The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Quality Assurance
3. Gut Microbiota Alterations in EM
Research Type | Research Goal | Detection Technique | Results | Ref. |
---|---|---|---|---|
Case-control study | To investigate the association between gut microbiota and EM by comparing microbiota composition between women with EM and matched controls. | 16S rRNA sequencing for bacterial identification at the genus level; statistical analyses including Mann–Whitney U test, Fisher’s exact test, Shannon diversity index, and Bray–Curtis dissimilarity index. | 1. Overall gut microbiota diversity was significantly higher in controls than in EM patients. 2. Twelve bacterial genera from the Bacilli, Bacteroidia, Clostridia, Coriobacteriia, and Gammaproteobacteria classes differed significantly between groups before false discovery rate (FDR) adjustment. However, no significant differences remained within the EM group after FDR correction. | [45] |
Prospective cohort study | To compare vaginal, cervical, and gut microbiota in women with stage 3/4 EM and healthy controls. | 16S rRNA sequencing of the V3-V4 region; bioinformatics analysis including Shannon diversity index, Bray–Curtis dissimilarity index, and Wilcoxon tests. | 1. Atopobium was absent in the vaginal and cervical microbiota of EM patients. 2. Gardnerella, Streptococcus, Escherichia, Shigella, and Ureaplasma were elevated in the cervical microbiota of the EM group. 3. More EM patients had Escherichia/Shigella-dominant stool microbiota. | [46] |
Case-control study | To investigate the differences in gut microbiota composition between patients with stage 3/4 EM and healthy controls, and to analyze its associations with serum hormone levels and inflammatory factors. | 16S rRNA high-throughput sequencing; PCR amplification of V3-V4 regions; Bio-Plex Pro Human Cytokine Panel for inflammatory factor analysis; SPSS 21.0 statistical analysis. | 1. The EM group had lower α diversity, a higher Firmicutes/Bacteroidetes ratio, and distinct shifts in key taxa. 2. The EM group had Prevotella_7 as the most abundant taxon. 3. The EM group exhibited significantly elevated estradiol levels (74.7 ± 22.5 pg/L vs. 47.9 ± 12.5 pg/L in controls) and IL-8 levels (6.39 ± 1.59 pg/mL vs. 4.14 ± 0.73 pg/mL in controls). 4. The EM gut microbiota was enriched in pathways for signaling, hormones, and immune modulation. 5. Blautia and Dorea were positively correlated with estradiol, while Subdoligranulum was negatively correlated with interleukin-8 (IL-8) levels. | [47] |
Observational cohort study | To investigate microbial composition differences in gut, cervical mucus, and peritoneal fluid in EM patients and controls. | 16S rRNA gene sequencing (Ion Torrent S5 platform), Bioinformatics analysis, Shannon and Simpson indices for diversity assessment, Bray–Curtis and Binary–Jaccard dissimilarity analysis, Principal Coordinate Analysis (PCoA). | 1. Microbial profiles differed across sites, with more pathogens in peritoneal fluid and fewer protective microbes in EM feces. 2. Gut microbiota showed better diagnostic value, with Ruminococcus and Pseudomonas as EM biomarkers. 3. Dysbiosis in EM included less Ruminococcus and more Pseudomonas. Pro-inflammatory cytokines and estrogen levels were linked to reduced SCFA-producing gut bacteria. | [48] |
4. The Role of Gut Microbiota in the Pathogenesis and Progression of EM
Factor | Source | Mechanism of Action | Impact on EM | Potential Therapeutic Implications | References |
---|---|---|---|---|---|
LPS | Gram-negative bacteria (e.g., Pseudomonadaceae Pseudomonas, Prevotellaceae, Prevotella) | Binds to Toll-like receptor 4 (TLR4), activates NF-κB via MyD88-dependent and independent pathways, promotes pro-inflammatory cytokine secretion (TNF-α, IL-8, IL-6) | Increases inflammation, enhances peritoneal macrophage activation, promotes endometriotic lesion growth, disrupts immune homeostasis | Blocking TLR4/NF-κB signaling, anti-TNF-α therapy, probiotics to reduce Gram-negative bacteria | [70,71,72,73] |
SCFAs (acetate, propionate, butyrate) | Produced by gut microbiota fermentation of dietary fibers (Lachnospiraceae Ruminococcus, Clostridium spp.) | Activates GPCRs (GPR41, GPR43, GPR109A), inhibits histone deacetylases (HDACs), modulates immune response, suppresses pro-inflammatory cytokines (TNF-α, IL-6) | Decreased SCFA levels in EM patients, reduced inhibition of NF-κB, enhanced NLRP3 inflammasome activation, increased histone deacetylation (HDAC-1) promoting lesion growth | Probiotics to restore SCFA-producing bacteria, butyrate supplementation, HDAC inhibitors to modulate gene expression | [74,75,76,77,78] |
5. Key Discoveries Linking EM and Malignant Transformation
6. Diagnosis and Treatment
7. Potential Gut Microbiome-Based Therapies for EM
8. Clinical Trials on Gut Microbiota and EM
Study | Goals | Sample Size | Age Range, Years | Diagnosis Type | Sample Type | Techniques | Key Findings |
---|---|---|---|---|---|---|---|
Xiao et al. [187] | To analyze microbial diversity and relation with pain symptoms | 40 cases/40 controls | 19–43 | Surgical confirmation | Fecal and cervical samples | 16S rRNA sequencing | Distinct microbial signatures associated with pelvic pain severity |
Lee et al., [188] | To evaluate correlation between gut dysbiosis and EM severity | 35 cases/30 controls | 20–42 | Surgical confirmation | Fecal samples | Metagenomic sequencing | Reduced beneficial microbes and enriched pro-inflammatory taxa in EM |
Khan et al., [189] | To evaluate effects of antibiotics ± GnRHa on EM microbiota and inflammation | 53 cases/47 controls | 18–51 | Surgery and histology | Endometrial samples | NGS + Immunohistochemistry | Antibiotics reduced inflammation, pathogen load, and angiogenesis markers |
Wei et al., [190] | To trace bacterial distribution in reproductive tract | 36 cases/14 controls | 23–44 | Surgery and histology | Lower and upper reproductive tract | Ion Torrent PGM: V4-V5 16S rRNA | Lactobacillus decreased upward; Sphingobium, Pseudomonas found in uterus |
Hernandes et al., 2020 [191] | To compare microbial profiles in vaginal and endometrial compartments | 10 cases/11 controls | 18–50 | Surgery and histology | Vaginal fluid, endometrium, lesion tissue | NGS Illumina: V3-V4 rRNA | Deep lesions had more Alishewanella, Enterococcus, Pseudomonas |
Chen et al., [192] | To identify microbiota associated with EM and adenomyosis | 46 cases/36 controls | 18–45 | Surgery, ultrasound, MRI | Cervical and fornix swabs | NGS Illumina: V3-V4 16S rRNA | Atopobium enriched in EM–adenomyosis group |
Ata et al., [193] | To compare gut, vaginal, and cervical microbiota between EM patients and controls | 14 cases/14 controls | 18–45 | Surgery and histology (stage 3–4) | Stool, vaginal, endocervical swabs | NGS Illumina: V3-V4 16S rRNA | Minimal species-level differences; some genus-level shifts observed |
Akiyama et al. [194] | To study microbiota patterns in cervical mucus of EM patients | 30 cases/39 controls | 20–44 | Surgery and histology | Cervical mucus | NGS Illumina: V5-V6 16S rRNA | Streptococcus and Enterobacteriaceae more common in EM cervical mucus |
Khan et al. [195] | To assess microbial colonization in intrauterine environment and ovarian cysts | 32 cases/32 controls | 21–52 | Surgery and histology | Endometrial swabs, cystic fluid | NGS Illumina: 16S rRNA | Higher abundance of pathogens in cystic fluid; GnRHa lowered Lactobacillaceae |
9. Limitations and Future Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EM | Endometriosis |
WHO | World Health Organization |
EDCs | Endocrine-Disrupting Chemicals |
PCOS | Polycystic Ovary Syndrome |
IBD | Inflammatory Bowel Disease |
MD | Microbiota-Depleted |
PubMed | Public/Publisher Medline |
WoS | Web Of Science |
JSTOR | Journal Storage |
BASE | Bielefeld Academic Search Engine |
NAFLD | Non-Alcoholic Fatty Liver Disease |
IBD | Inflammatory Bowel Disease |
CVD | Cardiovascular Disease |
ALD | Alcoholic Liver Disease |
CKD | Chronic Kidney Disease |
PID | Pelvic Inflammatory Disease |
RNA | Ribonucleic Acid |
16S rRNA | 16s Ribosomal Ribonucleic Acid |
FDR | False Discovery Rate |
PCR | Polymerase Chain Reaction |
IL | Interleukin |
SCFAs | Short-Chain Fatty Acids |
RIG-I | Retinoic Acid-Inducible Gene I |
NF-kB | Nuclear Factor Kappa-Light-Chain-Enhancer Of Activated B Cells |
TNF-α | Tumor Necrosis Factor-Alpha |
