Prevalence of Sleep Apnea in Patients with Syncope of Unclear Cause: SINCOSAS Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Procedures
2.1.1. Study Design and Eligibility Criteria
2.1.2. Clinical Data Collection
2.1.3. Respiratory Polygraphy and Sleep Apnea Diagnosis
- Obstructive apnea: ≥90% reduction in airflow lasting at least 10 s, with continued respiratory effort.
- Central apnea: ≥90% reduction in airflow for at least 10 s, without respiratory effort.
- Mixed apnea: initially presents without respiratory effort (as a central apnea), followed by resumption of effort.
- Hypopnea: ≥30% reduction in airflow for at least 10 s, associated with a ≥3% oxygen desaturation.
- Normal: AHI < 5 events/h.
- Mild: 5 ≤ AHI < 15 events/h.
- Moderate: 15 ≤ AHI < 30 events/h.
- Severe: AHI ≥ 30 events/h.
2.1.4. Heart Rate Variability Assessment
2.1.5. Ethical Considerations
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison Between Patients with and Without Sleep Apnea
3.3. Respiratory Polygraphy Findings
3.4. Heart Rate Variability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberger, Z.D.; Petek, B.J.; Brignole, M.; Shen, W.-K.; Sheldon, R.S.; Solbiati, M.; Deharo, J.-C.; Moya, A.; Hamdan, M.H. ACC/AHA/HRS Versus ESC Guidelines for the Diagnosis and Management of Syncope: JACC Guideline Comparison. J. Am. Coll. Cardiol. 2019, 74, 2410–2423. [Google Scholar] [CrossRef] [PubMed]
- Brignole, M.; Moya, A.; de Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Hear. J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef]
- Mediano, O.; González Mangado, N.; Montserrat, J.M.; Alonso-Álvarez, M.L.; Almendros, I.; Alonso-Fernández, A.; Barbé, F.; Borsini, E.; Caballero-Eraso, C.; Cano-Pumarega, I.; et al. International Consensus Document on Obstructive Sleep Apnea. Arch. Broconeumol. 2022, 58, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Catai, A.M.; Pastre, C.M.; de Godoy, M.F.; da Silva, E.; Takahashi, A.C.d.M.; Vanderlei, L.C.M. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.-K.; Schmidt, G.; Yamamoto, Y.; Reviewers, D.; Gorenek, B.; et al. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Jarczok, M.N.; Weimer, K.; Braun, C.; Williams, D.P.; Thayer, J.F.; Gündel, H.O.; Balint, E.M. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci. Biobehav. Rev. 2022, 143, 104907. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Stein, P.K. Heart rate variability in risk stratification of cardiac patients. Prog. Cardiovasc. Dis. 2013, 56, 153–159. [Google Scholar] [CrossRef]
- Guo, W.; Lv, T.; She, F.; Miao, G.; Liu, Y.; He, R.; Xue, Y.; Nu, N.K.; Yang, J.; Li, K.; et al. The impact of continuous positive airway pressure on heart rate variability in obstructive sleep apnea patients during sleep: A meta-analysis. Hear. Lung 2018, 47, 516–524. [Google Scholar] [CrossRef]
- Vaillancourt, M.; Chia, P.; Sarji, S.; Nguyen, J.; Hoftman, N.; Ruffenach, G.; Eghbali, M.; Mahajan, A.; Umar, S. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir. Res. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Puel, V.; Pepin, J.L.; Gosse, P. Sleep related breathing disorders and vasovagal syncope, a possible causal link? Int. J. Cardiol. 2013, 168, 1666–1667. [Google Scholar] [CrossRef]
