, 42, e16616. [Google Scholar] [CrossRef]
- Wu, S.; Shen, R.; Hong, G.; Luo, Y.; Wan, H.; Feng, J.; Chen, Z.; Jiang, F.; Wang, Y.; Liao, C.; et al. Development and validation of an artificial intelligence-based model for detecting urothelial carcinoma using urine cytology images: A multicentre, diagnostic study with prospective validation. eClinicalMedicine 2024, 71, 102566. [Google Scholar] [CrossRef] [PubMed]
Study | Number of Patients (Mean: 13,673) | AI Application Type for UTUC Diagnosis | Type of Study |
---|---|---|---|
| 113 | Urine cytology diagnostic accuracy | Retrospective study |
| 185 | Urine cytology diagnostic accuracy | Retrospective study |
| 140 | Radiomics * CTU nomogram | Retrospective study |
| 106 | Radiomics * CTU nomogram | Retrospective study |
| 167 | Machine learning ** CTU model | Retrospective study |
| 20 | Ureteroscopic vision enhancement | Retrospective study |
| 6 | Ureteroscopic vision enhancement | Retrospective study |
| 16 | ChatGPT performance | Retrospective study |
| 163 | Histopathology slide deep learning system *** | Retrospective study |
| 483 | Systemic immune-inflammation score machine learning ** | Retrospective study |
| 105 | Immunoglobulin N-glycan machine learning ** | Retrospective study |
| n/a | Urine cytology diagnostic accuracy | Narrative review |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostakopoulos, N.; Argyropoulos, V.; Bellos, T.; Katsimperis, S.; Kostakopoulos, A. Artificial Intelligence and Novel Technologies for the Diagnosis of Upper Tract Urothelial Carcinoma. Medicina 2025, 61, 923. https://doi.org/10.3390/medicina61050923
Kostakopoulos N, Argyropoulos V, Bellos T, Katsimperis S, Kostakopoulos A. Artificial Intelligence and Novel Technologies for the Diagnosis of Upper Tract Urothelial Carcinoma. Medicina. 2025; 61(5):923. https://doi.org/10.3390/medicina61050923
Chicago/Turabian StyleKostakopoulos, Nikolaos, Vasileios Argyropoulos, Themistoklis Bellos, Stamatios Katsimperis, and Athanasios Kostakopoulos. 2025. "Artificial Intelligence and Novel Technologies for the Diagnosis of Upper Tract Urothelial Carcinoma" Medicina 61, no. 5: 923. https://doi.org/10.3390/medicina61050923
APA StyleKostakopoulos, N., Argyropoulos, V., Bellos, T., Katsimperis, S., & Kostakopoulos, A. (2025). Artificial Intelligence and Novel Technologies for the Diagnosis of Upper Tract Urothelial Carcinoma. Medicina, 61(5), 923. https://doi.org/10.3390/medicina61050923