Bax | Bcl-2-Associated X Protein |
Fas | Fas Cell Surface Death Receptor |
VEGF | Vascular Endothelial Growth Factor |
CDCA | Chenodeoxycholic Acid |
UDCA | Ursodeoxycholic Acid |
GPCRs | G-Protein-Coupled Receptors |
HDACs | Histone Deacetylases |
GALT | Gastrointestinal-Associated Lymphoid Tissue |
Tregs | Regulatory T Cells |
PAMPs | Pathogen-Associated Molecular Patterns |
LPS | Lipopolysaccharides |
PRRs | Pattern Recognition Receptors |
TLRs | Toll-Like Receptors |
IECs | Intestinal Epithelial Cells |
SCF | Stem Cell Factor |
G-CSF | Granulocyte Colony-Stimulating Factor |
SFB | Segmented Filamentous Bacteria |
TLR4 | Toll-Like Receptor 4 |
NLRP3 | NOD-like Receptor Pyrin Domain Containing 3 |
FMT | Fecal Microbiota Transplantation |
COX-2 | Cyclooxygenase-2 |
PGE2 | Prostaglandin E2 |
ERα | Estrogen Receptor Alpha |
ERβ | Estrogen Receptor Beta |
GPER1 | G Protein-Coupled Estrogen Receptor |
EREs | Estrogen Response Elements |
AP-1 | Activator Protein-1 |
SP-1 | Stimulating Protein-1 |
MAPK | Mitogen-Activated Protein Kinase |
PI3K | Phosphoinositide 3-Kinase |
cAMP | Cyclic Adenosine Monophosphate |
EAOC | EM-Associated Ovarian Cancer |
CCC | Clear Cell Carcinoma |
OEC | Ovarian Endometrioid Carcinoma |
AKT | Protein Kinase B (also known as AKT) |
mTOR | Mechanistic Target of Rapamycin |
MR | Mendelian randomization |
NSAIDs | Nonsteroidal Anti-Inflammatory Drugs |
GnRH | Gonadotropin-Releasing Hormone |
NK | Natural Killer |
PUFAs | Polyunsaturated Fatty Acids |
DHA | Docosahexaenoic Acid |
DPA | Docosapentaenoic Acid |
EPA | Eicosapentaenoic Acid |
E. coli | Escherichia coli |
FODMAP diet | Fermentable Oligo-, Di-, Monosaccharides, And Polyols diet |
CDI | Clostridium difficile infections |
RCTs | Randomized Controlled Trials |
References
- Cano-Herrera, G.; Salmun Nehmad, S.; Ruiz de Chávez Gascón, J.; Méndez Vionet, A.; van Tienhoven, X.A.; Osorio Martínez, M.F.; Muleiro Alvarez, M.; Vasco Rivero, M.X.; López Torres, M.F.; Barroso Valverde, M.J.; et al. Endometriosis: A Comprehensive Analysis of the Pathophysiology, Treatment, and Nutritional Aspects, and Its Repercussions on the Quality of Life of Patients. Biomedicines 2024, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.S.; Kotlyar, A.M.; Flores, V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021, 397, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E.; Yilmaz, B.D.; Sison, C.; Miyazaki, K.; Bernardi, L.; Liu, S.; Kohlmeier, A.; Yin, P.; Milad, M.; Wei, J. Endometriosis. Endocr. Rev. 2019, 40, 1048–1079. [Google Scholar] [CrossRef]
- Petroianu, A. Endometriosis: An improper name for two different disorders. Rev. Assoc. Med. Bras. 2023, 69, 1. [Google Scholar] [CrossRef]
- Garvey, M. Endometriosis: Future Biological Perspectives for Diagnosis and Treatment. Int. J. Mol. Sci. 2024, 25, 12242. [Google Scholar] [CrossRef]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef]
- Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef]
- Casalechi, M.; Vieira-Lopes, M.; Quessada, M.P.; Arão, T.C.; Reis, F.M. Endometriosis and related pelvic pain: Association with stress, anxiety and depressive symptoms. Minerva Obset. Gynecol. 2021, 73, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis#:~:text=Key%20facts,age%20women%20and%20girls%20globally (accessed on 17 January 2025).
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef]
- Maggiore, U.L.R.; Ferrero, S.; Mangili, G.; Bergamini, A.; Inversetti, A.; Giorgione, V.; Viganò, P.; Candiani, M. A systematic review on endometriosis during pregnancy: Diagnosis, misdiagnosis, complications and outcomes. Hum. Reprod. Update 2016, 22, 70–103. [Google Scholar] [CrossRef]
- Rzewuska, A.M.; Żybowska, M.; Sajkiewicz, I.; Spiechowicz, I.; Żak, K.; Abramiuk, M.; Kułak, K.; Tarkowski, R. Gonadotropin-Releasing Hormone Antagonists—A New Hope in Endometriosis Treatment? J. Clin. Med. 2023, 12, 1008. [Google Scholar] [CrossRef]
- Nezhat, C.; Falik, R.; McKinney, S.; King, L.P. Pathophysiology and management of urinary tract endometriosis. Nat. Rev. Urol. 2017, 14, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.C.; Tulac, S.; Lobo, S.; Imani, B.; Yang, J.P.; Germeyer, A.; Osteen, K.; Taylor, R.N.; Lessey, B.A.; Giudice, L.C. Global gene profiling in human endometrium during the window of implantation. Endocrinology 2002, 143, 2119–2138. [Google Scholar] [CrossRef]
- Dmowski, W. Endometriosis at the end of the millenium; the controversy remains. Pol. J. Gyn. Investig. 1999, 1, 175–186. [Google Scholar]
- Cramer, D.W.; Missmer, S.A. The epidemiology of endometriosis. Ann. N. Y. Acad. Sci. 2002, 955, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.S.; Garzon, S.; Götte, M.; Viganò, P.; Franchi, M.; Ghezzi, F.; Martin, D.C. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int. J. Mol. Sci. 2019, 20, 5615. [Google Scholar] [CrossRef] [PubMed]
- Ochoa Bernal, M.A.; Fazleabas, A.T. The Known, the Unknown and the Future of the Pathophysiology of Endometriosis. Int. J. Mol. Sci. 2024, 25, 5815. [Google Scholar] [CrossRef] [PubMed]
- Viganò, P.; Caprara, F.; Giola, F.; Di Stefano, G.; Somigliana, E.; Vercellini, P. Is retrograde menstruation a universal, recurrent, physiological phenomenon? A systematic review of the evidence in humans and non-human primates. Hum. Reprod. Open 2024, 2024, hoae045. [Google Scholar] [CrossRef]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
- Steinmacher, S.; Bösmüller, H.; Granai, M.; Koch, A.; Brucker, S.Y.; Rall, K.K. Endometriosis in Patients with Mayer-Rokitansky-Küster-Hauser-Syndrome—Histological Evaluation of Uterus Remnants and Peritoneal Lesions and Comparison to Samples from Endometriosis Patients without Mullerian Anomaly. J. Clin. Med. 2022, 11, 6458. [Google Scholar] [CrossRef]
- Adilbayeva, A.; Kunz, J. Pathogenesis of Endometriosis and Endometriosis-Associated Cancers. Int. J. Mol. Sci. 2024, 25, 7624. [Google Scholar] [CrossRef] [PubMed]
- Laganà, A.S.; Naem, A. The pathogenesis of endometriosis: Are endometrial stem/progenitor cells involved? Stem Cells Reprod. Tissues Organs Fertil. Cancer 2022, 2022, 193–216. [Google Scholar]
- Figueira, P.G.; Abrão, M.S.; Krikun, G.; Taylor, H.S. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2011, 1221, 10–17. [Google Scholar] [CrossRef]
- Maruyama, T. A Revised Stem Cell Theory for the Pathogenesis of Endometriosis. J. Pers. Med. 2022, 12, 216. [Google Scholar] [CrossRef]
- De Vriendt, S.; Casares, C.M.; Rocha, S.; Vankelecom, H. Matrix scaffolds for endometrium-derived organoid models. Front. Endocrinol. 2023, 14, 1240064. [Google Scholar] [CrossRef]
- Kho, Z.Y.; Lal, S.K. The human gut microbiome—A potential controller of wellness and disease. Front. Microbiol. 2018, 9, 1835. [Google Scholar] [CrossRef] [PubMed]
- Gargett, C.E. Uterine stem cells: What is the evidence? Hum. Reprod. Update 2007, 13, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Li, S.; Fu, X.; Wu, T.; Yang, L.; Hu, C.; Wu, R. Role of Interleukin-6 and Its Receptor in Endometriosis. Med. Sci. Monit. 2017, 23, 3801–3807. [Google Scholar] [CrossRef]
- Symons, L.K.; Miller, J.E.; Kay, V.R.; Marks, R.M.; Liblik, K.; Koti, M.; Tayade, C. The Immunopathophysiology of Endometriosis. Trends Mol. Med. 2018, 24, 748–762. [Google Scholar] [CrossRef]
- Ramírez-Pavez, T.N.; Martínez-Esparza, M.; Ruiz-Alcaraz, A.J.; Marín-Sánchez, P.; Machado-Linde, F.; García-Peñarrubia, P. The Role of Peritoneal Macrophages in Endometriosis. Int. J. Mol. Sci. 2021, 22, 10792. [Google Scholar] [CrossRef] [PubMed]
- Perez-Muñoz, M.E.; Arrieta, M.-C.; Ramer-Tait, A.E.; Walter, J. A Critical Assessment of the “Sterile Womb” and “In Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome 2017, 5, 48. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, J.; Liu, C.; Zhang, X.; Ma, N.; Zhou, Z.; Lu, W.; Wu, C. Gut Microbiota in Women with Polycystic Ovary Syndrome: An Individual Based Analysis of Publicly Available Data. EClinicalMedicine 2024, 77, 102884. [Google Scholar] [CrossRef]
- Kobayashi, H. Gut and Reproductive Tract Microbiota: Insights into the Pathogenesis of Endometriosis (Review). Biomed. Rep. 2023, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Poli-Neto, O.B.; Meola, J.; Rosa, E.S.J.C.; Tiezzi, D. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci. Rep. 2020, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of Cytokines in Endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Simões, C.D.; Maganinho, M.; Sousa, A.S. FODMAPs, inflammatory bowel disease and gut microbiota: Updated overview on the current evidence. Eur. J. Nutr. 2022, 61, 1187–1198. [Google Scholar] [CrossRef]