- Dash, R.R.; Samanta, P.; Das, S.; Jena, A.; Panda, B.; Parida, B.B.; Mishra, J. Heart Rate Variability in Unexplained Syncope Patients Versus Healthy Controls: A Comparative Study. Cureus 2023, 15, e41370. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, F.; Xiao, J.; Chen, L.; Zhang, Y.; Li, J.; Yi, Y.; Min, W.; Su, L.; Liu, X.; et al. Heart rate variability changes in patients with obstructive sleep apnea: A systematic review and meta-analysis. J. Sleep. Res. 2023, 32, e13708. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, S.-A.; Ryu, H.U.; Chung, Y.-S.; Kim, W.S. Quality of life in patients with obstructive sleep apnea: Relationship with daytime sleepiness, sleep quality, depression, and apnea severity. Chron. Respir. Dis. 2016, 13, 33–39. [Google Scholar] [CrossRef]
- Wickwire, E.M.; Tom, S.E.; Vadlamani, A.; Diaz-Abad, M.; Cooper, L.M.; Johnson, A.M.; Scharf, S.M.; Albrecht, J.S. Older adult US Medicare beneficiaries with untreated obstructive sleep apnea are heavier users of health care than matched control patients. J. Clin. Sleep Med. 2020, 16, 81–89. [Google Scholar] [CrossRef]
- Hockin, B.C.D.; Heeney, N.D.; Whitehurst, D.G.T.; Claydon, V.E. Evaluating the Impact of Orthostatic Syncope and Presyncope on Quality of Life: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 834879. [Google Scholar] [CrossRef]
- Leung, R.S.T. Sleep-disordered breathing: Autonomic mechanisms and arrhythmias. Prog. Cardiovasc. Dis. 2009, 51, 324–338. [Google Scholar] [CrossRef]
- Gami, A.S.; Pressman, G.; Caples, S.M.; Kanagala, R.; Gard, J.J.; Davison, D.E.; Malouf, J.F.; Ammash, N.M.; Friedman, P.A.; Somers, V.K. Association of atrial fibrillation and obstructive sleep apnea. Circulation 2004, 110, 364–367. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, E56–E67. [Google Scholar] [CrossRef]
- Drager, L.F.; McEvoy, R.D.; Barbe, F.; Lorenzi-Filho, G.; Redline, S. Sleep Apnea and Cardiovascular Disease: Lessons From Recent Trials and Need for Team Science. Circulation 2017, 136, 1840–1850. [Google Scholar] [CrossRef]
- Brodovskaya, T.O.; Grishina, I.F.; Peretolchina, T.F.; Solenskaia, O.G.; Kovtun, O.P.; Teplyakova, O.V.; Chernjadev, S.A.; Popov, A.A.; Kurmin, V.V. Clues to the Pathophysiology of Sudden Cardiac Death in Obstructive Sleep Apnea. Cardiology 2018, 140, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Valencia, D.; Center, K.K.M.; Linares, J.; Valencia, V.; Lee, C.; Pak, S.; Markovic, J.-P.; Shah, H. Sleep related breathing disorders and neurally mediated syncope (SRBD and NMS). Southwest J. Pulm. Crit. Care 2019, 18, 76–81. [Google Scholar] [CrossRef]
- Logan, A.G.; Perlikowski, S.M.; Mente, A.; Tisler, A.; Tkacova, R.; Niroumand, M.; Leung, R.S.T.; Bradley, T.D. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens. 2001, 19, 2271–2277. [Google Scholar] [CrossRef]
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of obstructive sleep apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef]
- Kenny, R.A.; Bhangu, J.; King-Kallimanis, B.L. Epidemiology of syncope/collapse in younger and older western patient populations. Prog. Cardiovasc. Dis. 2013, 55, 357–363. [Google Scholar] [CrossRef]
