Diagnostic Performance of Gynecologic Imaging Reporting and Data System (GI-RADS) in Preoperative Evaluation of Adnexal Masses
Abstract
1. Introduction
2. Materials and Methods
2.1. Exclusion Criteria and Patient Selection
2.2. Imaging Protocols
2.3. Statistical Analysis
3. Results
3.1. Inter- and Intra-Observer Variability
3.2. Error Patterns and Clinical Implications
4. Discussion
Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA A Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Khalil, E.M.; Madney, Y.M.; Hassan, M.; Fahmy, A.M.; Alshammari, S.O.; Alshammari, Q.A.; Abou-Taleb, H.A.; Taha, A.A.; Elgendy, M.O.; Ali, H.A. Maternal and Fetal Outcome of COVID-19 Infection among Pregnant Women. Medicina 2024, 60, 1676. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [PubMed]
- Essa, N.M.; Salem, H.F.; Elgendy, M.O.; Gabr, A.; Omran, M.M.; Hassan, N.A.; Tashkandi, H.M.; Harakeh, S.; Boshra, M.S. Efficacy of metformin as adjuvant therapy in metastatic breast cancer treatment. J. Clin. Med. 2022, 11, 5505. [Google Scholar] [CrossRef] [PubMed]
- Pelayo, M.; Sancho-Sauco, J.; Sanchez-Zurdo, J.; Abarca-Martinez, L.; Borrero-Gonzalez, C.; Sainz-Bueno, J.A.; Alcazar, J.L.; Pelayo-Delgado, I. Ultrasound features and ultrasound scores in the differentiation between benign and malignant adnexal masses. Diagnostics 2023, 13, 2152. [Google Scholar] [CrossRef] [PubMed]
- Lowry, K.P.; Lee, S.I. Imaging and screening of ovarian cancer. Radiol. Clin. 2017, 55, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Amor, F.; Vaccaro, H.; Alcázar, J.L.; León, M.; Craig, J.M.; Martinez, J. Gynecologic imaging reporting and data system: A new proposal for classifying adnexal masses on the basis of sonographic findings. J. Ultrasound Med. 2009, 28, 285–291. [Google Scholar] [PubMed]
- Migda, M.; Bartosz, M.; Migda, M.S.; Kierszk, M.; Katarzyna, G.; Maleńczyk, M. Diagnostic value of the gynecology imaging reporting and data system (GI-RADS) with the ovarian malignancy marker CA-125 in preoperative adnexal tumor assessment. J. Ovarian Res. 2018, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, F.; Liu, J.; Zhang, S. Diagnostic performance of the Gynecology Imaging Reporting and Data System for malignant adnexal masses. Int. J. Gynecol. Obstet. 2017, 137, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.A.A.; Refaat, R.; Ibrahim, S.A.; Madkour, N.M.; Awad, A.M.; Mohamed, E.M.; El Sammak, A.A.; Zaitoun, M.M.; Dawoud, H.A.; Khamis, M.E.; et al. Gynecology Imaging Reporting and Data System (GI-RADS): Diagnostic performance and inter-reviewer agreement. Eur. Radiol. 2019, 29, 5981–5990. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, L.M.; Desoky, H.H.; Seifeldein, G.S.; El-Sharkawy, M.; Sayed, M.M.; Ahmed, S.; Rezk, K.; Hussien, M.T. The diagnostic efficacy of Gynecology Imaging Reporting and Data System (GI-RADS): Single-center prospective cross-sectional study. Egypt. J. Radiol. Nucl. Med. 2019, 50, 61. [Google Scholar]
