Medial Congruent and Medial Pivot Inserts in Total Knee Arthroplasty: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Demographic Data
3.3. General Outcomes
3.4. Reoperation
3.5. Medial Pivot
3.6. Medial Congruent
3.7. The Role of Posterior Cruciate Ligament
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TKA | total knee arthroplasty |
MP | medial pivot |
MC | medial congruent |
MS | medial stabilized |
ROM | range of motion |
SR | single radius |
MR | multi-radius |
PCL | posterior cruciate ligament |
kKSS | Knee Society Score |
fKKS | Function Knee Society Score |
OKS | Oxford Knee Score |
WOMAC | Western Ontario and McMaster University score |
FJS | Forgotten Joint Score |
SD | standard deviation |
References
- Evans, J.T.; Walker, R.W.; Evans, J.P.; Blom, A.W.; Sayers, A.; Whitehouse, M.R. How Long Does a Knee Replacement Last? A Systematic Review and Meta-Analysis of Case Series and National Registry Reports with More than 15 Years of Follow-Up. Lancet 2019, 393, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Flierl, M.A.; Sobh, A.H.; Culp, B.M.; Baker, E.A.; Sporer, S.M. Evaluation of the Painful Total Knee Arthroplasty. J. Am. Acad. Orthop. Surg. 2019, 27, 743–751. [Google Scholar] [CrossRef]
- Freeman, M.A.R.; Pinskerova, V. The Movement of the Normal Tibio-Femoral Joint. J. Biomech. 2005, 38, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.A.R.; Pinskerova, V. The Movement of the Knee Studied by Magnetic Resonance Imaging. Clin. Orthop. Relat. Res. 2003, 410, 35–43. [Google Scholar] [CrossRef]
- Alesi, D.; Marcheggiani Muccioli, G.M.; Roberti di Sarsina, T.; Bontempi, M.; Pizza, N.; Zinno, R.; Di Paolo, S.; Zaffagnini, S.; Bragonzoni, L. In Vivo Femorotibial Kinematics of Medial-Stabilized Total Knee Arthroplasty Correlates to Post-Operative Clinical Outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Indelli, P.F.; Morello, F.; Ghirardelli, S.; Fidanza, A.; Iannotti, F.; Ferrini, A. No Clinical Differences at the 2-Year Follow-up between Single Radius and J-Curve Medial Pivot Total Knee Arthroplasty in the Treatment of Neutral or Varus Knees. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3949–3954. [Google Scholar] [CrossRef]
- Vecchini, E.; Ramazzini, L.; Lunardelli, E.; Zancanaro, F.; Amarossi, A.; Anselmi, A.; De Cristan, D.; Maluta, T.; Magnan, B.; Ricci, M. Short-Term Clinical and Radiological Comparisons between Two Medial Pivot Total Knee Arthroplasty Implants with Different Geometries. Acta Biomed. 2023, 94, e2023087–e2023094. [Google Scholar] [CrossRef]
- Elorza, S.P.; O’Donnell, E.; Nedopil, A.J.; Howell, S.M.; Hull, M.L. A New Tibial Insert Design with Ball-in-Socket Medial Conformity and Posterior Cruciate Ligament Retention Closely Restores Native Knee Tibial Rotation after Unrestricted Kinematic Alignment. J. Exp. Orthop. 2023, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Putame, G.; Terzini, M.; Rivera, F.; Kebbach, M.; Bader, R.; Bignardi, C. Kinematics and Kinetics Comparison of Ultra-Congruent versus Medial-Pivot Designs for Total Knee Arthroplasty by Multibody Analysis. Sci. Rep. 2022, 12, 3052. [Google Scholar] [CrossRef]
- Tsubosaka, M.; Ishida, K.; Kodato, K.; Shibanuma, N.; Hayashi, S.; Kurosaka, M.; Kuroda, R.; Matsumoto, T. Mid-Flexion Stability in the Anteroposterior Plane Is Achieved with a Medial Congruent Insert in Cruciate-Retaining Total Knee Arthroplasty for Varus Osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 467–473. [Google Scholar] [CrossRef]
- Cassar-Gheiti, A.J.; Jamieson, P.S.; Radi, M.; Wolfstadt, J.I.; Backstein, D.J. Evaluation of the Medial Stabilized Knee Design Using Data from National Joint Registries and Current Literature. J. Arthroplast. 2020, 35, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
