Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Hemostasis Assay
2.2. PlateletMapping Assay
2.3. Outcomes
2.4. Sample Size
2.5. Statistical Analysis
3. Results
3.1. Global Hemostasis Assays
3.2. PlateletMapping Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEG | Thromboelastography |
CK | Citrated kaolin |
CRT | Citrated rapid TEG |
CKH | Citrated kaolin with heparinase |
CFF | Citrated functional fibrinogen |
ADP | Adenosine diphosphate |
AA | Arachidonic acid |
R | Reaction time |
K | Clot formation kinetics |
MA | Maximum amplitude |
α | Alpha angle |
HKH | Kaolin activation with heparinase test |
ActF | Activator F test |
5-HT | 5-hydroxytryptamine |
References
- Smilowitz, N.R.; Ruetzler, K.; Berger, J.S. Perioperative bleeding and outcomes after noncardiac surgery. Am. Heart J. 2023, 260, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Boo, G.; Na, H.S. Effects of dexmedetomidine on blood coagulation: An in vitro study using rotational thromboelastometry. J. Anesth. 2021, 35, 633–637. [Google Scholar] [CrossRef]
- Shin, H.J.; Park, H.Y.; Na, H.S.; Hong, J.P.; Lee, G.W.; Do, S.H. The effects of Plasma-Lyte 148 solution on blood coagulation: An in-vitro, volunteer study using rotational thromboelastometry. Blood Coagul. Fibrinolysis 2018, 29, 446–450. [Google Scholar] [CrossRef]
- Ghadimi, K.; Levy, J.H.; Welsby, I.J. Perioperative management of the bleeding patient. Br. J. Anaesth. 2016, 117, iii18–iii30. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Kim, S.; Kim, S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int. J. Mol. Sci. 2022, 23, 6022. [Google Scholar] [CrossRef]
- De Clerck, F.F.; Herman, A.G. 5-hydroxytryptamine and platelet aggregation. Fed. Proc. 1983, 42, 228–232. [Google Scholar]
- Pletscher, A. The 5-hydroxytryptamine system of blood platelets: Physiology and pathophysiology. Int. J. Cardiol. 1987, 14, 177–188. [Google Scholar] [CrossRef]
- Shah, B.H.; Rasheed, H.; Rahman, I.H.; Shariff, A.H.; Khan, F.L.; Rahman, H.B.; Hanif, S.; Saeed, S.A. Molecular mechanisms involved in human platelet aggregation by synergistic interaction of platelet-activating factor and 5-hydroxytryptamine. Exp. Mol. Med. 2001, 33, 226–233. [Google Scholar] [CrossRef]
- Rieder, M.; Gauchel, N.; Bode, C.; Duerschmied, D. Serotonin: A platelet hormone modulating cardiovascular disease. J. Thromb. Thrombolysis 2021, 52, 42–47. [Google Scholar] [CrossRef]
- Stratz, C.; Trenk, D.; Bhatia, H.S.; Valina, C.; Neumann, F.J.; Fiebich, B.L. Identification of 5-HT3 receptors on human platelets: Increased surface immunoreactivity after activation with adenosine diphosphate (ADP) and thrombin receptor-activating peptide (TRAP). Thromb. Haemost. 2008, 99, 784–786. [Google Scholar] [CrossRef]