- Lazar, V.; Ditu, L.-M.; Pircalabioru, G.G.; Gheorghe, I.; Curutiu, C.; Holban, A.M.; Picu, A.; Petcu, L.; Chifiriuc, M.C. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018, 9, 1830. [Google Scholar] [CrossRef]
- Kane, A.V.; Dinh, D.M.; Ward, H.D. Childhood malnutrition and the intestinal microbiome. Pediatr. Res. 2015, 77, 256–262. [Google Scholar] [CrossRef]
- Jansen, V.L.; Gerdes, V.E.; Middeldorp, S.; Van Mens, T.E. Gut microbiota and their metabolites in cardiovascular disease. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101492. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, C.; Jia, Y.; Xu, D.; Yu, Y. Letrozole and the traditional Chinese medicine, Shaofu Zhuyu decoction, reduce endometriotic disease progression in rats: A potential role for gut microbiota. Evid. Based Complement. Altern. Med. 2020, 2020, 3687498. [Google Scholar] [CrossRef]
- Svensson, A.; Brunkwall, L.; Roth, B.; Orho-Melander, M.; Ohlsson, B. Associations between endometriosis and gut microbiota. Reprod. Sci. 2021, 28, 2367–2377. [Google Scholar] [CrossRef]
- Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A.; Urman, B. The endobiota study: Comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Sci. Rep. 2019, 9, 2204. [Google Scholar] [CrossRef]
- Shan, J.; Ni, Z.; Cheng, W.; Zhou, L.; Zhai, D.; Sun, S.; Yu, C. Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Arch. Gynecol. Obstet. 2021, 304, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, B.; Liu, Z.; Feng, W.; Liu, M.; Wang, Y.; Peng, D.; Fu, X.; Zhu, H.; Cui, Z.; et al. Gut microbiota exceeds cervical microbiota for early diagnosis of endometriosis. Front. Cell. Infect. Microbiol. 2021, 11, 788836. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, C. Role of the gut microbiota in the pathogenesis of endometriosis: A review. Front Microbiol. 2024, 15, 1363455. [Google Scholar] [CrossRef]
- Mabrouk, M.; Raimondo, D.; Parisotto, M.; Del Forno, S.; Arena, A.; Seracchioli, R. Pelvic floor dysfunction at transperineal ultrasound and voiding alteration in women with posterior deep endometriosis. Int. Urogynecol. J. 2019, 30, 1527–1532. [Google Scholar] [CrossRef]
- Youssef, A.; Montaguti, E.; Sanlorenzo, O.; Cariello, L.; Awad, E.E.; Pacella, G.; Ghi, T.; Pilu, G.; Rizzo, N. A new simple technique for 3-dimensional sonographic assessment of the pelvic floor muscles. J. Ultrasound Med. 2015, 34, 65–72. [Google Scholar] [CrossRef]
- Faubion, S.S.; Shuster, L.T.; Bharucha, A.E. Recognition and management of nonrelaxing pelvic floor dysfunction. Mayo Clin. Proc. 2012, 87, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, M.; Raimondo, D.; Del Forno, S.; Baruffini, F.; Arena, A.; Benfenati, A.; Youssef, A.; Martelli, V.; Seracchioli, R. Pelvic floor muscle assessment on three- and four-dimensional transperineal ultrasound in women with ovarian endometriosis with or without retroperitoneal infiltration: A step towards complete functional assessment. Ultrasound Obstet. Gynecol. 2018, 52, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Gehrich, A.P.; Aseff, J.N.; Iglesia, C.B.; Fischer, J.R.; Buller, J.L. Chronic urinary retention and pelvic floor hypertonicity after surgery for endometriosis: A case series. Am. J. Obstet. Gynecol. 2005, 193, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.J.; Elzevier, H.W.; Pelger, R.C.; Putter, H.; Voorham-van der Zalm, P.J. Multiple pelvic floor complaints are correlated with sexual abuse history. J. Sex. Med. 2009, 6, 193–198. [Google Scholar] [CrossRef]
- Tu, F.F.; Holt, J.; Gonzales, J.; Fitzgerald, C.M. Physical therapy evaluation of patients with chronic pelvic pain: A controlled study. Am. J. Obstet. Gynecol. 2008, 198, 272.e1–272.e7. [Google Scholar] [CrossRef]
- Chapron, C.; Santulli, P.; de Ziegler, D.; Noel, J.C.; Anaf, V.; Streuli, I.; Foulot, H.; Souza, C.; Borghese, B. Ovarian endometrioma: Severe pelvic pain is associated with deeply infiltrating endometriosis. Hum. Reprod. 2012, 27, 702–711. [Google Scholar] [CrossRef]
- Horne, A.W.; Daniels, J.; Hummelshoj, L.; Cox, E.; Cooper, K.G. Surgical removal of superficial peritoneal endometriosis for managing women with chronic pelvic pain: Time for a rethink? BJOG 2019, 126, 1414–1416. [Google Scholar] [CrossRef]
- Donnez, J.; Dolmans, M.M. Endometriosis and Medical Therapy: From Progestogens to Progesterone Resistance to GnRH Antagonists: A Review. J. Clin. Med. 2021, 10, 1085. [Google Scholar] [CrossRef]
- Basta, A.; Brucka, A.; Górski, J.; Kotarski, J.; Kulig, B.; Oszukowski, P.; Poręba, R.; Radowicki, S.; Radwan, J.; Sikora, J.; et al. Stanowisko Zespołu Ekspertów Polskiego Towarzystwa Ginekologicznego dotyczące diagnostyki i metod leczenia endometriozy. Ginekol. Pol. 2012, 83, 871–876. [Google Scholar]
- Taylor, H.S.; Giudice, L.C.; Lessey, B.A.; Abrao, M.S.; Kotarski, J.; Archer, D.F.; Diamond, M.P.; Surrey, E.; Johnson, N.P.; Watts, N.B.; et al. Treatment of Endometriosis-Associated Pain with Elagolix, an Oral GnRH Antagonist. N. Engl. J. Med. 2017, 377, 28–40. [Google Scholar] [CrossRef]
- Shebley, M.; Polepally, A.R.; Nader, A.; Ng, J.W.; Winzenborg, I.; Klein, C.E.; Noertersheuser, P.; Gibbs, M.A.; Mostafa, N.M. Clinical Pharmacology of Elagolix: An Oral Gonadotropin-Releasing Hormone Receptor Antagonist for Endometriosis. Clin. Pharm. 2020, 59, 297–309. [Google Scholar] [CrossRef]
- Bradley, C.A. Reproductive endocrinology: Elagolix in endometriosis. Nat. Rev. Endocrinol. 2017, 13, 439. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, R.D.; Chiuve, S.E.; Leslie, W.D.; Wegrzyn, L.R.; Gao, W.; Yang, H.; Soliman, A.M.; Snabes, M.C.; Koenigsberg, S.; Zhong, J.; et al. Estimating the Effect of Elagolix Treatment for Endometriosis on Postmenopausal Bone Outcomes: A Model Bridging Phase III Trials to an Older Real-World Population. JBMR Plus 2020, 4, e10401. [Google Scholar] [CrossRef] [PubMed]
- Abbas Suleiman, A.; Nader, A.; Winzenborg, I.; Beck, D.; Polepally, A.R.; Ng, J.; Noertersheuser, P.; Mostafa, N.M. Exposure-Safety Analyses Identify Predictors of Change in Bone Mineral Density and Support Elagolix Labeling for Endometriosis-Associated Pain. CPT Pharmacometrics. Syst. Pharm. 2020, 9, 639–648. [Google Scholar]
- Signorello, L.B.; Harlow, B.L.; Cramer, D.W.; Spiegelman, D.; Hill, J.A. Epidemiologic determinants of endometriosis: A hospital-based case-control study. Ann. Epidemiol. 1997, 7, 267–274. [Google Scholar] [CrossRef]
- Li Piani, L.; Chiaffarino, F.; Cipriani, S.; Vigano, P.; Somigliana, E.; Parazzini, F. A systematic review and meta-analysis on alcohol consumption and risk of endometriosis: An update from 2012. Sci. Rep. 2022, 12, 19122. [Google Scholar] [CrossRef] [PubMed]
- Salliss, M.E.; Farland, L.V.; Mahnert, N.D.; Herbst-Kralovetz, M.M. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum. Reprod. Update 2021, 28, 92–131. [Google Scholar] [CrossRef]
- Parazzini, F.; Cipriani, S.; Bravi, F.; Pelucchi, C.; Chiaffarino, F.; Ricci, E.; Vigano, P. A metaanalysis on alcohol consumption and risk of endometriosis. Am. J. Obstet. Gynecol. 2013, 209, 106.e1–106.e10. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Chen, Y.; Nwachukwu, J.C.; Srinivasan, S.; Ko, C.; Bagchi, M.K.; Taylor, R.N.; Korach, K.S.; Nettles, K.W.; et al. Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci. Transl. Med. 2015, 7, 271ra9. [Google Scholar] [CrossRef]
- Muraoka, A.; Suzuki, M.; Hamaguchi, T.; Watanabe, S.; Iijima, K.; Murofushi, Y.; Shinjo, K.; Osuka, S.; Hariyama, Y.; Ito, M.; et al. Fusobacterium infection facilitates the development of endometriosis through the phenotypic transition of endometrial fibroblasts. Sci. Transl. Med. 2023, 15, eadd1531. [Google Scholar] [CrossRef]
- Chantalat, E.; Valera, M.C.; Vaysse, C.; Noirrit, E.; Rusidze, M.; Weyl, A.; Vergriete, K.; Buscail, E.; Lluel, P.; Fontaine, C.; et al. Estrogen Receptors and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2815. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, Y.; Fassbender, A.; Bowdler, L.; Fung, J.N.; Peterse, D.; Dorien, O.; Montgomery, G.W.; Nyholt, D.R.; D’Hooghe, T.M. Independent Replication and Meta-Analysis for Endometriosis Risk Loci. Twin Res. Hum. Genet. 2015, 18, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, Y.; Vivo, I.; Steinthorsdottir, V.; Fassbender, A.; Bowdler, L.; Buring, J.E.; Edwards, T.L.; Jones, S.; Dorien, O.; Peterse, D.; et al. Analysis of potential protein-modifying variants in 9000 endometriosis patients and 150,000 controls of European ancestry. Sci. Rep. 2017, 7, 11380. [Google Scholar] [CrossRef]