- Alessio-Mazzola, M.; Clemente, A.; Russo, A.; Mertens, P.; Burastero, G.; Formica, M.; Felli, L. Clinical Radiographic Outcomes and Survivorship of Medial Pivot Design Total Knee Arthroplasty: A Systematic Review of the Literature. Arch. Orthop. Trauma Surg. 2022, 142, 3437–3448. [Google Scholar] [CrossRef]
- Tso, R.; Smith, J.; Doma, K.; Grant, A.; McEwen, P. Clinical and Patient-Reported Outcomes of Medial Stabilized Versus Non–Medial Stabilized Prostheses in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J. Arthroplast. 2021, 36, 767–776. [Google Scholar] [CrossRef]
- Scott, D.F.; Gray, C.G. Outcomes Are Better with a Medial-Stabilized vs a Posterior-Stabilized Total Knee Implanted with Kinematic Alignment. J. Arthroplast. 2022, 37, 852–858. [Google Scholar] [CrossRef]
- Batra, S.; Malhotra, R.; Kumar, V.; Srivastava, D.N.; Backstein, D.; Pandit, H. Superior Patient Satisfaction in Medial Pivot as Compared to Posterior Stabilized Total Knee Arthroplasty: A Prospective Randomized Study. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3633–3640. [Google Scholar] [CrossRef]
- Kulshrestha, V.; Sood, M.; Kanade, S.; Kumar, S.; Datta, B.; Mittal, G. Early Outcomes of Medial Pivot Total Knee Arthroplasty Compared to Posterior-Stabilized Design: A Randomized Controlled Trial. CiOS Clin. Orthop. Surg. 2020, 12, 178–186. [Google Scholar] [CrossRef]
- Chang, J.S.; Kayani, B.; Moriarty, P.D.; Tahmassebi, J.E.; Haddad, F.S. A Prospective Randomized Controlled Trial Comparing Medial-Pivot versus Posterior-Stabilized Total Knee Arthroplasty. J. Arthroplast. 2021, 36, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.M.P.; Sangaletti, R.; Jannelli, E.; Bova, D.; Montagna, A.; Benazzo, F. PCL Preservation or Sacrifice Does Not Influence Clinical Outcomes and Survivorship at Mid-Term Follow-up of a J-Curve CR Total Knee Replacement with a Medial Congruent Liner and a Functional Coronal Alignment. Arch. Orthop. Trauma Surg. 2024, 144, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.K.; Song, S.J.; Cho, S.D. Clinical Outcome of Total Knee Arthroplasty with Medial Pivot Prosthesis. A Comparative Study Between the Cruciate Retaining and Sacrificing. J. Arthroplast. 2011, 26, 693–698. [Google Scholar] [CrossRef]
- Budhiparama, N.C.; Lumban-Gaol, I.; Novito, K.; Hidayat, H.; De Meo, F.; Cacciola, G.; Cavaliere, P. PCL Retained Is Safe in Medial Pivot TKA—A Prospective Randomized Trial. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5856–5863. [Google Scholar] [CrossRef]
- Hu, M.; Xiang, S.; Xu, H.; Wang, Y.; Lv, C.; Zhang, H. Equivalence of Clinical and Radiological Outcomes in Cruciate-Retaining and Cruciate-Substituting Total Knee Arthroplasty with Medial Pivot Knee: A Comparative Study. Heliyon 2023, 9, e22741. [Google Scholar] [CrossRef]
- Rajgopal, A.; Kumar, S.; Singh, M.K.; Aggarwal, K. PCL Retention Demonstrates Better Functional Scores and Gait Patterns in Total Knee Arthroplasty Using a Medial Congruent Insert—A Prospective Study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4741–4746. [Google Scholar] [CrossRef] [PubMed]
- Giustra, F.; Bosco, F.; Cacciola, G.; Risitano, S.; Capella, M.; Bistolfi, A.; Massè, A.; Sabatini, L. No Significant Differences in Clinical and Radiographic Outcomes between PCL Retained or Sacrificed Kinematic Aligned Medial Pivot Total Knee Arthroplasty in Varus Knee. J. Clin. Med. 2022, 11, 6569. [Google Scholar] [CrossRef]
- Cacciola, G.; De Martino, I.; De Meo, F. Does the Medial Pivot Knee Improve the Clinical and Radiographic Outcome of Total Knee Arthroplasty? A Single Centre Study on Two Hundred and Ninety Seven Patients. Int. Orthop. 2020, 44, 291–299. [Google Scholar] [CrossRef]