- Smith, H.S.; Cox, L.R.; Smith, E.J. 5-HT3 receptor antagonists for the treatment of nausea/vomiting. Ann. Palliat. Med. 2012, 1, 115–120. [Google Scholar] [CrossRef]
- Liu, F.C.; Liou, J.T.; Liao, H.R.; Mao, C.C.; Yang, P.; Day, Y.J. The anti-aggregation effects of ondansetron on platelets involve IP3 signaling and MAP kinase pathway, but not 5-HT3-dependent pathway. Thromb. Res. 2012, 130, e84–e94. [Google Scholar] [CrossRef]
- Datta, A.; Matlock, M.K.; Le Dang, N.; Moulin, T.; Woeltje, K.F.; Yanik, E.L.; Joshua Swamidass, S. ’Black Box’ to ’Conversational’ Machine Learning: Ondansetron Reduces Risk of Hospital-Acquired Venous Thromboembolism. IEEE J. Biomed. Health Inform. 2021, 25, 2204–2214. [Google Scholar] [CrossRef]
- Eisenberg, P.; MacKintosh, F.R.; Ritch, P.; Cornett, P.A.; Macciocchi, A. Efficacy, safety and pharmacokinetics of palonosetron in patients receiving highly emetogenic cisplatin-based chemotherapy: A dose-ranging clinical study. Ann. Oncol. 2004, 15, 330–337. [Google Scholar] [CrossRef]
- Dias, J.D.; Lopez-Espina, C.G.; Bliden, K.; Gurbel, P.; Hartmann, J.; Achneck, H.E. TEG(R)6s system measures the contributions of both platelet count and platelet function to clot formation at the site-of-care. Platelets 2020, 31, 932–938. [Google Scholar] [CrossRef]
- Artang, R.; Anderson, M.; Nielsen, J.D. Fully automated thromboelastograph TEG 6s to measure anticoagulant effects of direct oral anticoagulants in healthy male volunteers. Res. Pract. Thromb. Haemost. 2019, 3, 391–396. [Google Scholar] [CrossRef]
- Lin, O.A.; Karim, Z.A.; Vemana, H.P.; Espinosa, E.V.; Khasawneh, F.T. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function. PLoS ONE 2014, 9, e87026. [Google Scholar] [CrossRef]
- Galan, A.M.; Lopez-Vilchez, I.; Diaz-Ricart, M.; Navalon, F.; Gomez, E.; Gasto, C.; Escolar, G. Serotonergic mechanisms enhance platelet-mediated thrombogenicity. Thromb. Haemost. 2009, 102, 511–519. [Google Scholar] [CrossRef]
- Teichert, M.; Visser, L.E.; Uitterlinden, A.G.; Hofman, A.; Buhre, P.J.; Straus, S.; De Smet, P.A.; Stricker, B.H. Selective serotonin re-uptake inhibiting antidepressants and the risk of overanticoagulation during acenocoumarol maintenance treatment. Br. J. Clin. Pharmacol. 2011, 72, 798–805. [Google Scholar] [CrossRef]
- Shetti, A.N.; Singh, D.R.; Nag, K.; Shetti, R.A.; Kumar, V.R. Improved prophylaxis of postoperative nausea vomiting: Palonosetron a novel antiemetic. Anesth. Essays Res. 2014, 8, 9–12. [Google Scholar] [CrossRef]
- Jagroop, I.A.; Burnstock, G.; Mikhailidis, D.P. Both the ADP receptors P2Y1 and P2Y12, play a role in controlling shape change in human platelets. Platelets 2003, 14, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Stalker, T.J.; Newman, D.K.; Ma, P.; Wannemacher, K.M.; Brass, L.F. Platelet signaling. In Antiplatelet Agents; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–85. [Google Scholar] [CrossRef]