- Taha, S.; Mohamed, W.R.; Elhemely, M.A.; El-Gendy, A.O.; Mohamed, T. Breast cancer and laser therapy. Laser Innov. Res. Appl. 2024, 1, 43–66. [Google Scholar]
- Taha, S.; Mohamed, W.R.; Elhemely, M.A.; El-Gendy, A.O.; Mohamed, T. Tunable femtosecond laser suppresses the proliferation of breast cancer in vitro. J. Photochem. Photobiol. B Biol. 2023, 240, 112665. [Google Scholar]
- Essa, N.; Elgendy, M.; Gabr, A.; Alharbi, A.; Tashkandi, H.; Salem, H.; Harakeh, S.; Boshra, M. The efficacy of metformin as adjuvant to chemotherapy on IGF levels in non-diabetic female patients with progressive and non-progressive metastatic breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5200–5210. [Google Scholar] [PubMed]
- Koneczny, J.; Czekierdowski, A.; Florczak, M.; Poziemski, P.; Stachowicz, N.; Borowski, D. The use of sonographic subjective tumor assessment, IOTA logistic regression model 1, IOTA Simple Rules and GI-RADS system in the preoperative prediction of malignancy in women with adnexal masses. Ginekol. Pol. 2017, 88, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Sahin, H.; Panico, C.; Ursprung, S.; Simeon, V.; Chiodini, P.; Frary, A.; Carmo, B.; Smith, J.; Freeman, S.; Jimenez-Linan, M.; et al. Non-contrast MRI can accurately characterize adnexal masses: A retrospective study. Eur. Radiol. 2021, 31, 6962–6973. [Google Scholar] [CrossRef] [PubMed]
- Abd elsalam, S.M.; Hamed, S.T.; Sayed, M.A. Diagnostic performance of GI-RADS reporting system in evaluation of adnexal masses. Egypt. J. Radiol. Nucl. Med. 2020, 51, 60. [Google Scholar] [CrossRef]
- Marini, C. A Deep Learning Approach for Segmentation of Ovarian Adnexal Masses. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2022. [Google Scholar]
Characteristics | Malignant (Total = 23) | Benign (Total = 77) | p-Value | |
---|---|---|---|---|
Age (years) | 51.3 ± 7.3 | 45.0 ± 10.6 | ^ 0.002 * | |
BMI (kg/m2) | 28.0 ± 2.5 | 26.9 ± 2.1 | ^ 0.037 * | |
Parity | Nulliparous | 2 (8.7%) | 9 (11.7%) | § 0.999 |
Multiparous | 21 (91.3%) | 68 (88.3%) | ||
Menstruation | Premenopausal | 11 (47.8%) | 58 (75.3%) | # 0.012 * |
Postmenopausal | 12 (52.2%) | 19 (24.7%) | ||
Family history of ovarian cancer | 3 (13.0%) | 2 (2.6%) | § 0.078 | |
Family history of breast cancer | 3 (13.0%) | 5 (6.5%) | § 0.380 | |
Past history of breast cancer | 2 (8.7%) | 1 (1.3%) | § 0.131 |
Grades | Malignant (Total = 23) | Benign (Total = 77) | p-Value |
---|---|---|---|
II | 0 (0.0%) a | 9 (11.7%) a | § < 0.001 * |
III | 3 (13.0%) a | 62 (80.5%) b | |
IV | 14 (60.9%) a | 6 (7.8%) b | |
V | 6 (26.1%) a | 0 (0.0%) b |
Histopathology | GI-RADS | ||||
---|---|---|---|---|---|
II | III | IV | V | Total | |
Serous cystadenoma | 4 (16.7%) | 18 (75.0%) | 2 (8.3%) | 0 (0.0%) | 24 |
Endometrioma | 0 (0.0%) | 18 (94.7%) | 1 (5.3%) | 0 (0.0%) | 19 |
Dermoid | 0 (0.0%) | 11 (78.6%) | 3 (21.4%) | 0 (0.0%) | 14 |
Mucinous cystadenoma | 1 (11.1%) | 8 (88.9%) | 0 (0.0%) | 0 (0.0%) | 9 |
Fibroma | 1 (14.3%) | 6 (85.7%) | 0 (0.0%) | 0 (0.0%) | 7 |
Functional cysts | 3 (75.0%) | 1 (25.0%) | 0 (0.0%) | 0 (0.0%) | 4 |