- Nakamura, J.; Inoue, T.; Suguro, T.; Suzuki, M.; Sasho, T.; Hagiwara, S.; Akagi, R.; Orita, S.; Inage, K.; Akazawa, T.; et al. A Comparative Study of Flat Surface Design and Medial Pivot Design in Posterior Cruciate-Retaining Total Knee Arthroplasty: A Matched Pair Cohort Study of Two Years. BMC Musculoskelet. Disord. 2018, 19, 234. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, K.; Furu, M.; Nakamura, S.; Kuriyama, S.; Ishikawa, M.; Ito, H.; Matsuda, S. No Differences in Patient-Reported Outcomes between Medial Pivot Insert and Symmetrical Insert in Total Knee Arthroplasty: A Randomized Analysis. Knee 2018, 25, 1254–1261. [Google Scholar] [CrossRef]
- Indelli, P.F.; Spinello, P.; Zepeda, K.; Campi, S.; Rossi, S.M.P.; Engl, M.; Papalia, R.; Benazzo, F. Medially Congruent Total Knee Arthroplasty in Valgus Knee Deformities Yields Satisfactory Outcomes: A Multicenter, International Study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Iwakiri, K.; Ohta, Y.; Ohyama, Y.; Minoda, Y.; Kobayashi, A.; Nakamura, H. Is Medial Pivot Total Knee Arthroplasty Suitable for Patients with Valgus Knee Osteoarthritis? Eur. J. Orthop. Surg. Traumatol. 2022, 32, 551–557. [Google Scholar] [CrossRef]
- Anderson, M.J.; Kruse, R.L.; Leslie, C.; Levy, L.J.; Pritchett, J.W.; Hodge, J. Medium-Term Results of Total Knee Arthroplasty Using a Medially Pivoting Implant: A Multicenter Study. J. Surg. Orthop. Adv. 2010, 19, 191–195. [Google Scholar]
- Mannan, K.; Scott, G. The Medial Rotation Total Knee Replacement a Clinical and Radiological Review at a Mean Follow-Up of Six Years. J. Bone Jt. Surg. Br. Vol. 2009, 91, 750–756. [Google Scholar] [CrossRef]
- Katchky, A.M.; Jones, C.W.; Walter, W.L.; Shimmin, A.J. Medial Ball and Socket Total Knee Arthroplasty: Five-Year Clinical Results. Bone Jt. J. 2019, 101-B, 59–65. [Google Scholar] [CrossRef]
- Choi, N.Y.; In, Y.; Bae, J.H.; Do, J.H.; Chung, S.J.; Koh, I.J. Are Midterm Patient-Reported Outcome Measures Between Rotating-Platform Mobile-Bearing Prosthesis and Medial-Pivot Prosthesis Different? A Minimum of 5-Year Follow-Up Study. J. Arthroplast. 2017, 32, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Dehl, M.; Bulaïd, Y.; Chelli, M.; Belhaouane, R.; Gabrion, A.; Havet, E.; Mertl, P. Total Knee Arthroplasty with the Medial-Pivot Knee System: Clinical and Radiological Outcomes at 9.5 Years’ Mean Follow-Up. Orthop. Traumatol. Surg. Res. 2018, 104, 185–191. [Google Scholar] [CrossRef]
- Fan, C.Y.; Hsieh, J.T.S.; Hsieh, M.S.; Shih, Y.C.; Lee, C.H. Primitive Results after Medial-Pivot Knee Arthroplasties. A Minimum 5-Year Follow-up Study. J. Arthroplast. 2010, 25, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Vecchini, E.; Christodoulidis, A.; Magnan, B.; Ricci, M.; Regis, D.; Bartolozzi, P. Clinical and Radiologic Outcomes of Total Knee Arthroplasty Using the Advance Medial Pivot Prosthesis. A Mean 7years Follow-Up. Knee 2012, 19, 851–855. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Lv, C.; Wang, C.; Zhang, H. Mid-Term Clinical Outcomes and Survivorship of Medial-Pivot Total Knee Arthroplasty-a Mean Five Year Follow-up Based on One Thousand, One Hundred and Twenty Eight Cases. Int. Orthop. 2021, 45, 2877–2883. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, J.M.; Bubra, P.S.; Walker, P.; Walsh, W.R.; Bruce, W.J.M. Midterm Results Using a Medial Pivot Total Knee Replacement Compared with the Australian National Joint Replacement Registry Data. ANZ J. Surg. 2014, 84, 172–176. [Google Scholar] [CrossRef]
- Karachalios, T.; Varitimidis, S.; Bargiotas, K.; Hantes, M.; Roidis, N.; Malizos, K.N. An 11-to 15-Year Clinical Outcome Study of the Advance Medial Pivot Total Knee Arthroplasty Pivot Knee Arthroplasty. Bone Jt. J. 2016, 98-B, 1050–1055. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, Y.; Wang, C.; Zhang, H.; Wang, Y.; Li, T. Comparative Study on Mid- and Long-Term Clinical Effects of Medial Pivot Prosthesis and Posterior-Stabilized Prosthesis after Total Knee Arthroplasty. J. Orthop. Surg. Res. 2020, 15, 421. [Google Scholar] [CrossRef]
- Schmidt, R.; Ogden, S.; Blaha, J.D.; Alexander, A.; Fitch, D.A.; Barnes, C.L. Midterm Clinical and Radiographic Results of the Medial Pivot Total Knee System. Int. Orthop. 2014, 38, 2495–2498. [Google Scholar] [CrossRef]