- Edvardsson, N.; Garutti, C.; Rieger, G.; Linker, N.J. Unexplained syncope: Implications of age and gender on patient characteristics and evaluation, the diagnostic yield of an implantable loop recorder, and the subsequent treatment. Clin. Cardiol. 2014, 37, 618–625. [Google Scholar] [CrossRef]
- Kenny, R.A. Syncope in the elderly: Diagnosis, evaluation, and treatment. J. Cardiovasc. Electrophysiol. 2003, 14, S74–S77. [Google Scholar] [CrossRef]
- Junior, M.d.S.A.; Carneiro, J.R.I.; Carvalhal, R.F.; Torres, D.d.F.M.; da Cruz, G.G.; Quaresma, J.C.D.V.; Lugon, J.R.; Guimarães, F.S. Cardiovascular Autonomic Dysfunction in Patients with Morbid Obesity. Arq. Bras. De Cardiologia 2015, 105, 580. [Google Scholar] [CrossRef]
- Pedrosa, R.P.; Drager, L.F.; Gonzaga, C.C.; Sousa, M.G.; De Paula, L.K.G.; Amaro, A.C.S.; Amodeo, C.; Bortolotto, L.A.; Krieger, E.M.; Bradley, T.D. Obstructive sleep apnea: The most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011, 58, 811–817. [Google Scholar] [CrossRef]
- Hjälm, H.H.; Thunström, E.; Glantz, H.; Karlsson, M.; Celik, Y.; Peker, Y. Obstructive sleep apnea severity and prevalent atrial fibrillation in a sleep clinic cohort with versus without excessive daytime sleepiness. Sleep Med. 2023, 112, 63–69. [Google Scholar] [CrossRef]
- Qin, H.; Steenbergen, N.; Glos, M.; Wessel, N.; Kraemer, J.F.; Vaquerizo-Villar, F.; Penzel, T. The Different Facets of Heart Rate Variability in Obstructive Sleep Apnea. Front. Psychiatry 2021, 12, 642333. [Google Scholar] [CrossRef] [PubMed]
- Pak, V.M.; Strouss, L.; Yaggi, H.K.; Redeker, N.S.; Mohsenin, V.; Riegel, B. Mechanisms of reduced sleepiness symptoms in heart failure and obstructive sleep apnea. J. Sleep Res. 2019, 28, e12778. [Google Scholar] [CrossRef] [PubMed]
- Baillieul, S.; Revol, B.; Jullian-Desayes, I.; Joyeux-Faure, M.; Tamisier, R.; Pépin, J.-L. Diagnosis and management of central sleep apnea syndrome. Expert Rev. Respir. Med. 2019, 13, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Guarino, D.; Nannipieri, M.; Iervasi, G.; Taddei, S.; Bruno, R.M. The role of the autonomic nervous system in the pathophysiology of obesity. Front. Physiol. 2017, 8, 665. [Google Scholar] [CrossRef]
- Dani, M.; Taraborrelli, P.; Panagopoulos, D.; Dirksen, A.; Torocastro, M.; Sutton, R.; Lim, P.B. New horizons in the ageing autonomic nervous system: Orthostatic hypotension and supine hypertension. Age Ageing 2022, 51, afac150. [Google Scholar] [CrossRef]
- Malik, M.; Camm, A.J.; Bigger, J.T.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart. J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Zhu, K.; Chemla, D.; Roisman, G.; Mao, W.; Bazizi, S.; Lefevre, A.; Escourrou, P. Overnight heart rate variability in patients with obstructive sleep apnoea: A time and frequency domain study. Clin. Exp. Pharmacol. Physiol. 2012, 39, 901–908. [Google Scholar] [CrossRef]
- Sequeira, V.C.C.; Bandeira, P.M.; Azevedo, J.C.M. Heart rate variability in adults with obstructive sleep apnea: A systematic review. Sleep Sci. 2019, 12, 214–221. [Google Scholar] [CrossRef]