- Burns, K.A.; Rodriguez, K.F.; Hewitt, S.C.; Janardhan, K.S.; Young, S.L.; Korach, K.S. Role of estrogen receptor signaling required for endometriosis-like lesion establishment in a mouse model. Endocrinology 2012, 153, 3960–3971. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, J.V.; Perini, J.A.; Machado, D.E.; Pinto, R.; Medeiros, R. Systematic Review of Genome-Wide Association Studies on Susceptibility to Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 74–82. [Google Scholar] [CrossRef]
- Gougeon, A. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Ann. Endocrinol. 2010, 71, 132–143. [Google Scholar] [CrossRef]
- Rahmioglu, N.; Nyholt, D.R.; Morris, A.P.; Missmer, S.A.; Montgomery, G.W.; Zondervan, K.T. Genetic variants underlying risk of endometriosis: Insights from meta-analysis of eight genome-wide association and replication datasets. Hum. Reprod. Update 2014, 20, 702–716. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Popli, P.; Liao, Z.; Andreas, E.; Dias, M.; Wang, T.; Gunderson, S.J.; Jimenez, P.T.; Lanza, D.G.; Lanz, R.B.; et al. A GREB1-steroid receptor feedforward mechanism governs differential GREB1 action in endometrial function and endometriosis. Nat. Commun. 2024, 15, 1947. [Google Scholar] [CrossRef]
- Nyholt, D.R.; Low, S.K.; Anderson, C.A.; Painter, J.N.; Uno, S.; Morris, A.P.; MacGregor, S.; Gordon, S.D.; Henders, A.K.; Martin, N.G.; et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat. Genet. 2012, 44, 1355–1359. [Google Scholar] [CrossRef]
- Mohammed, H.; D’Santos, C.; Serandour, A.A.; Ali, H.R.; Brown, G.D.; Atkins, A.; Rueda, O.M.; Holmes, K.A.; Theodorou, V.; Robinson, J.L.; et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 2013, 3, 342–349. [Google Scholar] [CrossRef]
- Fung, J.N.; Holdsworth-Carson, S.J.; Sapkota, Y.; Zhao, Z.Z.; Jones, L.; Girling, J.E.; Paiva, P.; Healey, M.; Nyholt, D.R.; Rogers, P.A.; et al. Functional evaluation of genetic variants associated with endometriosis near GREB1. Hum. Reprod. 2015, 30, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Matalliotaki, C.; Matalliotakis, M.; Rahmioglu, N.; Mavromatidis, G.; Matalliotakis, I.; Koumantakis, G.; Zondervan, K.; Spandidos, D.A.; Goulielmos, G.N.; Zervou, M.I. Role of FN1 and GREB1 gene polymorphisms in endometriosis. Mol. Med. Rep. 2019, 20, 111–116. [Google Scholar] [CrossRef]
- Perini, J.A.; Machado, D.E.; Cardoso, J.V.; Fernandes, V.C.; Struchiner, C.J.; Suarez-Kurtz, G. CYP2C19 metabolic estrogen phenotypes and endometriosis risk in Brazilian women. Clinics 2023, 78, 100176. [Google Scholar] [CrossRef] [PubMed]
- Christofolini, D.M.; Amaro, A.; Mafra, F.; Sonnewend, A.; Bianco, B.; Barbosa, C.P. CYP2C19 polymorphism increases the risk of endometriosis. J. Assist. Reprod. Genet. 2015, 32, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, K.; Forrest, L.A.; Vuong, N.; Garson, K.; Djordjevic, B.; Vanderhyden, B.C. GREB1 is an estrogen receptor-regulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 2018, 37, 5873–5886. [Google Scholar] [CrossRef]
- Lee, Y.E.; Lee, S.H.; Kim, W.U. Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights from Rheumatoid Arthritis to Multiple Sclerosis. Immune Netw. 2024, 24, e10. [Google Scholar] [CrossRef]
- Neri, B.; Russo, C.; Mossa, M.; Martire, F.G.; Selntigia, A.; Mancone, R.; Calabrese, E.; Rizzo, G.; Exacoustos, C.; Biancone, L. High Frequency of Deep Infiltrating Endometriosis in Patients with Inflammatory Bowel Disease: A Nested Case-Control Study. Dig. Dis. 2023, 41, 719–728. [Google Scholar] [CrossRef]
- Nitchingham, D.; Waraich, N.; Sagar, N. P127 Endometriosis presenting as ulcerative colitis—A case report. Gut 2023, 72, A120–A121. [Google Scholar]
- Gan, R.; Yi, Y.; Li, Y. Association of endometriosis and inflammatory bowel disease (ibd), findings from epidemiological evidence to genetic links. Fertil. Steril. 2023, 120, e78–e79. [Google Scholar] [CrossRef]
- Shigesi, N.; Kvaskoff, M.; Kirtley, S.; Feng, Q.; Fang, H.; Knight, J.C.; Missmer, S.A.; Rahmioglu, N.; Zondervan, K.T.; Becker, C.M. The association between endometriosis and autoimmune diseases: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 486–503. [Google Scholar] [CrossRef]
- Bin Huraib, G.; Al Harthi, F.; Arfin, M. The Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Gene Polymorphism and Susceptibility to Autoimmune Diseases. In The Recent Topics in Genetic Polymorphisms; IntechOpen: London, UK, 2020. [Google Scholar]
- Vanni, V.S.; Villanacci, R.; Salmeri, N. Concomitant autoimmunity may be a predictor of more severe stages of endometriosis. Sci. Rep. 2021, 11, 15372. [Google Scholar] [CrossRef] [PubMed]
- Oală, I.E.; Mitranovici, M.I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics 2024, 14, 312. [Google Scholar] [CrossRef] [PubMed]
- Kvaskoff, M. Endometriosis. In The Continuous Textbook of Women’s Medicine Series—Gynecology Module; The Global Library of Women’s Medicine: London, UK, 2024; Volume 3, ISSN 1756-2228. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Stephansson, O.; Falconer, H.; Ludvigsson, J.F. Risk of Endometriosis in 11,000 Women with Celiac Disease. Hum. Reprod. 2011, 26, 2896–2901. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.M.; Jørgensen, K.T.; Stenager, E.; Pedersen, B.V.; Frisch, M. Reproductive History and Risk of Multiple Sclerosis. Epidemiology 2011, 22, 546–552. [Google Scholar] [CrossRef]
- Jess, T.; Frisch, M.; Jørgensen, K.T.; Pedersen, B.V.; Nielsen, N.M. Increased Risk of Inflammatory Bowel Disease in Women with Endometriosis: A Nationwide Danish Cohort Study. Gut 2012, 61, 1279–1283. [Google Scholar] [CrossRef]
- Harris, H.R.; Costenbader, K.H.; Mu, F.; Kvaskoff, M.; Malspeis, S.; Karlson, E.W.; Missmer, S.A. Endometriosis and the Risk of Systemic Lupus Erythematosus in a Prospective Cohort of US Women. Lupus Sci. Med. 2016, 3, e000135. [Google Scholar] [CrossRef]
- Selam, B.; Kayisli, U.A.; Garcia-Velasco, J.A.; Arici, A. Regulation of Fas Ligand Expression by IL-8 in Human Endometrial Cells. Am. J. Reprod. Immunol. 2002, 48, 319–326. [Google Scholar]
- Izumi, G.; Koga, K.; Takamura, M.; Makabe, T.; Satake, E.; Takeuchi, A.; Taguchi, A.; Nagai, M.; Urata, Y.; Harada, M.; et al. Involvement of Immune Cells in the Pathogenesis of Endometriosis. J. Obstet. Gynaecol. Res. 2018, 44, 191–198. [Google Scholar] [CrossRef]
- Liu, Y.; Ko, D.K.; Wong, A.Y.; Tan, J. Diagnostic Accuracy of Blood and Urine Biomarkers in Endometriosis: A Systematic Review and Meta-Analysis. BJOG 2015, 122, 377–383. [Google Scholar] [CrossRef]
- Nisenblat, V.; Bossuyt, P.M.; Farquhar, C.; Johnson, N.; Hull, M.L. Imaging Modalities for the Non-Invasive Diagnosis of Endometriosis. Cochrane Database Syst. Rev. 2016, 2, CD009591. [Google Scholar] [CrossRef]
- Bianco, B.; Christofolini, D.M.; Gava, M.M.; Barbosa, C.P. PTPN22 Polymorphism Is Associated with Endometriosis in Brazilian Women. Mol. Hum. Reprod. 2012, 18, 92–96. [Google Scholar] [CrossRef]
- Sapkota, Y.; Steinthorsdottir, V.; Morris, A.P.; Fassbender, A.; Rahmioglu, N.; De Vivo, I.; Buring, J.E.; Zhang, F.; Edwards, T.L.; Jones, S.; et al. Meta-Analysis Identifies Five Novel Loci Associated with Endometriosis Highlighting Key Genes Involved in hormone metabolism. Nat. Commun. 2017, 8, 15539. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Arias, M.; Gilmore, W. Hormonal Influences in Multiple Sclerosis. Autoimmun. Rev. 2012, 11, A465–A472. [Google Scholar] [CrossRef]
- Reske, J.J.; Wilson, M.R.; Holladay, J.; Siwicki, R.A.; Skalski, H.; Harkins, S.; Adams, M.; Risinger, J.I.; Hostetter, G.; Lin, K.; et al. Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet. 2021, 17, e1009986. [Google Scholar] [CrossRef]
- Capozzi, V.A.; Scarpelli, E.; dell’Omo, S.; Rolla, M.; Pezzani, A.; Morganelli, G.; Gaiano, M.; Ghi, T.; Berretta, R. Atypical Endometriosis: A Comprehensive Systematic Review of Pathological Patterns and Diagnostic Challenges. Biomedicines 2024, 12, 1209. [Google Scholar] [CrossRef]