- Ueyama, H.; Kanemoto, N.; Minoda, Y.; Yamamoto, N.; Taniguchi, Y.; Nakamura, H. Comparison of Postoperative Knee Flexion and Patient Satisfaction between Newly and Conventionally Designed Medial Pivot Total Knee Arthroplasty: A 5-Year Follow-up Matched Cohort Study. Arch. Orthop. Trauma Surg. 2022, 142, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.S.; Cho, S.D.; Lee, S.H.; Cho, H.Y. Total Knee Arthroplasty Using a Posterior Cruciate Ligament Sacrificing Medial Pivot Knee: Minimum 5-Year Follow-up Results. Knee Surg. Relat. Res. 2014, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Park, J.W.; Kim, J.S. Clinical Outcome of Medial Pivot Compared with Press-Fit Condylar Sigma Cruciate-Retaining Mobile-Bearing Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 3016–3023. [Google Scholar] [CrossRef] [PubMed]
- Chinzei, N.; Ishida, K.; Tsumura, N.; Matsumoto, T.; Kitagawa, A.; Iguchi, T.; Nishida, K.; Akisue, T.; Kuroda, R.; Kurosaka, M. Satisfactory Results at 8years Mean Follow-up after ADVANCE® Medial-Pivot Total Knee Arthroplasty. Knee 2014, 21, 387–390. [Google Scholar] [CrossRef]
- Macheras, G.A.; Galanakos, S.P.; Lepetsos, P.; Anastasopoulos, P.P.; Papadakis, S.A. A Long Term Clinical Outcome of the Medial Pivot Knee Arthroplasty System. Knee 2017, 24, 447–453. [Google Scholar] [CrossRef]
- Ueyama, H.; Kanemoto, N.; Minoda, Y.; Yamamoto, N.; Taniguchi, Y.; Nakamura, H. Long-Term Clinical Outcomes of Medial Pivot Total Knee Arthroplasty for Asian Patients: A Mean 10-Year Follow-up Study. Knee 2020, 27, 1778–1786. [Google Scholar] [CrossRef]
- Ettinger, M.; Tuecking, L.R.; Savov, P.; Windhagen, H. Higher Satisfaction and Function Scores in Restricted Kinematic Alignment versus Mechanical Alignment with Medial Pivot Design Total Knee Arthroplasty: A Prospective Randomised Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 1275–1286. [Google Scholar] [CrossRef]
- Shakya, A.; Singh, V.; Agrawal, R.A.; Sharma, A.; Mangale, N.; Wadgave, V.; Jaiswal, A. A Mid-Term Comparison of the Functional Outcomes of Medial Pivot and Rotating Platform Mobile-Bearing Total Knee Arthroplasty in the Indian Population. Indian J. Orthop. 2022, 56, 271–279. [Google Scholar] [CrossRef]
- Sosio, C.; Rossi, N.; Sirtori, P.; Ciliberto, R.; Lombardo, M.D.M.; Peretti, G.M.; Mangiavini, L. Clinical and Functional Outcomes of Kinematic Aligned Total Knee Arthroplasty with a Medial Pivot Design: Two-Year Follow-Up. J. Clin. Med. 2023, 12, 7258. [Google Scholar] [CrossRef]
- Malhotra, R.; Janardhanan, R.; Batra, S. Total Knee Arthroplasty in Rheumatoid Arthritis Patients with a Medial Stabilized Prosthesis—A Retrospective Analysis. J. Clin. Orthop. Trauma 2021, 21, 101566. [Google Scholar] [CrossRef]
- Howell, S.M. Calipered Kinematically Aligned Total Knee Arthroplasty: An Accurate Technique That Improves Patient Outcomes and Implant Survival. Orthopedics 2019, 42, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.M.P.; Benazzo, F. Individualized Alignment and Ligament Balancing Technique with the ROSA® Robotic System for Total Knee Arthroplasty. Int. Orthop. 2023, 47, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Faschingbauer, M.; Hambrecht, J.; Schwer, J.; Martin, J.R.; Reichel, H.; Seitz, A. Tibial Insert Design Significantly Alters Knee Kinematics Using a Single Cruciate-Retaining Total Knee Implant an in Vitro Study. Bone Jt. Open 2024, 5, 592–600. [Google Scholar] [CrossRef]
- Nedopil, A.J.; Howell, S.M.; Hull, M.L. More Passive Internal Tibial Rotation with Posterior Cruciate Ligament Retention than with Excision in a Medial Pivot TKA Implanted with Unrestricted Caliper Verified Kinematic Alignment. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Moewis, P.; Duda, G.N.; Trepczynski, A.; Krahl, L.; Boese, C.K.; Hommel, H. Retention of Posterior Cruciate Ligament Alone May Not Achieve Physiological Knee Joint Kinematics After Total Knee Arthroplasty. J. Bone Jt. Surg. 2021, 103, 146–154. [Google Scholar] [CrossRef]