- Akizuki, H.; Hashiguchi, N. Heart rate variability in patients presenting with neurally mediated syncope in an emergency department. Am. J. Emerg. Med. 2020, 38, 211–216. [Google Scholar] [CrossRef]
- Cintra, F.; Poyares, D.; Amaral, A.D.; De Marchi, G.; Barreto, S.; Tufik, S.; De Paola, A.; Guilleminault, C. Heart rate variability during sleep in patients with vasovagal syncope. Pacing Clin. Electrophysiol. 2005, 28, 1310–1316. [Google Scholar] [CrossRef]
- Puel, V.; Godard, I.; Papaioannou, G.; Gosse, P.; Pepin, J.L.; Thoin, F.; Deharo, J.C.; Roche, F.; Zarqane, N.; Gagnadoux, F.; et al. Management of sleep apnoea syndrome (SAS) in patients with vasovagal syncope (VVS): A protocol for the VVS-SAS cohort study. BMJ Open 2020, 10, e038791. [Google Scholar] [CrossRef]
Variables | Total N = 156 | No SA N = 34 | With SA N = 122 | Value of p |
---|---|---|---|---|
Sex male | 89 (57.1%) | 16 (47.7%) | 73 (59.8%) | 0.80 |
Age (years) | 64 (52.2–74) | 52.5 (42–69) | 65 (55.7–75) | 0.00 |
BMI (kg/m2) | 27.5 (24.8–31.2) | 25.1 (22.1−28.9) | 28 (25.7–32.1) | 0.00 |
Tobacco * Never smoker Ex-smoker Active smoker | 70 (45.2%) 53 (34.2%) 32 (20.6%) | 13 (38.2%) 11 (32.4%) 10 (29.4%) | 57 (47.1%) 42 (34.7%) 22(18.2%) | 0.34 |
Packs/years (in smokers and ex-smokers) | 25.5 (10–51) | 12 (4.5–34.5) | 30 (17.57) | 0.01 |
Ischaemic heart disease | 18 (8.6%) | 2 (5.9%) | 16 (13.2%) | 0.36 |
Valvular heart disease | 3 (1.9%) | 1 (2.9%) | 2 (1.7%) | 0.52 |
Atrial fibrillation | 26 (16.9%) | 2 (5.9%) | 24 (20%) | 0.05 |
High Blood Pressure (HBP) | 71 (46.1%) | 8 (23.5%) | 63 (53.5%) | 0.00 |
Stroke | 1 (0.6%) | 0 (0%) | 1 (0.8%) | 0.99 |
Diabetes | 22 (14.1%) | 1 (2.9%) | 21 (17.2%) | 0.04 |
Dyslipidaemia | 59 (37.8%) | 6 (17.6%) | 53 (43.4%) | 0.01 |
Chronic obstructive pulmonary disease (COPD) | 7 (4.5%) | 0 (0%) | 7 (5.7%) | 0.34 |
Asthma | 13 (8.3%) | 5 (14.7%) | 8 (6.6%) | 0.16 |
Epworth Scale | 7 (3–13) | 8 (3–14) | 7 (3–13) | 0.71 |
Daytime fatigue | 80 (51.3%) | 14 (44.1%) | 65 (53.3%) | 0.34 |
Nocturnal awakenings | 78 (50%) | 16 (47.1%) | 62 (50.8%) | 0.69 |
Lack of concentration | 58 (37.2%) | 11 (32.4%) | 47 (38.5%) | 0.51 |
Apneas observed | 38 (24.4%) | 9 (26.5%) | 29 (23.8%) | 0.74 |
No of syncope/previous year | 3 (1.4) | 2 (1–5) | 3 (1–4) | 0.95 |
Variables | Total N = 156 | No SA N = 34 | With SA N = 122 | Value of p |
---|---|---|---|---|
AHI | 9.4 (5.5–28.1) | 1.65 (0.97–3.1) | 15.8 (8.27–31.97) | 0.00 |
ID3 | 10.2 (4.8–25.5) | 1.5 (0.6–2.29) | 16.3 (8.2–30.92) | 0.00 |
TC90 | 2.1 (0.1–9.5) | 0 (0–0.52) | 4.6 (0.6–13.02) | 0.00 |
N obstructive apneas | 4 (1–25) | 0.1 (0–3.25) | 6.5 (1.7–46.25) | 0.00 |
N central apneas | 0.5 (0–4) | 0 (0–1) | 1 (0–4.25) | 0.00 |
N mixed apneas | 0 (0–1) | 0 (0–2) | 0 (0–0) | 0.01 |
N hypoapneas | 53 (24.2–104.7) | 6 (3–13) | 65 (42.5–123.25) | 0.00 |
Average RR (ms) | 953 (844–1034) | 995 (876–1187) | 942 (829–1022) | 0.04 |
SDNN (ms) | 102.5 (78–134.7) | 101 (78.7–128) | 102.5 (77.7–156) | 0.69 |
SDNN index (ms) | 74 (51–103) | 75.5 (48–92.5) | 73.5 (51–113) | 0.40 |
RMSSD (ms) | 70.5 (42–123.5) | 68.5 (44.25–102.5) | 70.5 (41.7–148) | 0.43 |
NN50 | 2279 (640–6775.7) | 2307 (629.5–7071.5) | 2278.5 (629–6707.2) | 0.70 |