Reference Values | Palonosetron Concentration (n = 11) | p-Value | ||||
---|---|---|---|---|---|---|
0 ng/mL | 25 ng/mL | 250 ng/mL | 2500 ng/mL | |||
CK | ||||||
R (min) | 4.6–9.1 | 6.5 (0.8) | 6.4 (0.9) | 6.5 (0.8) | 6.6 (0.8) | 0.341 |
K (min) | 0.8–2.1 | 1.6 (0.3) | 1.5 (0.3) | 1.4 (0.4) | 1.6 (0.5) | 0.551 |
MA (mm) | 52–69 | 59.9 (3.5) | 58.0 (4.5) | 58.7 (3.7) | 56.8 (4.8) | 0.031 |
CRT | ||||||
R (min) | 0.3–1.1 | 0.5 (0.1) | 0.5 (0.1) | 0.4 (0.1) | 0.6 (0.2) * | 0.002 |
K (min) | 0.8–2.7 | 1.5 (0.4) | 1.6 (0.5) | 1.7 (0.5) * | 1.9 (0.5) * | 0.015 |
MA (mm) | 52–70 | 61.0 (4.4) | 59.3 (4.7) | 58.5 (4.5) * | 56.6 (5.2) * | 0.001 |
CKH | ||||||
R (min) | 4.3–8.3 | 6.4 (0.8) | 6.5 (0.9) | 6.5 (0.9) | 6.6 (0.9) | 0.151 |
K (min) | 0.8–1.9 | 1.6 (0.4) | 1.5 (0.4) | 1.4 (0.3) | 1.6 (0.5) | 0.599 |
MA (mm) | 52–69 | 60.1 (3.5) | 58.9 (3.2) | 58.3 (4.4) | 57.4 (4.7) | 0.033 |
CFF | ||||||
MA (mm) | 13–30 | 19.8 (0.3) | 19.4 (0.3) | 19.0 (0.4) * | 16.8 (0.5) * | 0.011 |
Reference Values | Palonosetron Concentration (n = 11) | p-Value | |||
---|---|---|---|---|---|
0 ng/mL | 250 ng/mL | 2500 ng/mL | |||
HKH | |||||
R (min) | 4.2–9.8 | 11.2 (7.0) | 8.3 (3.8) | 9.8 (3.6) | 0.379 |
K (min) | 1.0–2.9 | 3.8 (2.0) | 3.4 (1.8) | 4.5 (2.6) | 0.232 |
MA (mm) | 53–68 | 50.7 (7.6) | 50.7 (8.2) | 47.3 (9.7) | 0.130 |
ActF | |||||
MA (mm) | 2–19 | 6.4 (4.6) | 7.1 (5.4) | 4.7 (2.6) | 0.100 |
ADP | |||||
MA (mm) | 45–69 | 42.8 (5.2) | 34.2 (10.3) | 22.8 (4.5) * | 0.001 |
Inhibition (%) | 17.5 (2.6) | 37.3 (19.2) | 56.4 (16.3) * | 0.004 | |
Aggregation (%) | 82.5 (2.6) | 62.7 (19.2) | 43.6 (16.3) * | 0.004 | |
AA | |||||
MA (mm) | 51–71 | 41.1 (13.6) | 36.2 (10.0) | 30.8 (5.8) | 0.201 |
Inhibition (%) | 26.7 (28.5) | 34.5 (20.3) | 37.0 (22.0) | 0.470 | |
Aggregation (%) | 75.3 (28.5) | 65.5 (20.3) | 62.9 (22.0) | 0.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-J.; Koo, B.-W.; Kim, J.-N.; Park, J.-I.; Na, H.-S. Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography. Medicina 2025, 61, 682. https://doi.org/10.3390/medicina61040682
Shin H-J, Koo B-W, Kim J-N, Park J-I, Na H-S. Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography. Medicina. 2025; 61(4):682. https://doi.org/10.3390/medicina61040682
Chicago/Turabian StyleShin, Hyun-Jung, Bon-Wook Koo, Ji-Na Kim, Ji-In Park, and Hyo-Seok Na. 2025. "Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography" Medicina 61, no. 4: 682. https://doi.org/10.3390/medicina61040682
APA StyleShin, H.-J., Koo, B.-W., Kim, J.-N., Park, J.-I., & Na, H.-S. (2025). Effects of the 5-Hydroxytryptamine 3 Receptor Antagonist Palonosetron on Hemostasis: An In Vitro Study Using Thromboelastography. Medicina, 61(4), 682. https://doi.org/10.3390/medicina61040682