- Howell, S.M.; Shelton, T.J.; Gill, M.; Hull, M.L. A Cruciate-Retaining Implant Can Treat Both Knees of Most Windswept Deformities When Performed with Calipered Kinematically Aligned TKA. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 437–445. [Google Scholar] [CrossRef]
Author | Year | Study Type | Sample (n) | Follow Up (y) | Insert Type | Alignment | PCL |
---|---|---|---|---|---|---|---|
Anderson et al. [29] | 2010 | Observational Prospective | 238 | 5.4 | Medial Pivot | Unclassified | unclassified |
Bae et al. [19] | 2011 | Observational Retrospective | 137 | 3.9 | Medial Pivot | Mechanical | preserved: 67 sacrificed: 70 |
Batra et al. [15] | 2021 | Randomized Controlled Trial | 53 | 4 | Medial Pivot | Mechanical | sacrificed |
Brinkman et al. [37] | 2014 | Observational Prospective | 50 | 10 | Medial Pivot | Mechanical | preserved: 27 sacrificed: 23 |
Budhiparama et al. [20] | 2023 | Randomized Controlled Trial | 66 | 2.7 | Medial Congruent | Mechanical | preserved: 33 sacrificed: 33 |
Cacciola et al. [24] | 2020 | Observational Retrospective | 351 | 5.5 | Medial Congruent | Mechanical | unclassified |
Chang et al. [17] | 2021 | Randomized Controlled Trial | 45 | 2 | Medial Pivot | Mechanical | sacrificed |
Chinzei et al. [44] | 2014 | Observational Retrospective | 85 | 7.8 | Medial Pivot | Mechanical | sacrificed |
Choi et al. [32] | 2017 | Observational Retrospective | 49 | 5.3 | Medial Pivot vs. Rotating Platform Mobile Bearing | Mechanical | sacrificed |
Dehl et al. [33] | 2018 | Observational Retrospective | 50 | 9.5 | Medial Pivot | Unclassified | unclassified |
Ettinger et al. [47] | 2024 | Randomized Controlled Trial | 98 | 2 | Medial Pivot | Mechanical vs. Kinematic | unclassified |
Fan et al. [34] | 2010 | Observational Prospective | 58 | 5.4 | Medial Pivot | Mechanical | sacrificed |
Giustra et al. [23] | 2022 | Observational Retrospective | 64 | 2.4 | Medial Congruent | Kinematic | preserved: 35 sacrificed: 29 |
Hu et al. [21] | 2023 | Observational Retrospective | 252 | 8.7 | Medial Pivot | Mechanical | preserved: 84 sacrificed: 168 |
Indelli et al. [27] | 2023 | Observational Retrospective | 79 | 3.6 | Medial Congruent | Mechanical | unclassified |
Indelli et al. [6] | 2020 | Observational Retrospective | 100 | 2 | Medial Congruent vs. Medial Pivot | Mechanical | sacrificed |
Iwakiri et al. [28] | 2022 | Observational Retrospective | 162 | 3.8 | Medial Congruent | Mechanical | unclassified |
Karachalios et al. [38] | 2016 | Observational Retrospective | 251 | 13.4 | Medial Pivot | Unclassified | preserved: 183 sacrificed: 68 |
Katchky et al. [31] | 2019 | Observational Retrospective | 81 | 5.3 | Medial Pivot | Mechanical | unclassified |
Kim et al. [43] | 2017 | Randomized Controlled Trial | 182 | 12.1 | Medial Pivot | Mechanical | sacrificed |
Kulshrestha et al. [16] | 2020 | Randomized Controlled Trial | 36 | 2 | Medial Pivot | Mechanical | unclassified |
Macheras et al. [45] | 2017 | Observational Prospective | 347 | 15.2 | Medial Pivot | Unclassified | preserved: 184 sacrificed: 163 |
Malhotra et al. [50] | 2021 | Observational Retrospective | 36 | 3.72 | Medial Pivot | Mechanical | sacrificed |
Mannan et al. [30] | 2009 | Observational Prospective | 172 | 6 | Medial Pivot | Unclassified | unclassified |
Nakamura et al. [25] | 2018 | Observational Retrospective | 45 | 2 | Medial Congruent vs. Cruciate Retaining | Mechanical | preserved |
Nishitani et al. [26] | 2018 | Randomized Controlled Trial | 33 | 2 | Medial Congruent vs. Cruciate Retaining | Unclassified | unclassified |
Rajgopal et al. [22] | 2023 | Observational Prospective | 120 | 1.5 | Medial Congruent | Mechanical | preserved: 60 sacrificed: 60 |