- Bahall, V.; De Barry, L.; Harry, S.S. Gross Ascites Secondary to Endometriosis: A Rare Presentation in Pre-Menopausal Women. Cureus 2021, 13, e17048. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Jia, S.Z.; Liu, S.; Leng, J.H. Endometrial Organoids: A New Model for the Research of Endometrial-Related Diseases. Biol. Reprod. 2020, 103, 918–926. [Google Scholar] [CrossRef]
- Chrysanthakopoulos, N.; Vryzaki, E. The Role of Cytokines, Chemokines and NFκB in Inflammation and Cancer. J. Case Rep. Med. Hist. 2023, 3, 1–13. [Google Scholar]
- Karimi-Zarchi, M.; Dehshiri-Zadeh, N.; Sekhavat, L.; Nosouhi, F. Correlation of CA-125 serum level and clinico-pathological characteristic of patients with endometriosis. Int. J. Reprod. Biomed. 2016, 14, 713–718. [Google Scholar] [CrossRef]
- Suen, J.-L.; Chang, Y.; Chiu, P.-R.; Hsieh, T.-H.; Hsi, E.; Chen, Y.-C.; Chen, Y.-F.; Tsai, E.-M. Serum Level of IL-10 Is Increased in Patients with Endometriosis, and IL-10 Promotes the Growth of Lesions in a Murine Model. Am. J. Pathol. 2014, 184, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Anastasiu, C.V.; Moga, M.A.; Elena Neculau, A.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.-M.; Chicea, L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [Google Scholar] [CrossRef]
- Sheta, M.; Taha, E.A.; Lu, Y.; Eguchi, T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology 2023, 12, 110. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Ahn, S.H.; Edwards, A.K.; Singh, S.S.; Young, S.L.; Lessey, B.A.; Tayade, C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J. Immunol. 2015, 195, 2591–2600. [Google Scholar] [CrossRef]
- Hirata, T.; Osuga, Y.; Takamura, M.; Saito, A.; Hasegawa, A.; Koga, K.; Yoshino, O.; Hirota, Y.; Harada, M.; Taketani, Y. Interleukin-17F Increases the Secretion of Interleukin-8 and the Expression of Cyclooxygenase 2 in Endometriosis. Fertil. Steril. 2011, 96, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Olkowska-Truchanowicz, J.; Bocian, K.; Maksym, R.B.; Białoszewska, A.; Włodarczyk, D.; Baranowski, W.; Ząbek, J.; Korczak-Kowalska, G.; Malejczyk, J. CD4+ CD25+ FOXP3+ Regulatory T Cells in Peripheral Blood and Peritoneal Fluid of Patients with Endometriosis. Hum. Reprod. 2013, 28, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Takamura, M.; Koga, K.; Izumi, G.; Hirata, T.; Harada, M.; Hirota, Y.; Hiraike, O.; Fujii, T.; Osuga, Y. Simultaneous Detection and Evaluation of Four Subsets of CD4+ T Lymphocyte in Lesions and Peripheral Blood in Endometriosis. Am. J. Reprod. Immunol. 2015, 74, 480–486. [Google Scholar] [CrossRef]
- Montagna, P.; Capellino, S.; Villaggio, B.; Remorgida, V.; Ragni, N.; Cutolo, M.; Ferrero, S. Peritoneal Fluid Macrophages in Endometriosis: Correlation between the Expression of Estrogen Receptors and Inflammation. Fertil. Steril. 2008, 90, 156–164. [Google Scholar] [CrossRef]
- Lousse, J.-C.; Langendonckt, A.V.; González-Ramos, R.; Defrère, S.; Renkin, E.; Donnez, J. Increased Activation of Nuclear Factor-Kappa B (NF-ΚB) in Isolated Peritoneal Macrophages of Patients with Endometriosis. Fertil. Steril. 2008, 90, 217–220. [Google Scholar] [CrossRef]
- Steinbuch, S.C.; Lüß, A.-M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int. J. Mol. Sci. 2024, 25, 4306. [Google Scholar] [CrossRef]
- Sillem, M.; Prifti, S.; Monga, B.; Buvari, P.; Shamia, U.; Runnebaum, B. Soluble Urokinase-Type Plasminogen Activator Receptor Is over-Expressed in Uterine Endometrium from Women with Endometriosis. Mol. Hum. Reprod. 1997, 3, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, V.H.; Zolti, M.; Soriano, D. Is There an Association between Autoimmunity and Endometriosis? Autoimmun. Rev. 2012, 11, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Cui, L.; Fang, J.; Chern, B.S.M.; Tan, H.H.; Chan, J.K.Y. Limited Value of Pro-Inflammatory Oxylipins and Cytokines as Circulating Biomarkers in Endometriosis—A Targeted ‘omics Study. Sci. Rep. 2016, 6, 26117. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Hall, J.C.; Rosen, A. Type I Interferons: Crucial Participants in Disease Amplification in Autoimmunity. Nat. Rev. Rheumatol. 2010, 6, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Portelli, M.; Pollacco, J.; Sacco, K.; Schembri-Wismayer, P.; Calleja-Agius, J. Endometrial Seedlings. A Survival Instinct? Immunomodulation and Its Role in the Pathophysiology of Endometriosis. Minerva Ginecol. 2011, 63, 563–570. [Google Scholar]
- Chiang, C.M.; Hill, J.A. Localization of T Cells, Interferon-Gamma and HLA-DR in Eutopic and Ectopic Human Endometrium. Gynecol. Obstet. Investig. 1997, 43, 245–250. [Google Scholar] [CrossRef]
- Nirgianakis, K.; Ma, L.; McKinnon, B.; Mueller, M.D. Recurrence Patterns after Surgery in Patients with Different Endometriosis Subtypes: A Long-Term Hospital-Based Cohort Study. J. Clin. Med. 2020, 9, 496. [Google Scholar] [CrossRef]
- Nishida, M.; Nasu, K.; Ueda, T.; Fukuda, J.; Takai, N.; Miyakawa, I. Endometriotic Cells Are Resistant to Interferon-γ-Induced Cell Growth Inhibition and Apoptosis: A Possible Mechanism Involved in the Pathogenesis of Endometriosis. Mol. Hum. Reprod. 2005, 11, 29–34. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Ho, H.-N. The Role of Cytokines in Endometriosis. Am. J. Reprod. Immunol. 2003, 49, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Herington, J.L.; Bruner-Tran, K.L.; Lucas, J.A.; Osteen, K.G. Immune Interactions in Endometriosis. Expert Rev. Clin. Immunol. 2011, 7, 611–626. [Google Scholar] [CrossRef]
- Hudelist, G.; Lass, H.; Keckstein, J.; Walter, I.; Wieser, F.; Wenzl, R.; Mueller, R.; Czerwenka, K.; Kubista, E.; Singer, C.F. Interleukin 1alpha and Tissue-Lytic Matrix Metalloproteinase-1 Are Elevated in Ectopic Endometrium of Patients with Endometriosis. Hum. Reprod. 2005, 20, 1695–1701. [Google Scholar] [CrossRef]
- Gajbhiye, R.; McKinnon, B.; Mortlock, S.; Mueller, M.; Montgomery, G. Genetic Variation at Chromosome 2q13 and Its Potential Influence on Endometriosis Susceptibility Through Effects on the IL-1 Family. Reprod. Sci. 2018, 25, 1307–1317. [Google Scholar] [CrossRef]
- Malutan, A.M.; Drugan, T.; Costin, N.; Ciortea, R.; Bucuri, C.; Rada, M.P.; Mihu, D. Clinical Immunology Pro-Inflammatory Cytokines for Evaluation of Inflammatory Status in Endometriosis. Cent. Eur. J. Immunol. 2015, 40, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Fukui, A.; Mai, C.; Saeki, S.; Yamamoto, M.; Takeyama, R.; Kato, T.; Ukita, Y.; Wakimoto, Y.; Yamaya, A.; Shibahara, H. Pelvic Endometriosis and Natural Killer Cell Immunity. Am. J. Reprod. Immunol. 2021, 85, e13342. [Google Scholar] [CrossRef] [PubMed]
- Machairiotis, N.; Vasilakaki, S.; Thomakos, N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines 2021, 9, 54. [Google Scholar] [CrossRef]
- Qin, R.; Tian, G.; Liu, J.; Cao, L. The Gut Microbiota and Endometriosis: From Pathogenesis to Diagnosis and Treatment. Front. Cell. Infect. Microbiol. 2022, 12, 1069557. [Google Scholar] [CrossRef]
- Hsu, C.C.; Yang, B.C.; Wu, M.H.; Huang, K.E. Enhanced Interleukin-4 Expression in Patients with Endometriosis. Fertil. Steril. 1997, 67, 1059–1064. [Google Scholar] [CrossRef]
- Hernández Guerrero, C.A.; Tlapanco Barba, R.; Ramos Pérez, C.; Velázquez Ramírez, N.; Castro Eguiluz, D.; Cérbulo Vázquez, A. Endometriosis and discouragement of immunology cytotoxic characteristics. Ginecol. Obstet. Mex. 2003, 71, 559–574. [Google Scholar]
- Zhang, S.; Wang, H.; Meng, C. Alteration of peritoneal lymphocyte transformation and its interleukin-2 release in patients with infertility and endometriosis. Zhonghua Fu Chan Ke Za Zhi 1998, 33, 17–19. [Google Scholar] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Nap, A.; de Roos, N. Endometriosis and the Effects of Dietary Interventions: What Are We Looking For? Reprod. Fertil. 2022, 3, C14–C22. [Google Scholar] [CrossRef]
- Grund, E.M.; Kagan, D.; Tran, C.A.; Zeitvogel, A.; Starzinski-Powitz, A.; Nataraja, S.; Palmer, S.S. Tumor Necrosis Factor-α Regulates Inflammatory and Mesenchymal Responses via Mitogen-Activated Protein Kinase Kinase, P38, and Nuclear Factor ΚB in Human Endometriotic Epithelial Cells. Mol. Pharm. 2008, 73, 1394–1404. [Google Scholar] [CrossRef]
- Iwabe, T.; Harada, T.; Terakawa, N. Role of Cytokines in Endometriosis-Associated Infertility. Gynecol. Obstet. Investig. 2002, 53, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, D.; Song, M.; Murphy, A.; Parthasarathy, S. The Presence of Endometrial Cells in the Peritoneal Cavity Enhances Monocyte Recruitment and Induces Inflammatory Cytokines in Mice: Implications for Endometriosis. Fertil. Steril. 2004, 82, 999–1007. [Google Scholar] [CrossRef]
