Does Body Mass Index Impact Outcomes in Patients Undergoing Minimally Invasive Mitral Valve Surgery?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Operative Strategy
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. In-Hospital Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berrington de Gonzalez, A.; Hartge, P.; Cerhan, J.R.; Flint, A.J.; Hannan, L.; MacInnis, R.J.; Moore, S.C.; Tobias, G.S.; Anton-Culver, H.; Freeman, L.B.; et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 2010, 363, 2211–2219, Erratum in N. Engl. J. Med. 2011, 365, 869. [Google Scholar] [CrossRef] [PubMed]
- Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; de Gonzalez, A.B.; Cairns, B.J.; Huxley, R.; Jackson, C.L.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.C.; Van Craenenbroeck, E.M.; Antoniades, C.; Blüher, M.; Gorter, T.M.; Hanssen, H.; Marx, N.; McDonagh, A.T.; Mingrone, G.; Rosengren, A.; et al. Obesity and cardiovascular disease: An ESC clinical consensus statement. Eur. Heart J. 2024, 45, 4063–4098, Erratum in Eur. Heart J. 2025, 46, 876. [Google Scholar] [CrossRef]
- Mariscalco, G.; Wozniak, M.J.; Dawson, A.G.; Serraino, G.F.; Porter, R.; Nath, M.; Klersy, C.; Kumar, T.; Murphy, G.J. Body Mass Index and Mortality Among Adults Undergoing Cardiac Surgery: A Nationwide Study With a Systematic Review and Meta-Analysis. Circulation 2017, 135, 850–863. [Google Scholar] [CrossRef]
- Carnethon, M.R.; Khan, S.S. An Apparent Obesity Paradox in Cardiac Surgery. Circulation 2017, 135, 864–866. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, J.; Zhen, S.; Zhu, Y. Obesity is associated with postoperative outcomes in patients undergoing cardiac surgery: A cohort study. BMC Anesthesiol. 2023, 23, 3. [Google Scholar] [CrossRef]
- Zacharias, A.; Habib, R.H. Factors predisposing to median sternotomy complications. Deep vs superficial infection. Chest 1996, 110, 1173–1178. [Google Scholar] [CrossRef]
- Molina, J.E.; Lew, R.S.; Hyland, K.J. Postoperative sternal dehiscence in obese patients: Incidence and prevention. Ann. Thorac. Surg. 2004, 78, 912–917, discussion 912–917. [Google Scholar] [CrossRef]
- Al Shamry, A.; Jegaden, M.; Ashafy, S.; Eker, A.; Jegaden, O. Minithoracotomy versus sternotomy in mitral valve surgery: Meta-analysis from recent matched and randomized studies. J. Cardiothorac. Surg. 2023, 18, 101. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71, Erratum in Circulation 2021, 143, e228; Erratum in Circulation 2021, 143, e784. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Fleisher, L.A.; Jneid, H.; Mack, M.J.; McLeod, C.J.; O’Gara, P.T.; et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e1159–e1195. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Guyton, R.A.; O’gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, e521–e643. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Falk, V.; Baumgartner, H.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Muñoz, D.R.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardiothorac. Surg. 2017, 52, 616–664, Erratum in Eur. J. Cardiothorac. Surg. 2017, 52, 832. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Alfieri, O.; Andreotti, F.; Antunes, M.J.; Barón-Esquivias, G.; Baumgartner, H.; Borger, M.A.; Carrel, T.P.; De Bonis, M.; Evangelista, A.; et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. Cardiothorac. Surg. 2012, 42, S1–S44. [Google Scholar] [CrossRef]
