An Epidemiological Survey of Sepsis in a Tertiary Academic Hospital from Southwestern Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Data Collection
2.3. Sample Collection and Paraclinical Investigations
2.4. Statistical Analysis
3. Results
3.1. Cohort Description
3.2. Medical History
3.3. Bacterial Etiology
3.4. Antibiotic Therapy During Hospitalization
3.5. Outcome of the Severe Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Vital Signs: Making Health Care Safer|VitalSigns|CDC. Available online: https://archive.cdc.gov/www_cdc_gov/vitalsigns/sepsis/infographic.html (accessed on 14 June 2024).
- CDC HAI Prevention, Control and Outbreak Response for Public Health and Healthcare. Available online: https://www.cdc.gov/healthcare-associated-infections/php/toolkit/index.html (accessed on 14 June 2024).
- Healthcare-Associated Infections. Available online: https://www.ecdc.europa.eu/en/healthcare-associated-infections (accessed on 14 June 2024).
- Hassoun-Kheir, N.; Harbarth, S. Estimating Antimicrobial Resistance Burden in Europe—What Are the next Steps? Lancet Public Health 2022, 7, e886–e887. [Google Scholar] [PubMed]
- Waterlow, N.R.; Cooper, B.S.; Robotham, J.V.; Knight, G.M. Antimicrobial Resistance Prevalence in Bloodstream Infection in 29 European Countries by Age and Sex: An Observational Study. PLoS Med. 2024, 21, e1004301. [Google Scholar]
- Emons, M.; Blanquart, F.; Lehtinen, S. Temporal Trends in Antibiotic Resistance in Europe, 1998–2019. medRxiv 2023. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Guo, J.; Li, H.; Yang, H.; Zhang, D. Comparison of Patients with Community-Acquired and Hospital-Acquired Sepsis or Septic Shock: A Systematic Review and Meta-Analysis. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Cretu, M.S.; Grigore, A.C.; Maier, A.; Popa, T.O.; Condratovici, A.P.; Dorobat, C.; Pavel, L.L.; Chesaru, I.B. Early Stratification of Sepsis Using Presepsine in Emergency Department (North-East of Romania Experience). Mat. Plast. 2017, 54, 190–193. [Google Scholar]
- Lungu, N.; Popescu, D.-E.; Gorun, F.I.; Nan, G.; Popa, Z.L.; Manea, A.; Brandibur, T.E.; Jura, A.-M.C.; Costescu, S.; Belovan, B. D-Dimer as a Useful Biomarker in Early Diagnosis of Neonatal Sepsis: A Single-Center Study from Romania. Cureus 2024, 16, e65213. [Google Scholar] [CrossRef]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.; Rachita, A.; Moldovan, I. Healthcare Associated Infections—A New Pathology in Medical Practice? Int. J. Environ. Res. Public Health 2020, 17, 760. [Google Scholar] [CrossRef] [PubMed]
- Giubelan, L.-I.; Neacșu, A.I.; Rotaru-Zavaleanu, A.D.; Osiac, E. Antimicrobial Resistance in Sepsis Cases Due to Escherichia Coli and Klebsiella Pneumoniae: Pre-Pandemic Insights from a Single Center in Southwestern Romania. Healthcare 2024, 12, 1713. [Google Scholar] [CrossRef]
- Scheer, C.S.; Giamarellos-Bourboulis, E.J.; Ferrer, R.; Idelevich, E.A.; Annane, D.; Artigas, A.; Aslan, A.T.; Bottari, G.; Bouma, H.R.; Cerny, V.; et al. Status of Sepsis Care in European Hospitals: Results from an International Cross-Sectional Survey. Am. J. Respir. Crit. Care Med. 2025. [Google Scholar] [CrossRef]
- Kakaraskoska Boceska, B.; Vilken, T.; Xavier, B.B.; Kostyanev, T.; Lin, Q.; Lammens, C.; Ellis, S.; O’Brien, S.; da Costa, R.M.A.; Cook, A. Assessment of Three Antibiotic Combination Regimens against Gram-Negative Bacteria Causing Neonatal Sepsis in Low-and Middle-Income Countries. Nat. Commun. 2024, 15, 3947. [Google Scholar]