Rossi et al. [18] | 2024 | Observational Prospective | 165 | 6 | Medial Congruent | Functional | preserved: 80 sacrificed: 85 |
Schmidt et al. [40] | 2014 | Observational Retrospective | 365 | 5.3 | Medial Pivot | Unclassified | sacrificed |
Scott et al. [14] | 2022 | Randomized Controlled Trial | 88 | 2 | Medial Pivot vs. Posterior Stabilized | Kinematic | sacrificed |
Shakya et al. [48] | 2022 | Observational Retrospective | 52 | 7.3 | Medial Pivot | Mechanical | sacrificed |
Shi et al. [39] | 2020 | Observational Retrospective | 290 | 6.7 | Medial Pivot | Mechanical | unclassified |
Sosio et al. [49] | 2023 | Observational Retrospective | 55 | 2 | Medial Pivot | Kinematic | sacrificed |
Ueyama et al. [46] | 2020 | Observational Retrospective | 257 | 10.1 | Medial Pivot | Unclassified | sacrificed |
Ueyama et al. [41] | 2022 | Observational Retrospective | 153 | 5 | Medial Pivot | Mechanical | sacrificed |
Vecchini et al. [7] | 2023 | Observational Retrospective | 89 | 2.1 | Medial Congruent vs. Medial Pivot | Mechanical | sacrificed |
Vecchini et al. [35] | 2012 | Observational Retrospective | 162 | 7 | Medial Pivot | Unclassified | preserved |
Xiang et al. [36] | 2021 | Observational Retrospective | 1107 | 5 | Medial Pivot | Unclassified | unclassified |
Youm et al. [42] | 2014 | Observational Retrospective | 120 | 5.4 | Medial Pivot | Unclassified | sacrificed |
Implant | Sample (n) | Percentage (%) | Insert type |
---|---|---|---|
Microport Advance | 4177 | 68% | Medial Pivot |
Zimmer Persona MC | 521 | 8.5% | Medial Congruent |
Bioimpianti K-MOD | 417 | 6.8% | Medial Congruent |
Medacta GMK Sphere | 291 | 4.7% | Medial Pivot |
Microport Evolution | 199 | 3.2% | Medial Pivot |
Finsbury Medial Rotation | 172 | 2.8% | Medial Pivot |
Kyocera Phisio Knee | 162 | 2.6% | Medial Congruent |
MatOrtho Saiph | 126 | 2% | Medial Pivot |
Fine Knee | 45 | 0.7% | Medial Congruent |
Kyocera Bi-Surface | 33 | 0.5% | Medial Congruent |
Alignment | MP Studies | MC Studies | MP Implants (%) | MC Implants (%) |
---|---|---|---|---|
Mechanical | 17 | 7 | 1653 (55.3%) | 916 (30.6%) |
Kinematic | 3 | 1 | 190 (6.4%) | 64 (2.1%) |
Functional | 0 | 1 | 0 (0%) | 165 (5.2%) |
Sample Total | Score Total | Sample MP | Score MP | Sample MC | Score MC | |
---|---|---|---|---|---|---|
ROM pre-operative (RANGE, SD) | 5447 | 101.4 (125.9–78.9, SD 9.9) | 4434 | 100.6 (78.9–115.7, SD 9) | 1013 | 105.1 (89.2–125.9, SD 11.7) |
ROM post-operative (RANGE, SD) | 115.2 (104–132.1, SD 5.8) | 114.3 (104–132.1, SD 5.6) | 118.9 (108.7–125.8, SD 5.3) | |||
kKSS pre-operative (RANGE, SD) | 5202 | 37.1 (21.3–67.1, SD 8.1) | 4496 | 37.4 (23.5–67.1, SD 7.6) | 706 | 37.4 (21.2–63, SD 10.6) |
kKSS post-operative (RANGE, SD) | 88 (72.2–96.2, SD 3.7) | 87.6 (72.2–96.2, SD 3.9) | 88 (72.2–96.2, SD 3.7) | |||
fKKS pre-operative (RANGE, SD) | 4305 | 39.4 (29.7–53.6, SD 3.8) | 3764 | 38.8 (29.7–53.6, SD 4) | 541 | 41.4 (39.6–47.4, SD 2.2) |
fKKS post-operative (RANGE, SD) | 80.5 (72.4–93.1, SD 4.7) | 80.2 (72.4–93.1, SD 4.8) | 82.5 (74.3–91.4, SD 5.4) | |||
OKS pre-operative (RANGE, SD) | 1601 | 17 (9.2–23.6, SD 1.8) | 1091 | 16.7 (9.2–23.2, SD 2) | 510 | 17.3 (13.7–23.6, SD 1.6) |
OKS post-operative (RANGE, SD) | 38.3 (34.9–44.3, SD 1.9) | 38.2 (34.9–44.3, SD 2.2) | 38.3 (35.8–41.5, SD 1.5) | |||
WOMAC pre-operative (RANGE, SD) | 3102 | 63.2 (34–74.7, SD 6.4) | 2589 | 67 (34–74.7, SD 6.7) | 513 | 46.4 (40.9–48.9, SD 1.84) |
WOMAC post-operative (RANGE, SD) | 17.4 (5.3–26.8, SD 1.6) | 18.4 (6.5–26.8, SD 1.5) | 10 (5.32–12.2, SD 0.7) | |||
FJS (RANGE, SD) | 3322 | 69.8 (56.9–96.9, SD 7.8) | 2599 | 69 (56.9–96.9, SD 8.2) | 723 | 72 (60.3–85.7, SD 6.6) |
Sample F | Outcomes F | Sample M | Outcomes M | Sample K | Outcomes K | |
---|---|---|---|---|---|---|
ROM pre-operative (RANGE, SD) | / | / | 2351 | 102.7 (78.2–125.9, SD 12.5) | 152 | 115.2 (114.5–115.7, SD 0.3) |