- Hage, A.; Hage, F.; Al-Amodi, H.; Gupta, S.; Papatheodorou, S.I.; Hawkins, R.; Ailawadi, G.; Mittleman, M.A.; Chu, M.W.A. Minimally Invasive Versus Sternotomy for Mitral Surgery in the Elderly: A Systematic Review and Meta-Analysis. Innovations 2021, 16, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.; Reyna, J.; Grana, R.; Buendia, M.; Lamas, G.A.; Lamelas, J. Outcomes of minimally invasive valve surgery versus standard sternotomy in obese patients undergoing isolated valve surgery. Ann. Thorac. Surg. 2011, 91, 406–410. [Google Scholar] [CrossRef]
- Aljanadi, F.; Toolan, C.; Theologou, T.; Shaw, M.; Palmer, K.; Modi, P. Is obesity associated with poorer outcomes in patients undergoing minimally invasive mitral valve surgery? Eur. J. Cardiothorac. Surg. 2021, 59, 187–191. [Google Scholar] [CrossRef]
- Ali-Hasan-Al-Saegh, S.; Helms, F.; Aburahma, K.; Takemoto, S.; De Manna, N.D.; Amanov, L.; Ius, F.; Karsten, J.; Zubarevich, A.; Schmack, B.; et al. Can Obesity Serve as a Barrier to Minimally Invasive Mitral Valve Surgery? Overcoming the Limitations-A Multivariate Logistic Regression Analysis. J. Clin. Med. 2024, 13, 6355. [Google Scholar] [CrossRef]
- Phan, K.; Khuong, J.N.; Xu, J.; Kanagaratnam, A.; Yan, T.D. Obesity and postoperative atrial fibrillation in patients undergoing cardiac surgery: Systematic review and meta-analysis. Int. J. Cardiol. 2016, 217, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.V.; Kaw, R.; Pasupuleti, V.; Bina, P.; Ioannidis, J.P.; Bueno, H.; Boersma, E.; Gillinov, M.; Cardiovascular Meta-Analyses Research Group. Association between obesity and postoperative atrial fibrillation in patients undergoing cardiac operations: A systematic review and meta-analysis. Ann. Thorac. Surg. 2013, 96, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Mahmoudi, E.; Behnoush, A.H.; Khalaji, A.; Malik, A.H.; Sood, A.; Bandyopadhyay, D.; Zaid, S.; Goel, A.; Sreenivasan, J.; et al. Effect of BMI on patients undergoing transcatheter aortic valve implantation: A systematic review and meta-analysis. Prog. Cardiovasc. Dis. 2023, 78, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H.; American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 113, 898–918. [Google Scholar] [CrossRef]
- Ahmad, M.; Patel, J.N.; Loc, B.L.; Vipparthy, S.C.; Divecha, C.; Barzallo, P.X.; Kim, M.; Baman, T.; Barzallo, M.; Mungee, S. Association Between Body Mass Index and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement (TAVR) with Edwards SAPIENTM 3 TAVR Valves: A Single-Center Experience. Cureus 2019, 11, e5142. [Google Scholar] [CrossRef]
BMI < 25 | BMI 25–30 | BMI > 30 | p | SMD | |
---|---|---|---|---|---|
N | 942 | 661 | 170 | ||
Age, median (Q1–Q3) | 64 (54, 74) | 66 (57, 74) | 67 (60, 73) | 0.071 | 0.113 |