%NN50 | 11.5 (3.2–31.1) | 11.9 (4.1–27.9) | 10.2 (3.2–32.1) | 0.88 |
SDANN (ms) | 61 (43–111) | 72 (46.5–117) | 59.5 (42–108.7) | 0.41 |
Average total power (ms2) | 21,144 (13,495–37,146) | 25,996.5 (12,613.5–45,254.5) | 20,769 (13,598–34,743.5) | 0.64 |
Average VLF power (ms2) | 9465.5 (3586.2–19,477.5) | 9612 (4536.5–21,327.5) | 9426 (3341.5–19,136.5 | 0.57 |
Average LF power (ms2) | 7512.5 (3822–12,411.5) | 8144 (4453–16,169.5) | 7271 (3721–11,417) | 0.53 |
Average HF power (ms2) | 3597 (2334–5410) | 4779 (1457.7–6388) | 3306 (2459.5–5125.5) | 0.25 |
LF/HF | 1.9 (1.1–3.3) | 2 (1.2–3.5) | 1.9 (1.1–3.2) | 0.89 |
Triangular index HRV | 16 (11–20) | 14 (9.7–20.2) | 16 (11–20) | 0.45 |
Variables | No SA N = 25 | With SA N = 77 | Value of p |
---|---|---|---|
AHI | 1.5 (0.7–2.1) | 12.6 (7.7–28.35) | 0.00 |
ID3 | 1.4 (0.6–2.55) | 12.6 (81–25.75) | 0.00 |
TC90 | 0 (0–2.5) | 4.8 (0.7–15.1) | 0.00 |
Number obstructive apneas | 1 (0–3.5) | 6 (1–52) | 0.00 |
Number Central apneas | 0 (0–1) | 1 (0–3.5) | 0.01 |
Number mixed apneas | 0 (0–0) | 0 (0–1) | 0.01 |
Number hypoapneas | 5 (2.5–9) | 63 (40.5–107) | 0.00 |
Average RR (ms) | 992 (875–1179) | 937 (827.7–1005) | 0.02 |
SDNN (ms) | 104 (80–129) | 99.5 (73–125.2) | 0.50 |
SDNN index (ms) | 79 (51–93) | 69.5 (48.5–99.5) | 0.54 |
RMSSD (ms) | 73 (48–97.5) | 62.5 (41–104.5) | 0.54 |
NN50 | 3067 (838–7437) | 1930.5 (591.7–4760.7) | 0.59 |
%NN50 | 12.2 (4.6–32) | 8 (2.5–22.1) | 0.93 |
SDANN (ms) | 79 (53–117) | 59 (42–108) | 0.84 |
Average total power (ms2) | 25,366 (11,885–50,560) | 27,237 (16,073.5–37,825.5) | 0.97 |
Average VLF power (ms2) | 9544.5 (4603.7–21,817) | 11,958 (7227–20,937.5) | 0.53 |
Average LF power (ms2) | 8237 (4321.7–17,930) | 9221 (5019.5–13,033.5) | 0.81 |
Average HF power (ms2) | 4870 (1568.5–6113) | 3295 (2271.5–5099.5) | 0.22 |
LF/HF | 2.4 (1.3–3.6) | 2.2 (1.45–3.6) | 0.69 |
Triangular index HRV | 16 (9.5–20.5) | 16 (12–18.5) | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Martínez, M.-J.; Fernández-Villar, A.; Casal-Guisande, M.; García-Campo, E.; Corbacho-Abelaira, D.; Souto-Alonso, A.; Sopeña, B. Prevalence of Sleep Apnea in Patients with Syncope of Unclear Cause: SINCOSAS Study. Medicina 2025, 61, 887. https://doi.org/10.3390/medicina61050887
Muñoz-Martínez M-J, Fernández-Villar A, Casal-Guisande M, García-Campo E, Corbacho-Abelaira D, Souto-Alonso A, Sopeña B. Prevalence of Sleep Apnea in Patients with Syncope of Unclear Cause: SINCOSAS Study. Medicina. 2025; 61(5):887. https://doi.org/10.3390/medicina61050887
Chicago/Turabian StyleMuñoz-Martínez, María-José, Alberto Fernández-Villar, Manuel Casal-Guisande, Enrique García-Campo, Dolores Corbacho-Abelaira, Ana Souto-Alonso, and Bernardo Sopeña. 2025. "Prevalence of Sleep Apnea in Patients with Syncope of Unclear Cause: SINCOSAS Study" Medicina 61, no. 5: 887. https://doi.org/10.3390/medicina61050887
APA StyleMuñoz-Martínez, M.-J., Fernández-Villar, A., Casal-Guisande, M., García-Campo, E., Corbacho-Abelaira, D., Souto-Alonso, A., & Sopeña, B. (2025). Prevalence of Sleep Apnea in Patients with Syncope of Unclear Cause: SINCOSAS Study. Medicina, 61(5), 887. https://doi.org/10.3390/medicina61050887