- Gasparović, V.; Gornik, I.; Ivanović, D. Sepsis Syndrome in Croatian Intensive Care Units: Piloting a National Comparative Clinical Database. Croat. Med. J. 2006, 47, 404–409. [Google Scholar] [PubMed]
- Oldendorff, F.; Nordberg, V.; Giske, C.G.; Navér, L. A Decade of Neonatal Sepsis in Stockholm, Sweden: Gram-Positive Pathogens Were Four Times as Common as Gram-Negatives. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 959–968. [Google Scholar]
- Anggraini, D.; Hasni, D.; Amelia, R. Pathogenesis of Sepsis. Sci. J. 2022, 1, 332–339. [Google Scholar]
- Mendes, R.E.; Sader, H.S.; Castanheira, M.; Flamm, R.K. Distribution of Main Gram-Positive Pathogens Causing Bloodstream Infections in United States and European Hospitals during the SENTRY Antimicrobial Surveillance Program (2010–2016): Concomitant Analysis of Oritavancin in Vitro Activity. J. Chemother. 2018, 30, 280–289. [Google Scholar]
- Shin, J.H.; Warren, C.A. Collateral Damage during Antibiotic Treatment of C. Difficile Infection in the Aged Host: Insights into Why Recurrent Dis-ease Happens. Gut Microbes 2017, 8, 504–510. [Google Scholar]
- Cersosimo, L.M.; Graham, M.; Monestier, A.; Pavao, A.; Worley, J.N.; Peltier, J.; Dupuy, B.; Bry, L. Central in Vivo Mechanisms by Which C. difficile’s Proline Reductase Drives Efficient Metabolism, Growth, and Toxin Production. bioRxiv 2023. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium Difficile Infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef] [PubMed]
- Witt, L.; Howard-Anderson, J.; Overton, E.; Jacob, J. Impact of Exposure to Potentially Contaminated Hospital Beds on Risk of Hospital-Onset C. Difficile Infection. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, s17–s18. [Google Scholar] [CrossRef]
- Rohde, J.M.; Jones, K.; Padron, N.; Olmsted, R.N.; Chopra, V.; Dubberke, E.R. A Tiered Approach for Preventing Clostridioides Difficile Infection. Ann. Intern. Med. 2019, 171, S45–S51. [Google Scholar] [CrossRef]
- Hota, S.S.; Doll, M.; Bearman, G. Preventing Clostridioides Difficile Infection in Hospitals: What Is the Endgame? BMJ Qual. Saf. 2020, 29, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Aliyu, S.H. Is Clostridium Difficile Infection Still a Problem for Hospitals? Cmaj 2012, 184, 17–18. [Google Scholar]
- Vázquez-Martínez, E.R.; García-Gómez, E.; Camacho-Arroyo, I.; González-Pedrajo, B. Sexual Dimorphism in Bacterial Infections. Biol. Sex. Differ. 2018, 9, 27. [Google Scholar]
- Gay, L.; Melenotte, C.; Lakbar, I.; Mezouar, S.; Devaux, C.; Raoult, D.; Bendiane, M.-K.; Leone, M.; Mège, J.-L. Sexual Dimorphism and Gender in Infectious Diseases. Front. Immunol. 2021, 12, 698121. [Google Scholar]
- World Health Organization. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Vermassen, J.; Decruyenaere, J.; De Bus, L.; Depuydt, P.; Colpaert, K. Characteristics of Sepsis-2 Septic Shock Patients Failing to Satisfy the Sepsis-3 Septic Shock Definition: An Analysis of Real-Time Collected Data. Ann. Intensive Care 2021, 11, 154. [Google Scholar] [CrossRef]