Male, n (%) | 515 (54.7) | 466 (70.5) | 104 (61.2) | <0.001 | 0.220 |
Hypertension, n (%) | 446 (47.3) | 405 (61.3) | 119 (70.0) | <0.001 | 0.313 |
Diabetes, n (%) | 51 (5.4) | 57 (8.6) | 32 (18.8) | <0.001 | 0.282 |
Dyslipidemia, n (%) | 321 (34.1) | 271 (41.0) | 81 (47.6) | <0.001 | 0.185 |
Smoke, n (%) | 260 (27.6) | 198 (30.0) | 53 (31.2) | 0.448 | 0.052 |
COPD, n (%) | 33 (3.5) | 40 (6.1) | 16 (9.6) | 0.002 | 0.167 |
Preoperative AF, n (%) | 132 (14) | 126 (19.1) | 44 (25.9) | 0.001 | 0.220 |
Preoperative pacemaker, n (%) | 5 (0.5) | 8 (1.2) | 0 (0.0) | 0.224 | 0.111 |
NYHA class, n (%) | 0.017 | 0.216 | |||
1 | 242 (26.1) | 146 (22.4) | 23 (14.0) | ||
2 | 451 (48.7) | 327 (50.2) | 87 (53.0) | ||
3 | 210 (22.7) | 166 (25.5) | 50 (30.5) | ||
4 | 23 (2.5) | 13 (2.0) | 4 (2.4) | ||
LVEF, median (Q1–Q3) | 60 (55, 65) | 60 (55, 65) | 60 (55, 65) | 0.059 | 0.102 |
Active endocarditis, n (%) | 30 (3.2) | 10 (1.5) | 5 (2.9) | 0.088 | 0.074 |
Previous stroke, n (%) | 8 (0.8) | 14 (2.1) | 5 (2.9) | 0.023 | 0.104 |
Previous TIA, n (%) | 3 (0.3) | 10 (1.5) | 3 (1.8) | 0.011 | 0.096 |
Preoperative creatinine, median (Q1–Q3) | 0.90 (0.78, 1.01) | 0.97 (0.84, 1.10) | 0.99 (0.87, 1.11) | <0.001 | 0.156 |
Pulmonary hypertension, n (%) | 411 (43.7) | 279 (42.2) | 85 (50.0) | 0.190 | 0.153 |
Previous cardiac surgery, n (%) | 43 (4.6) | 32 (4.9) | 8 (4.8) | 0.930 | 0.010 |
EuroSCORE Log, median (Q1–Q3) | 2.88 (1.83, 6.00) | 3.08 (1.72, 5.48) | 3.73 (2.19, 5.96) | 0.072 | 0.116 |
EuroSCORE II, median (Q1–Q3) | 1.12 (0.75, 2.17) | 1.10 (0.69, 1.86) | 1.23 (0.79, 2.26) | 0.040 | 0.081 |
BMI < 25 | BMI 25–30 | BMI > 30 | SMD | |
---|---|---|---|---|
N | 1.789, 88 | 1.791, 46 | 1.781, 03 | |
Age, median (Q1–Q3) | 65 (56, 74) | 65 (56, 74) | 66 (58, 73) | 0.004 |
Male, n (%) | 1094.0 (61.1) | 1094.8 (61.1) | 1088.4 (61.1) | <0.001 |
Hypertension, n (%) | 1003.2 (56.0) | 1004.2 (56.1) | 994.9 (55.9) | 0.003 |
Diabetes, n (%) | 155.0 (8.7) | 155.1 (8.7) | 154.3 (8.7) | <0.001 |
Dyslipidemia, n (%) | 687.0 (38.4) | 687.6 (38.4) | 681.4 (38.3) | 0.002 |
Smoke, n (%) | 503.0 (28.1) | 503.7 (28.1) | 498.1 (28.0) | 0.002 |
COPD, n (%) | 94.1 (5.3) | 94.0 (5.3) | 92.6 (5.3) | 0.002 |
Preoperative AF, n (%) | 309.3 (17.3) | 303.3 (17.9) | 333.8 (18.7) | 0.106 |
Preoperative pacemaker, n (%) | 8.9 (0.5) | 10.4 (0.6) | 0.0 (0.0) | 0.073 |
NYHA class, n (%) | 0.092 | |||
1 | 409.6 (23.3) | 403.4 (22.9) | 351.2 (20.1) | |
2 | 862.3 (49.1) | 865.4 (49.2) | 954.8 (54.6) | |
3 | 435.4 (24.8) | 450.8 (25.6) | 409.3 (23.4) | |
4 | 49.6 (2.8) | 38.9 (2.2) | 32.8 (1.9) | |
LVEF, median (Q1–Q3) | 60 (55, 65) | 60.00 (55, 65) | 60 (55, 66) | 0.003 |
Active endocarditis, n (%) | 41.3 (2.3) | 41.8 (2.3) | 40.8 (2.3) | 0.002 |
Previous stroke, n (%) | 32.3 (1.8) | 32.2 (1.8) | 32.3 (1.8) | 0.001 |
Previous TIA, n (%) | 17.3 (1.0) | 17.3 (1.0) | 17.3 (1.0) | <0.001 |
Preoperative creatinine, median (Q1–Q3) | 0.91 (0.80, 1.04) | 0.93 (0.80, 1.08) | 0.97 (0.87, 1.09) | 0.001 |
Pulmonary hypertension, n (%) | 804.8 (45.0) | 770.6 (43.0) | 913.9 (51.3) | 0.151 |
Previous cardiac surgery, n (%) | 79.4 (4.5) | 79.3 (4.5) | 77.0 (4.4) | 0.004 |