- Daraï, E.; Detchev, R.; Hugol, D.; Quang, N. Serum and Cyst Fluid Levels of Interleukin (IL) -6, IL-8 and Tumour Necrosis Factor-Alpha in Women with Endometriomas and Benign and Malignant Cystic Ovarian Tumours. Hum. Reprod. 2003, 18, 1681–1685. [Google Scholar] [CrossRef]
- Khan, K.N.; Masuzaki, H.; Fujishita, A.; Hamasaki, T.; Kitajima, M.; Hasuo, A.; Miyamura, Y.; Ishimaru, T. Association of Interleukin-6 and Estradiol with Hepatocyte Growth Factor in Peritoneal Fluid of Women with Endometriosis. Acta Obstet. Gynecol. Scand. 2002, 81, 764–771. [Google Scholar] [CrossRef]
- Quaranta, G.; Sanguinetti, M.; Masucci, L. Fecal Microbiota Transplantation: A Potential Tool for Treatment of Human Female Reproductive Tract Diseases. Front. Immunol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Sadeghzadeh Oskouei, B.; Asadi, Z.; Jahanban Esfahlan, R. Non-Invasive Blood Tests for Earlier Diagnosis and Treatment of Endometriosis. J. Reprod. Immunol. 2025, 169, 104521. [Google Scholar] [CrossRef]
- Saunders, P.T.K.; Horne, A.W. Endometriosis: Etiology, pathobiology, and therapeutic prospects. Cell 2021, 184, 2807–2824. [Google Scholar] [CrossRef] [PubMed]
- Rizner, T.L. Noninvasive biomarkers of endometriosis: Myth or reality? Expert Rev. Mol. Diagn. 2014, 14, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Rizner, T.L.; Penning, T.M. Aldo-keto reductase 1C3-Assessment as a new target for the treatment of endometriosis. Pharmacol. Res. 2020, 152, 104446. [Google Scholar] [CrossRef]
- Vannuccini, S.; Lazzeri, L.; Orlandini, C.; Morgante, G.; Bifulco, G.; Petraglia, F. Endometriosis and Pregnancy: The Point of View of the Gynaecologist. Int. J. Environ. Res. Public Health 2021, 18, 10665. [Google Scholar] [CrossRef]
- Gupta, D.; Hull, M.L.; Fraser, I.; Miller, L.; Bossuyt, P.M.; Johnson, N.; Nisenblat, V. Endometrial Biomarkers for the Non-Invasive Diagnosis of Endometriosis. Cochrane Database Syst. Rev. 2016, 4, CD012165. [Google Scholar] [CrossRef]
- Roman, H.; Auber, M.; Mokdad, C.; Bridoux, V.; Huet, E.; Bubenheim, M.; Merlot, B.; Tuech, J.J. Ovarian Endometrioma: Why We Must Preserve the Ovarian Reserve. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 347–352. [Google Scholar] [CrossRef]
- Alkatout, I.; Mettler, L.; Maass, N.; Ackermann, J.; Jonat, W.; Mundhenke, C. Surgical Treatment of Endometriosis and Impact on Fertility. Minerva Ginecol. 2015, 67, 121–137. [Google Scholar]
- Chen, X.; Wu, Y.; Zhao, X.; Dong, X.; Xu, C.; Xue, M. AMH as a Biomarker of Ovarian Function in Reproductive-Aged Women with Endometriosis. Reprod. Sci. 2022, 29, 1940–1950. [Google Scholar]
- Shan, J.; Ni, Z.; Cheng, W.; Zhou, L.; Zeng, Y. Gut Microbiota and Endometriosis: From Pathogenesis to Potential Therapeutic Implications. Front. Cell. Infect. Microbiol. 2021, 11, 788865. [Google Scholar]
- Zhang, T.; Zhao, S.; Shen, Q.; Ren, H.; Liu, L.; Yang, L. Microbial Metabolites and Regulation of Gut Microbiota in Endometriosis. Nutrients 2023, 15, 1230. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Huang, C.; Deng, C.; Zhao, L.; Li, Y. Machine Learning for Microbiome-Based Prediction of Endometriosis. Biomed. Pharmacother. 2023, 159, 114233. [Google Scholar] [CrossRef]
- Lu, Y.; Fang, J.; Cao, Y.; Li, L.; Sun, L.; Zhang, X.; Zhou, Z. Probiotic Therapy in Endometriosis: Evidence from Clinical and Experimental Studies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 268, 18–24. [Google Scholar] [CrossRef]
- Do, M.R.; Hwang, S.J.; Park, H.J.; Kim, D.Y.; Kim, S.Y. Microbiota-Drug Interaction in the Treatment of Endometriosis: Toward Personalized Medicine. Pharmaceutics 2023, 15, 1456. [Google Scholar] [CrossRef]
- Greene, R.; Stratton, P.; Cleary, S.D.; Ballweg, M.L.; Sinaii, N. Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertil. Steril. 2009, 91, 32–39. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Masumoto, H.; Muto, H.; Kitajima, M.; Masuzaki, H.; Kitawaki, J. Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 199, 69–75. [Google Scholar] [CrossRef]
- Ser, H.-L.; Yong, S.-J.A.; Shafiee, M.N.; Mokhtar, N.M.; Ali, R.A.R. Current Updates on the Role of Microbiome in Endometriosis: A Narrative Review. Microorganisms 2023, 11, 360. [Google Scholar] [CrossRef]
- Iavarone, I.; Greco, P.F.; La Verde, M.; Morlando, M.; Torella, M.; de Franciscis, P.; Ronsini, C. Correlations between Gut Microbial Composition, Pathophysiological and Surgical Aspects in Endometriosis: A Review of the Literature. Medicina 2023, 59, 347. [Google Scholar] [CrossRef]
- Chernukha, C.G.E.; Pronina, P.V.A.; Priputnevich, P.T.V.; Academician, V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia. Gut and genital microbiota in endometriosis. Akush. Ginekol. 2022, 8, 22–29. [Google Scholar] [CrossRef]
- Khan, K.N.; Kitajima, M.; Hiraki, K.; Yamaguchi, N.; Katamine, S.; Matsuyama, T.; Nakashima, M.; Fujishita, A.; Ishimaru, T.; Masuzaki, H. Escherichia coli contamination of menstrual blood and effect of bacterial endotoxin on endometriosis. Fertil. Steril. 2010, 94, 2860–2863.e3. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Cheng, M.; Parnell, L.A.; Yin, Y.; Schriefer, A.; Mysorekar, I.U.; Kommagani, R. Antibiotic Therapy with Metronidazole Reduces Endometriosis Disease Progression in Mice: A Potential Role for Gut Microbiota. Hum. Reprod. 2019, 34, 1106–1116. [Google Scholar] [CrossRef]
- Norfuad, F.A.; Mokhtar, M.H.; Azurah, A.G.N. Beneficial Effects of Probiotics on Benign Gynaecological Disorders: A Review. Nutrients 2023, 15, 2733. [Google Scholar] [CrossRef] [PubMed]
- Elkrief, A.; Derosa, L.; Zitvogel, L.; Kroemer, G.; Routy, B. The intimate relationship between gut microbiota and cancer immunotherapy. Gut Microbes 2019, 10, 424–428. [Google Scholar] [CrossRef]
- Xu, M.-Q.; Cao, H.-L.; Wang, W.-Q.; Wang, S.; Cao, X.-C.; Yan, F.; Wang, B.-M. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J. Gastroenterol. 2015, 21, 102–111. [Google Scholar] [CrossRef]
- Yalçın Bahat, P.; Ayhan, I.; Üreyen Özdemir, E.; İnceboz, Ü.; Oral, E. Dietary supplements for treatment of endometriosis: A review. Acta Biomed. Atenei Parm. 2022, 93, e2022159. [Google Scholar]
- Wang, L.; Yang, J.; Su, H.; Shi, L.; Chen, B.; Zhang, S. Endometrial microbiota from endometrial cancer and paired pericancer tissues in postmenopausal women: Differences and clinical relevance. Menopause 2022, 29, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Ding, J.; Zhao, Q.; Cheng, W.; Yu, J.; Zhou, L.; Sun, S.; Yu, C. Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. Am. J. Reprod. Immunol. 2021, 86, e13471. [Google Scholar] [CrossRef]
- Chiantera, V.; Laganà, A.S.; Basciani, S.; Nordio, M.; Bizzarri, M. A Critical Perspective on the Supplementation of Akkermansia muciniphila: Benefits and Harms. Life 2023, 13, 1247. [Google Scholar] [CrossRef]
- Sari, F.M.; Mirkalantari, S.; Nikoo, S.; Sepahvand, F.; Allahqoli, L.; Asadi, A.; Talebi, M. Potential of Lactobacillus acidophilus to modulate cytokine production by peripheral blood monocytes in patients with endometriosis. Iran. J. Microbiol. 2022, 14, 698–704. [Google Scholar]
- Kennedy, S.; Bergqvist, A.; Chapron, C.; D’Hooghe, T.; Dunselman, G.; Greb, R.; Hummelshoj, L.; Prentice, A.; Saridogan, E.; ESHRE Special Interest Group for Endometriosis and Endometrium Guideline Development Group. ESHRE Guideline for the Diagnosis and Treatment of Endometriosis. Hum. Reprod. 2005, 20, 2698–2704. [Google Scholar] [CrossRef]
- Molina, N.M.; Sola-Leyva, A.; Saez-Lara, M.J.; Plaza-Diaz, J.; Tubić-Pavlović, A.; Romero, B.; Clavero, A.; Mozas-Moreno, J.; Fontes, J.; Altmäe, S. New opportunities for endometrial health by modifying uterine microbial composition: Present or future? Biomolecules 2020, 10, 593. [Google Scholar] [CrossRef]
- Frąszczak, K.; Barczyński, B.; Kondracka, A. Does Lactobacillus Exert a Protective Effect on the Development of Cervical and Endometrial Cancer in Women? Cancers 2022, 14, 4909. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Sashihara, T.; Hosono, A.; Kaminogawa, S.; Uchida, M. Interleukin-12 inhibits development of ectopic endometriotic tissues in peritoneal cavity via activation of NK cells in a murine endometriosis model. Cytotechnology 2011, 63, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Putra, A.K.; Saadi, A.; Surono, I.S.; Ansori, A.N.M.; Nidom, R.V. The Downregulation of Pro-inflammatory Cytokine Interleukin-6 after Oral Administration of Lactobacillus plantarum IS-10506 in Mice Model for Endometriosis. Indian J. Anim. Res. 2023, 57, 620–625. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, T.; Li, H.; Huang, M.; Wang, Q. Gut Microbiome Profiles Correlate with Pain Severity in Women with Endometriosis: A Cross-Sectional Study. Microorganisms 2023, 11, 812. [Google Scholar]