ROM post-operative (RANGE, SD) | / | 116.5 (104–125.83, SD 6.4) | 126.5 (118.7–132.4, SD 8.7) | |||
kKSS pre-operative (RANGE, SD) | / | / | 1855 | 37.5 (21.3–64, SD 9.9) | 254 | 49.4 (42–57.1, SD 4.8) |
kKSS post-operative (RANGE, SD) | / | 89.3 (82.9–92.4, SD 2.9) | 93.8 (88.2–96.2, SD 3.6) | |||
fKKS pre-operative (RANGE, SD) | / | / | 1690 | 42.2 (31.4–53.6, SD 4.1) | 166 | 44.8 (44.1–45.2, SD 0.4) |
fKKS post-operative (RANGE, SD) | / | 80.9 (72.4–89.5, SD 5.1) | 89.3 (84.3–91.4, SD 4.1) | |||
OKS pre-operative (RANGE, SD) | 165 | 21 (21–21, SD 0) | 738 | 17.4 (13.6–23.6, SD 2.1) | 47 | 23.2 (23.2–23.2, SD 0) |
OKS post-operative (RANGE, SD) | 41.5 (41.5–41.5, SD 0) | 38.4 (35.8–43, SD 2.1) | 37.9 (37.9–37.9, SD 0) | |||
WOMAC pre-operative (RANGE, SD) | / | / | 1230 | 55.1 (34–74.7, SD 7.4) | 47 | 49.1 (49.1–49.1, SD 0) |
WOMAC post-operative (RANGE, SD) | / | 13.3 (1.6–25, SD 2.2) | 12.5 (12.5–12.5, SD 0) | |||
FJS (RANGE, SD) | 165 | 73 (73–73, SD 0) | 1539 | 72.9 (66–96.9, SD 8.8) | 254 | 70.3 (60.3–89.6, SD 12.8) |
Author | Year | Sample (n) | Mean Follow Up (y) | Insert Type | Alignment | Outcomes: Pre-Operative/Post-Operative | PCL |
---|---|---|---|---|---|---|---|
Anderson et al. [29] | 2010 | 238 | 5.4 | Medial Pivot | Unclassified | kKSS: 33/90 | unclassified |
Bae et al. [19] | 2011 | 137 | 3.9 | Medial Pivot | Mechanical | kKSS: 59.6/91.5 fKSS: 53.6/85.4 | preserved: 67 sacrificed: 70 |
Batra et al. [15] | 2021 | 53 | 4 | Medial Pivot | Mechanical | OKS: 9.2/44.3 | sacrificed |
Brinkman et al. [37] | 2014 | 50 | 10 | Medial Pivot | Mechanical | kKSS: 33.5/84 fKSS: 50/80 WOMAC: 34/22 | preserved: 27 sacrificed: 23 |
Chang et al. [17] | 2021 | 45 | 2 | Medial Pivot | Mechanical | kKSS: 48.2/82.9 fKSS: 48.9/76.2 OKS: 21.9/42.7 | sacrificed |
Chinzei et al. [44] | 2014 | 85 | 7.8 | Medial Pivot | Mechanical | kKSS:36.2/92.1 fKSS: 31.4/73.4 | sacrificed |
Choi et al. [32] | 2017 | 49 | 5.3 | Medial Pivot vs. Rotating Platform Mobile Bearing | Mechanical | kKSS: 40.6/89.4 fKSS: 51.9/88.8 WOMAC: 59.1/14.8 | sacrificed |
Dehl et al. [33] | 2018 | 50 | 9.5 | Medial Pivot | Unclassified | kKSS: 60.7/90.3 fKSS: 48.5/104.4 | unclassified |
Ettinger et al. [47] | 2024 | 98 | 2 | Medial Pivot | Mechanical vs. Kinematic | kKSS: 54.9/90.3 fKSS: 43.85/81.1 WOMAC: 50.8/12.6 OKS: 22.8/38.3 FJS: -/61 | unclassified |
Fan et al. [34] | 2010 | 58 | 5.4 | Medial Pivot | Mechanical | kKSS: 30.5/91 fKSS: 36.7/82.3 | sacrificed |
Hu et al. [21] | 2023 | 252 | 8.7 | Medial Pivot | Mechanical | kKSS: 23.5/89.7 fKSS: 34.3/72.4 WOMAC: 74.4/12.2 FJS: -/77.7 | preserved: 84 sacrificed: 168 |
Indelli et al. [6] | 2020 | 50 vs. 50 | 2 | Medial Congruent vs. Medial Pivot | Mechanical | kKSS: 64/84 fKSS: 45/75 OKS: 20/38 | sacrificed |
Karachalios et al. [38] | 2016 | 251 | 13.4 | Medial Pivot | Unclassified | kKSS: 31.6/89.2 fKSS: 42.9/78.4 WOMAC: 65.2/26.8 OKS: 15.6/34.9 | preserved: 183 sacrificed: 68 |
Katchky et al. [31] | 2019 | 81 | 5.3 | Medial Pivot | Mechanical | WOMAC: 44.6/6.5 | unclassified |
Kim et al. [43] | 2017 | 182 | 12.1 | Medial Pivot | Mechanical | kKSS: 29.1/90 fKSS: 44.8/80 WOMAC: 61/25 | sacrificed |
Kulshrestha et al. [16] | 2020 | 36 | 2 | Medial Pivot | Mechanical | FJS: -/77.9 | unclassified |
Macheras et al. [45] | 2017 | 347 | 15.2 | Medial Pivot | Unclassified | kKSS: 32.5/92.2 fKSS: 42.7/82 WOMAC: 65.2/16.7 OKS: 15.5/38 | preserved: 184 sacrificed: 163 |
Malhotra et al. [50] | 2021 | 36 | 3.7 | Medial Pivot | Mechanical | kKSS: 46.8/86 fKSS: 42.8/86.5 OKS: 13.6/42.1 | sacrificed |
Mannan et al. [30] | 2009 | 172 | 6 | Medial Pivot | Unclassified | kKSS: 47.6/72.2 fKSS: 45.1/93.1 | unclassified |
Schmidt et al. [40] | 2014 | 365 | 5.3 | Medial Pivot | Unclassified | kKSS: 67.1/95.5 | sacrificed |
Scott et al. [14] | 2022 | 88 | 2 | Medial Pivot vs. Posterior Stabilized | Kinematic | kKSS: 50.6/96.1 FJS: -/68.3 | sacrificed |