EuroSCORE Log, median (Q1–Q3) | 3.08 (1.83, 6.01) | 3.13 (1.72, 5.82) | 3.51 (2.08, 5.56) | 0.006 |
EuroSCORE II, median (Q1–Q3) | 1.16 (0.76, 2.33) | 1.10 (0.69, 1.88) | 1.07 (0.76, 1.97) | <0.001 |
BMI < 25 | BMI 25–30 | BMI > 30 | p | SMD | |
---|---|---|---|---|---|
N | 942 | 661 | 170 | ||
CPB time, median (Q1–Q3) | 96 (66, 125) | 100 (63, 131) | 104 (76, 136) | 0.067 | 0.110 |
Cross-clamp time median (Q1–Q3) | 78 (52, 102) | 82 (51, 107) | 83 (60, 107) | 0.130 | 0.098 |
Associated procedures, n (%) | 248 (26.3) | 189 (28.6) | 46 (27.1) | 0.605 | 0.034 |
Mitral valve replacement, n (%) | 160 (17.0) | 128 (19.4) | 47 (27.6) | 0.006 | 0.172 |
Postoperative low output syndrome, n (%) | 75 (8.0) | 40 (6.1) | 11 (6.5) | 0.341 | 0.050 |
Postoperative stroke, n (%) | 7 (0.7) | 1 (0.2) | 1 (0.6) | 0.183 | 0.060 |
Re-exploration for bleeding, n (%) | 13 (1.4) | 13 (2.0) | 2 (1.2) | 0.689 | 0.042 |
Acute kidney injury, n (%) | 11 (1.2) | 8 (1.2) | 5 (2.9) | 0.167 | 0.084 |
Postoperative RRT, n (%) | 3 (0.3) | 5 (0.8) | 2 (1.2) | 0.188 | 0.068 |
Pacemaker implantation, n (%) | 10 (1.1) | 8 (1.2) | 5 (2.9) | 0.128 | 0.090 |
New-onset post-operative AF, n (%) | 146 (15.5) | 102 (15.4) | 31 (18.2) | 0.634 | 0.050 |
Intubation > 72 h, n (%) | 73 (7.7) | 60 (9.1) | 21 (12.4) | 0.137 | 0.102 |
Wound complications, n (%) | 33 (3.5) | 18 (2.7) | 3 (1.8) | 0.625 | 0.096 |
Postoperative depsis, n (%) | 4 (0.4) | 3 (0.5) | 3 (1.8) | 0.125 | 0.086 |
Ventilation time, median (Q1–Q3) | 6 (4, 10) | 6 (4, 10) | 6 (5, 11) | 0.112 | 0.027 |
Bleeding in 24 h, median (Q1–Q3) | 350 (250, 500) | 400 (300, 550) | 400 (250, 500) | 0.002 | 0.131 |
In-hospital mortality, n (%) | 10 (2.3) | 10 (3.2) | 1 (1.4) | 0.703 | 0.082 |
ICU days, median (Q1–Q3) | 2.0 (1.9, 2.0) | 2.0 (1.9, 2.0) | 2.0 (2.0, 3.0) | 0.022 | 0.111 |
LOS days, median (Q1–Q3) | 7.0 (7.0, 9.0) | 7.0 (7.0, 8.0) | 7.0 (7.0, 9.0) | 0.058 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorentino, M.; Mikus, E.; Sangiorgi, D.; Tripodi, A.; Calvi, S.; Tenti, E.; Costantino, A.; Savini, C. Does Body Mass Index Impact Outcomes in Patients Undergoing Minimally Invasive Mitral Valve Surgery? Medicina 2025, 61, 903. https://doi.org/10.3390/medicina61050903
Fiorentino M, Mikus E, Sangiorgi D, Tripodi A, Calvi S, Tenti E, Costantino A, Savini C. Does Body Mass Index Impact Outcomes in Patients Undergoing Minimally Invasive Mitral Valve Surgery? Medicina. 2025; 61(5):903. https://doi.org/10.3390/medicina61050903
Chicago/Turabian StyleFiorentino, Mariafrancesca, Elisa Mikus, Diego Sangiorgi, Alberto Tripodi, Simone Calvi, Elena Tenti, Antonino Costantino, and Carlo Savini. 2025. "Does Body Mass Index Impact Outcomes in Patients Undergoing Minimally Invasive Mitral Valve Surgery?" Medicina 61, no. 5: 903. https://doi.org/10.3390/medicina61050903
APA StyleFiorentino, M., Mikus, E., Sangiorgi, D., Tripodi, A., Calvi, S., Tenti, E., Costantino, A., & Savini, C. (2025). Does Body Mass Index Impact Outcomes in Patients Undergoing Minimally Invasive Mitral Valve Surgery? Medicina, 61(5), 903. https://doi.org/10.3390/medicina61050903