- Lee, J.H.; Kim, Y.S.; Park, M.J.; Choi, H.S. Association Between Gut Dysbiosis and Severity of Endometriosis: A Metagenomic Approach. Reprod. Sci. 2022, 29, 1652–1663. [Google Scholar]
- Khan, K.N.; Kitajima, M.; Hiraki, K.; Fujishita, A.; Nakashima, M.; Fushiki, S.; Masuzaki, H. Intrauterine Microbial Colonization and Immune Modulation in Women with Endometriosis Receiving Gonadotropin-Releasing Hormone Agonist Therapy. Reprod. Med. Biol. 2021, 20, 311–321. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Duan, Y.; Zhao, X.; Li, Z.; Zhang, L.; Li, Y. Alterations in the Gut Microbiome in Patients with Endometriosis: A Systematic Review. Front. Cell. Infect. Microbiol. 2020, 10, 555913. [Google Scholar]
- Hernandes, C.; Silveira, P.; Rodrigues, S.; Delorme-Axford, E.; Lima, T.; Ferreira, R. Microbiome Profile of Endometriotic Lesions, Eutopic Endometrium and Vaginal Fluid in Women with Deep Endometriosis. Pharmaceutics 2020, 12, 689. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, J.; Xie, H.; Chen, B.; Wang, X.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Cai, H.; Zhou, Q.; Zeng, L.; Li, S.; Du, H.; Wei, W.; Zhang, W.; Dai, W.; et al. Translocation of Vaginal and Cervical Low-Abundance Non-Lactobacillus Bacteria Notably Associate with Endometriosis: A Pilot Study. Microb. Pathog. 2023, 183, 106309. [Google Scholar] [CrossRef]
- Akiyama, K.; Itoh, H.; Araki, T.; Nagata, C.; Fukata, S.; Nakashima, A.; Moriyama, A. Cervical Microbiota in Women with Endometriosis. Reprod. Med. Biol. 2019, 18, 231–239. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Hiraki, K.; Kitajima, M.; Nakashima, M.; Ishimaru, T.; Masuzaki, H. Bacterial contamination hypothesis: A new concept in endometriosis. Reprod. Med. Biol. 2016, 15, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-M.; Lin, P.-M.; Tsai, Y.-T.; Tsai, M.-S.; Tseng, C.-H.; Lin, S.-F.; Yang, M.-Y. NVP-BEZ235, a dual PI3K-mTOR inhibitor, suppresses the growth of FaDu hypopharyngeal squamous cell carcinoma and has a synergistic effect with Cisplatin. Cell Death Discov. 2018, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Skorda, A.; Bay, M.L.; Hautaniemi, S.; Lahtinen, A.; Kallunki, T. Kinase Inhibitors in the Treatment of Ovarian Cancer: Current State and Future Promises. Cancers 2022, 14, 6257. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Jo, M.; Lee, E.; Lee, D.; Choi, J. Dienogest enhances autophagy induction in endometriotic cells by impairing activation of AKT, ERK1/2, and mTOR. Fertil. Steril. 2015, 104, e159. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Y.; Xu, G.; Dai, L. Effect of rapamycin on endometriosis in mice. Exp. Ther. Med. 2016, 12, 101–106. [Google Scholar] [CrossRef]
- Kacan, T.; Yildiz, C.; Kacan, S.B.; Seker, M.; Ozer, H.; Cetin, A.; Farquhar, C.; Crossley, S.; Adamson, G.; Kennedy, S.; et al. Everolimus as an mTOR Inhibitor Suppresses Endometriotic Implants: An Experimental Rat Study. Geburtshilfe Frauenheilkd. 2017, 77, 66–72. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Pouly, J.L.; Canis, M. In vitro and in vivo effects of MK2206 and chloroquine combination therapy on endometriosis: Autophagy may be required for regrowth of endometriosis. Br. J. Pharmacol. 2018, 175, 1637–1653. [Google Scholar] [CrossRef]
- Colonetti, T.; do Amaral, C.; Andreoli, C.G.; Paz, A.H.; Figueiredo, F.W.S.; Dos Santos, A.A.; Nunes, R.A.L.; Rosa, M.I. Gut and Vaginal Microbiota in the Endometriosis: Systematic Review and Meta-Analysis. Int. J. Microbiol. 2023, 2023, 2675966. [Google Scholar] [CrossRef]
- Zhou, L.; Li, F.; Xu, H.; Luo, L.; Chen, J.; Li, Y.; Zhang, X.; Wang, C.C. Current Updates on the Role of Microbiome in Endometriosis. Front. Cell. Infect. Microbiol. 2023, 13, 996248. [Google Scholar]
- Perrotta, A.R.; Borrelli, G.M.; Martins, C.O.; Kallas, E.G.; Sanabani, S.S.; Griffith, L.G.; Lam, T.M.; Fazleabas, A.T.; Taylor, R.N.; Angeli, M.; et al. Oral, Vaginal, and Stool Microbial Signatures in Patients with Endometriosis: A Pilot Study. Front. Reprod. Health 2023, 5, 11704027. [Google Scholar]
- Zhu, X.; Shen, Y.; Zhao, H.; Xiang, Y. The Gut Microbiota and Endometriosis: From Pathogenesis to Diagnosis and Treatment. Front. Med. 2022, 9, 972934. [Google Scholar]
- Zhao, H.; Wei, Y.; Luo, X.; Dong, C.; Sun, Y.; Shi, Y.; Zhang, C. Gut Microbiota and Endometriosis: Exploring the Relationship and Potential Therapeutic Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 10747908. [Google Scholar]
- Hernandez, A.L.; Roman, J.D. The Role of the Microbiome in Endometriosis: A Review. BJOG 2020, 127, 239–249. [Google Scholar] [CrossRef]
- Kyono, K.; Hashimoto, T.; Kikuchi, S.; Nagai, Y.; Sakuraba, Y. A Pilot Study and Case Reports on Endometrial Microbiota and Pregnancy Outcome: An Analysis Using 16S RRNA Gene Sequencing among IVF Patients, and Trial Therapeutic Intervention for Dysbiotic Endometrium. Reprod. Med. Biol. 2019, 18, 72–82. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Trojano, G.; Mitola, P.C.; Tinelli, R.; Vitagliano, A.; Crupano, F.M.; Lepera, A.; Miragliotta, G.; Resta, L. Chronic Endometritis in Patients with Unexplained Infertility: Prevalence and Effects of Antibiotic Treatment on Spontaneous Conception. Am. J. Reprod. Immunol. 2018, 79, e12782. [Google Scholar] [CrossRef]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Pinto, V.; Marinaccio, M.; Indraccolo, U.; De Ziegler, D.; Resta, L. Chronic Endometritis due to Common Bacteria Is Prevalent in Women with Recurrent Miscarriage as Confirmed by Improved Pregnancy Outcome after Antibiotic Treatment. Reprod. Sci. 2014, 21, 640–647. [Google Scholar] [CrossRef]
- McQueen, D.B.; Bernardi, L.A.; Stephenson, M.D. Chronic Endometritis in Women with Recurrent Early Pregnancy Loss and/or Fetal Demise. Fertil. Steril. 2014, 101, 1026–1030. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Liu, Y.; Zheng, S.; Zhao, W.; Wu, D.; Lei, L.; Chen, G. Confirmation of Chronic Endometritis in Repeated Implantation Failure and Success Outcome in IVF-ET after Intrauterine Delivery of the Combined Administration of Antibiotic and Dexamethasone. Am. J. Reprod. Immunol. 2019, 82, e13177. [Google Scholar] [CrossRef]
- Khodaverdi, S.; Mohammadbeigi, R.; Khaledi, M.; Mesdaghinia, L.; Sharifzadeh, F.; Nasiripour, S.; Gorginzadeh, M. Beneficial Effects of Oral Lactobacillus on Pain Severity in Women Suffering from Endometriosis: A Pilot Placebo-Controlled Randomized Clinical Trial. Int. J. Fertil. Steril. 2019, 13, 178–183. [Google Scholar]
- Itoh, H.; Uchida, M.; Sashihara, T.; Ji, Z.-S.; Li, J.; Tang, Q.; Ni, S.; Song, L.; Kaminogawa, S. Lactobacillus Gasseri OLL2809 Is Effective Especially on the Menstrual Pain and Dysmenorrhea in Endometriosis Patients: Randomized, Double-Blind, Placebo-Controlled Study. Cytotechnology 2011, 63, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Kobayashi, O. Effects of Lactobacillus Gasseri OLL2809 on the Induced Endometriosis in Rats. Biosci. Biotechnol. Biochem. 2013, 77, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Sashihara, T.; Hosono, A.; Kaminogawa, S.; Uchida, M. Lactobacillus Gasseri OLL2809 Inhibits Development of Ectopic Endometrial Cell in Peritoneal Cavity via Activation of NK Cells in a Murine Endometriosis Model. Cytotechnology 2011, 63, 205–210. [Google Scholar] [CrossRef]
- Ahn, S.H.; Monsanto, S.P.; Miller, C.; Singh, S.S.; Thomas, R.; Tayade, C. Pathophysiology and Immune Dysfunction in Endometriosis. Biomed. Res. Int. 2015, 2015, 795976. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef]
- Gottschick, C.; Deng, Z.L.; Vital, M.; Masur, C.; Abels, C.; Pieper, D.H.; Wagner-Döbler, I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017, 5, 99. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.C. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J. 2019, 132, 1135–1138. [Google Scholar] [CrossRef]