Serous cystadenocarcinoma | 0 (0.0%) | 2 (12.5%) | 10 (62.5%) | 4 (25.0%) | 16 |
Immature teratoma | 0 (0.0%) | 0 (0.0%) | 3 (75.0%) | 1 (25.0%) | 4 |
Mucinous cystadenocarcinoma | 0 (0.0%) | 1 (33.3%) | 1 (33.3%) | 1 (33.3%) | 3 |
p-value | § < 0.001 * |
GI-RADS | Histopathology | |
---|---|---|
Malignant | Benign | |
IV-V | 20 (20.0%) TP | 6 (6.0%) FP |
II-III | 3 (3.0%) FN | 71 (71.0%) TN |
Kappa (95% CI) | 0.757 (0.607–0.907) | |
p-value | <0.001 * |
GI-RADS Accuracy | Histopathology | n | % |
---|---|---|---|
True positive (Total = 20) | Serous cystadenocarcinoma | 14 | 70.0% |
Immature teratoma | 4 | 20.0% | |
Mucinous cystadenocarcinoma | 2 | 10.0% | |
True negative (Total = 71) | Serous cystadenoma | 22 | 31.0% |
Endometrioma | 18 | 25.4% | |
Dermoid | 11 | 15.5% | |
Mucinous cystadenoma | 9 | 12.7% | |
Fibroma | 7 | 9.9% | |
Functional cysts | 4 | 5.6% | |
False positive (Total = 6) | Serous cystadenoma | 2 | 33.3% |
Endometrioma | 1 | 16.7% | |
Dermoid | 3 | 50.0% | |
False negative (Total = 3) | Serous cystadenocarcinoma | 2 | 66.7% |
Mucinous cystadenocarcinoma | 1 | 33.3% |
Characteristics | Value | 95% CI |
---|---|---|
Sensitivity | 87.0% | 66.4–97.2% |
Specificity | 88.6% | 83.8–97.1% |
Diagnostic accuracy (DA) | 91.0% | 83.6–95.8% |
Youden’s index | 79.2% | 64.2–94.2% |
Positive predictive value (PPV) | 76.9% | 56.4–91.0% |
Negative predictive value (NPV) | 92.3% | 88.6–99.2% |
Positive likelihood ratio (LR+) | 11.16 | 5.09–24.45 |
Negative likelihood ratio (LR−) | 0.14 | 0.05–0.41 |
Diagnostic odds ratio (DOR) | 78.89 | 18.10–343.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, A.A.; Salem, S.A.M.; Faried, E.Z.E.A.; Habib, E.H.; Al-Fakharany, R.S.; Elgendy, M.O.; Abdelkader, H.; Al Fatease, A.; Elkady, M.S.e. Diagnostic Performance of Gynecologic Imaging Reporting and Data System (GI-RADS) in Preoperative Evaluation of Adnexal Masses. Medicina 2025, 61, 679. https://doi.org/10.3390/medicina61040679
Taha AA, Salem SAM, Faried EZEA, Habib EH, Al-Fakharany RS, Elgendy MO, Abdelkader H, Al Fatease A, Elkady MSe. Diagnostic Performance of Gynecologic Imaging Reporting and Data System (GI-RADS) in Preoperative Evaluation of Adnexal Masses. Medicina. 2025; 61(4):679. https://doi.org/10.3390/medicina61040679
Chicago/Turabian StyleTaha, Ahmed A., Sara Abdallah Mohamed Salem, Eman Zein El Abdeen Faried, Eman Hosni Habib, Reham S. Al-Fakharany, Marwa O. Elgendy, Hamdy Abdelkader, Adel Al Fatease, and Maged Salah eldien Elkady. 2025. "Diagnostic Performance of Gynecologic Imaging Reporting and Data System (GI-RADS) in Preoperative Evaluation of Adnexal Masses" Medicina 61, no. 4: 679. https://doi.org/10.3390/medicina61040679
APA StyleTaha, A. A., Salem, S. A. M., Faried, E. Z. E. A., Habib, E. H., Al-Fakharany, R. S., Elgendy, M. O., Abdelkader, H., Al Fatease, A., & Elkady, M. S. e. (2025). Diagnostic Performance of Gynecologic Imaging Reporting and Data System (GI-RADS) in Preoperative Evaluation of Adnexal Masses. Medicina, 61(4), 679. https://doi.org/10.3390/medicina61040679