Shakya et al. [48] | 2022 | 52 | 7.3 | Medial Pivot | Mechanical | kKSS: 34/91.1 fKSS: 43.9/89.5 WOMAC: 59.7/11.5 FJS: -/85.6 | sacrificed |
Shi et al. [39] | 2020 | 290 | 6.7 | Medial Pivot | Mechanical | FJS: -/68.9 | unclassified |
Sosio et al. [49] | 2023 | 55 | 2 | Medial Pivot | Kinematic | kKSS: 42/94 fKKS: 45/91 WOMAC: 89.6 | sacrificed |
Ueyama et al. [46] | 2020 | 257 | 10.1 | Medial Pivot | Unclassified | kKSS: 39.7/87.8 fKKS: 41.5/90.3 FJS: -/59.7 | sacrificed |
Ueyama et al. [41] | 2022 | 153 | 5 | Medial Pivot | Mechanical | kKSS: 39/87 fKSS: 42/90 FJS: -/66 | sacrificed |
Vecchini et al. [7] | 2023 | 43 vs. 46 | 2.1 | Medial Congruent vs. Medial Pivot | Mechanical | kKSS: 46.4/86.6 fKKS: 49.1/84 FJS: -/96.9 | sacrificed |
Vecchini et al. [35] | 2012 | 162 | 7 | Medial Pivot | Unclassified | kKSS: 28.3/73.2 fKSS: 49.1/78.9 | preserved |
Xiang et al. [36] | 2021 | 1107 | 5 | Medial Pivot | Unclassified | kKSS: 24.5/84.7 fKSS: 29.7/74.6 WOMAC: 72.8/20.1 FJS: -/67.3 | unclassified |
Youm et al. [42] | 2014 | 120 | 5.4 | Medial Pivot | Unclassified | kKSS: 47.6/87.4 fKSS: 38.6/82 WOMAC: 54.8/18.3 | sacrificed |
Author | Year | Sample (n) | Mean Follow Up (y) | Insert Type | Alignment | Outcomes: Pre-Operative/Post-Operative | PCL |
---|---|---|---|---|---|---|---|
Budhiparama et al. [20] | 2023 | 66 | 2.7 | Medial Congruent | Mechanical | OKS: 23.6/39.8 FJS: -/76.5 | preserved: 33 sacrificed: 33 |
Cacciola et al. [24] | 2020 | 351 | 5.5 | Medial Congruent | Mechanical | kKSS: 33.4/90.6 fKSS: 39.6/81.7 WOMAC: 48.9/12.2 OKS: 13.7/35.8 FJS: -/67.3 | unclassified |
Giustra et al. [23] | 2022 | 64 | 2.4 | Medial Congruent | Kinematic | kKSS: 48.4/94.5 fKSS: 45.2/91.4 FJS: -/60.3 | preserved: 35 sacrificed: 29 |
Indelli et al. [27] | 2023 | 79 | 3.6 | Medial Congruent | Mechanical | kKSS: -/89 fKSS: -/82 FJS: -/72 | unclassified |
Indelli et al. [6] | 2020 | 50 vs. 50 | 2 | Medial Congruent vs. Medial Pivot | Mechanical | kKSS: 63/87 fKSS: 43/78 OKS: 19/41 | sacrificed |
Iwakiri et al. [28] | 2022 | 162 | 3.8 | Medial Congruent | Mechanical | WOMAC: 40.9/5.32 | unclassified |
Nakamura et al. [25] | 2018 | 45 | 2 | Medial Congruent vs. Cruciate Retaining | Mechanical | kKSS: 55.1/92.2 | preserved |
Nishitani et al. [26] | 2018 | 33 | 2 | Medial Congruent vs. Cruciate Retaining | Unclassified | kKSS: 37.4/85.1 fKSS: 42.5/74.3 | unclassified |
Rajgopal et al. [22] | 2023 | 120 | 1.5 | Medial Congruent | Mechanical | kKSS: 21.3/89 FJS: -/84.5 | preserved: 60 sacrificed: 60 |
Rossi et al. [18] | 2024 | 165 | 6 | Medial Congruent | Functional | kKSS + fKSS: 101/164 OKS: 21/41.5 FJS: 73.8 | preserved: 80 sacrificed: 85 |
Vecchini et al. [7] | 2023 | 43 vs. 46 | 2.1 | Medial Congruent vs. Medial Pivot | Mechanical | kKSS: 50.9/85.9 fKSS: 47.4/87 OKS: 21.4/41.5 FJS: 85.7 | sacrificed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, F.; Rossi, R.; Cottino, U.; Bruzzone, M.; Pirato, F.; Rosso, F. Medial Congruent and Medial Pivot Inserts in Total Knee Arthroplasty: A Scoping Review. Medicina 2025, 61, 844. https://doi.org/10.3390/medicina61050844
Romano F, Rossi R, Cottino U, Bruzzone M, Pirato F, Rosso F. Medial Congruent and Medial Pivot Inserts in Total Knee Arthroplasty: A Scoping Review. Medicina. 2025; 61(5):844. https://doi.org/10.3390/medicina61050844
Chicago/Turabian StyleRomano, Francesco, Roberto Rossi, Umberto Cottino, Matteo Bruzzone, Francesco Pirato, and Federica Rosso. 2025. "Medial Congruent and Medial Pivot Inserts in Total Knee Arthroplasty: A Scoping Review" Medicina 61, no. 5: 844. https://doi.org/10.3390/medicina61050844
APA StyleRomano, F., Rossi, R., Cottino, U., Bruzzone, M., Pirato, F., & Rosso, F. (2025). Medial Congruent and Medial Pivot Inserts in Total Knee Arthroplasty: A Scoping Review. Medicina, 61(5), 844. https://doi.org/10.3390/medicina61050844