- Perrotta, A.R.; Borrelli, G.M.; Martins, C.O.; Kallas, E.G.; Sanabani, S.S.; Griffith, L.G.; Alm, E.J.; Abrao, M.S. The Vaginal Microbiome as a Tool to Predict RASRM Stage of Disease in Endometriosis: A Pilot Study. Reprod. Sci. 2020, 27, 1064–1073. [Google Scholar] [CrossRef]
Aspect | Key Findings |
---|---|
Role of gut microbiota in EM | Gut microbiota influence immune responses, estrogen metabolism, and inflammation, playing a crucial role in EM progression. |
Microbial dysbiosis in EM | Studies have shown altered microbial composition in EM patients, with decreased Ruminococcaceae and increased Streptococcus, Blautia, Dorea, and E. coli. |
Gut barrier disruption | Gut dysbiosis leads to compromised gut barrier integrity, allowing bacterial metabolites (LPS) to enter circulation and trigger immune activation. |
Immune system activation | Increased endotoxin (LPS) levels activate TLR4, promoting the secretion of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-8. |
Inflammatory pathways | EM patients exhibit overexpression of NF-κB, IL-1, IL-8, and COX-2, leading to chronic pelvic inflammation and pain. |
Impact of antibiotics | Broad-spectrum antibiotics and metronidazole have been shown to reduce lesion size and inflammatory markers in EM mouse models. |
FMT | FMT from EM-induced mice restored lesion growth and inflammation in antibiotic-treated mice, highlighting the direct role of gut microbiota in EM. |
Estrogen–microbiota interaction | Gut microbiota modulate estrogen metabolism by regulating β-glucuronidase activity, which influences estrogen reabsorption and systemic estrogen levels. |
Protective microbes | Lactobacillus and Bifidobacterium help reduce β-glucuronidase-producing bacteria, potentially mitigating EM progression. |
Potential therapeutic approaches | Probiotics, prebiotics, FMT, and COX-2 inhibitors have been suggested as possible interventions to target microbiota-mediated EM progression. |
Aspect | Findings | Evidence Quality | Limitations | Clinical Implications | Future Research Needs | Recommended Actions |
---|---|---|---|---|---|---|
Window of opportunity | No clearly defined period for optimal intervention. | No strong evidence | Lack of preventive treatments and monitoring tools. | Difficulty in early intervention and disease management. | Development of early detection biomarkers. | Prioritize biomarker discovery in clinical setting |
Recurrence management | No established treatment for recurrence post-surgery. | Weak | No consensus on defining recurrence. | Need for individualized follow-up strategies. | Improved non-invasive diagnostic techniques. | Use symptom tracking tools for individualized care |
Surgical treatment | Laparoscopic removal improves pain relief in 6 months. | Moderate (RCTs, n = 171) | Limited number of studies; mixed EM subtypes. | Surgery still recommended for symptom relief. | Larger RCTs comparing surgical techniques. | Standardize surgical techniques and outcome metrics |
Long-term surgical outcomes | One RCT suggests benefits up to 12 months post-surgery. | Low | Small sample size (n = 69), limited follow-up data. | Uncertainty about long-term benefits. | Need for long-term follow-up studies. | Monitor long-term outcomes post-surgery systematically |
Superficial peritoneal EM | Limited evidence that surgery improves symptoms. | Uncertain | Lack of RCTs comparing surgery vs. non-surgical treatment. | Consideration of alternative medical management. | Comparison of ablation vs. excision effectiveness. | Evaluate non-surgical therapies in comparative studies |
Ovarian EM | Surgical excision preferred, especially for large cysts. | Moderate | No threshold cyst size for surgery identified. | Tissue analysis necessary to rule out malignancy. | Need for ovarian reserve preservation strategies. | Develop clear surgical criteria and ovarian function assessment |
Impact on fertility | Surgery may damage ovarian reserve, affecting fertility. | Insufficient data | Unknown impact of cyst excision on ovarian function. | Risk assessment needed before surgical intervention. | Fertility preservation methods in EM patients. | Implement fertility counseling and AMH monitoring protocols |
Deep EM treatment | Surgery is the primary treatment option. | Strong | Some patients benefit from medical therapy instead. | Individualized decision making based on symptom severity. | Optimization of medical vs. surgical treatment balance. | Use shared decision-making models for treatment choice |
Research Focus | Key Insights | Limitations |
---|---|---|
Correlation between gut microbiota and EM | Ongoing studies explore the relationship between gut microbiota composition and EM pathogenesis. | Further systematic research is needed to establish causality and precise mechanisms. |
Advancements in genome sequencing | Modern sequencing technologies have significantly advanced microbiota research, improving understanding within a short period. | The complexity and vast number of gut microorganisms make it challenging to detect all species, leading to potential gaps in data. |
Microbiome-derived metabolites | Investigations suggest that microbiota-derived metabolites may play a key role in EM progression and treatment potential. | The specific metabolic pathways through which microbiota influence EM remain unclear, requiring more research. |
Histological subtypes of EM | EM consists of three main types: superficial peritoneal EM, deeply infiltrating EM, and ovarian EM, each with varying clinical manifestations. | EM lesions coexist with heterogeneous symptoms, making diagnosis and treatment complex. |
Microbiota-mediated pain and infertility | Future research should focus on how specific microbiota or metabolites contribute to pelvic pain and infertility in EM patients. | A lack of precise biomarkers complicates the differentiation between pain-dominant and infertility-dominant EM cases. |
Early and sensitive diagnostic methods | Identifying microbial markers could lead to earlier, safer, and more effective non-invasive diagnostic techniques. | The diagnostic value of gut microbiota remains unclear and requires validation in large-scale clinical studies. |
Bioinformatics and predictive models | Single-cell RNA sequencing, deep learning models, and continuously updated microbiome databases are promising tools for risk stratification and early screening. | Integrating microbiota data with clinical diagnostics remains a challenge, and predictive accuracy requires further refinement. |
Microbiota-based therapies | Targeting specific gut microorganisms may lead to novel interventions with fewer side effects than existing treatments. | Current medical and surgical treatments for EM have high recurrence rates; microbial interventions need extensive clinical validation before widespread use. |
Drug metabolism and microbiome interactions | Understanding how gut microbiota influence drug metabolism could optimize personalized treatment strategies. | Drug–microbiome interactions are highly individualized, requiring personalized medicine approaches. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datkhayeva, Z.; Iskakova, A.; Mireeva, A.; Seitaliyeva, A.; Skakova, R.; Kulniyazova, G.; Shayakhmetova, A.; Koshkimbayeva, G.; Sarmuldayeva, C.; Nurseitova, L.; et al. The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects. Medicina 2025, 61, 811. https://doi.org/10.3390/medicina61050811
Datkhayeva Z, Iskakova A, Mireeva A, Seitaliyeva A, Skakova R, Kulniyazova G, Shayakhmetova A, Koshkimbayeva G, Sarmuldayeva C, Nurseitova L, et al. The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects. Medicina. 2025; 61(5):811. https://doi.org/10.3390/medicina61050811
Chicago/Turabian StyleDatkhayeva, Zaure, Ainur Iskakova, Alla Mireeva, Aida Seitaliyeva, Raikhan Skakova, Gulshat Kulniyazova, Aiman Shayakhmetova, Gaukhar Koshkimbayeva, Chapen Sarmuldayeva, Lazzat Nurseitova, and et al. 2025. "The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects" Medicina 61, no. 5: 811. https://doi.org/10.3390/medicina61050811
APA StyleDatkhayeva, Z., Iskakova, A., Mireeva, A., Seitaliyeva, A., Skakova, R., Kulniyazova, G., Shayakhmetova, A., Koshkimbayeva, G., Sarmuldayeva, C., Nurseitova, L., Koshenova, L., Imanbekova, G., Maxutova, D., Yerkenova, S., Shukirbayeva, A., Pernebekova, U., Dushimova, Z., & Amirkhanova, A. (2025). The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects. Medicina, 61(5), 811. https://doi.org/10.3390/medicina61050811