- Driessen, R.G.H.; van de Poll, M.C.G.; Mol, M.F.; van Mook, W.N.K.A.; Schnabel, R.M. The Influence of a Change in Septic Shock Definitions on Intensive Care Epidemiology and Outcome: Comparison of Sepsis-2 and Sepsis-3 Definitions. Infect. Dis. 2018, 50, 207–213. [Google Scholar] [CrossRef]
Characteristics | Severe Infection Cohort (n = 184) | Clostridium difficile Severe Infection n = 40 | Respiratory Severe Infection n = 38 | Urinary Severe Infection n = 35 | p-Value 2 | Post-hoc Tests 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value 1 | p-Value 1 | p-Value 1 | C vs. R | C vs. U | R vs. U | |||||||
Age median (IQR) | 64.5 (39.00–75.00) | 67.5 (56.50–72.75) | - | 64 (46.50–75.00) | - | 65 (30.00–74.00) | - | 0.65 | NA | NA | NA | |
Age groups, n (%) | 18–30 | 32 (17.39%) | 5 (12.50%) | - | 5 (13.15%) | - | 10 (28.57%) | - | 0.27 | NA | NA | NA |
31–45 | 25 (13.58%) | 4 (10.00%) | - | 5 (13.15%) | - | 3 (8.57%) | - | 0.12 | NA | NA | NA | |
46–60 | 22 (11.95%) | 2 (5.00%) | - | 5 (13.15%) | - | 4 (11.42%) | - | 0.66 | NA | NA | NA | |
>60 | 105 (57.06%) | 29 (72.50%) | - | 23 (60.52%) | - | 18 (51.42%) | - | 0.31 | NA | NA | NA | |
Sex, female, n (%) | 98 (53.26%) | 18 (45.00%) | 0.28 | 21 (55.26%) | 0.86 | 21 (60.00%) | 0.45 | - | - | - | - | |
Background, urban (n, %) | 106 (57.60%) | 23 (57.50%) | 1.00 | 20 (52.63%) | 0.58 | 18 (51.42%) | 0.45 | - | - | - | - | |
BMI median (IQR) | 24.86 (21.93–27.43) | 22.31 (19.28–25.86) | - | 23.90 (22.40–28.16) | - | 25.09 (22.22–26.50) | - | 0.04 | 0.07 | 0.09 | 1.00 | |
Smoking (either present or past), n (%) | 56 (30.43%) | 8 (20.00%) | 0.12 | 17 (44.73%) | 0.05 | 6 (17.14%) | 0.07 | - | - | - | - |
Characteristics | Severe Infection Cohort n = 184 | Clostridium difficile Severe Infection n = 40 | Respiratory Severe Infection n = 38 | Urinary Severe Infection n = 35 | p-Value 2 | ||||
---|---|---|---|---|---|---|---|---|---|
p-Value 1 | p-Value 1 | p-Value 1 | |||||||
Past antibiotic use, n (%) | 75 (40.76) | 32 (80.00%) | 1.48 × 10−5 | 12 (31.57%) | 0.58 | 11 (31.42%) | 0.19 | - | |
DM treatment, n (%) | Type II, insulin, n (%) | 6 (3.26%) | 2 (5.00%) | NA | 0 | NA | 1 (2.85%) | NA | - |
Number of years any diabetes treatment—median (IQR) | 5 (3.00–11.00) | 10 (4.00–11.00) | - | 7.5 (6.25–8.75) | - | 5 (0.51–19.50) | - | 0.95 | |
Glucocorticoid use | 18 (9.78%) | 3 (7.50%) | 0.77 | 4 (10.52%) | 0.77 | 2 (5.71%) | 0.53 | - | |
Medical history, n (%) | Cardiovascular disease | 98 (53.26%) | 25 (62.50%) | 0.21 | 25 (65.78%) | 0.10 | 16 (45.71%) | 0.35 | - |
Vascular disease | 25 (13.58%) | 2 (5.00%) | 0.11 | 7 (18.42%) | 0.42 | 6 (17.14%) | 0.58 | - | |
High blood pressure | 94 (51.09%) | 24 (60.00%) | 0.22 | 24 (63.15%) | 0.10 | 16 (45.71%) | 0.57 | - | |
Cardiac ischemia | 41 (22.28%) | 10 (25.00%) | 0.67 | 11 (28.94%) | 0.28 | 7 (20.00%) | 1.00 | - | |
High cholesterol levels | 50 (27.17%) | 12 (30.00%) | 1.00 | 15 (39.47%) | 0.06 | 10 (28.57%) | 1.00 | - | |
Peripheral arterial disease | 106 (57.60%) | 25 (62.50%) | 0.59 | 26 (68.42%) | 0.14 | 21 (60.00%) | 0.85 | - | |
Kidney disease | 23 (12.50%) | 4 (10.00%) | 0.60 | 3 (7.89%) | 0.42 | 10 (28.57%) | <0.01 | - | |
Diabetes | 34 (18.47%) | 9 (22.50%) | 0.49 | 3 (7.89%) | 0.06 | 7 (20.00%) | 0.81 | - | |
Inflammatory bowel disorder | 7 (3.80%) | 2 (5.00%) | 0.66 | 0 | 0.35 | 2 (5.71%) | 0.64 | - | |
Malignancy | 19 (10.32%) | 9 (22.50%) | 0.07 | 2 (5.26%) | 0.37 | 3 (8.57%) | 1.00 | - | |
Gastrointestinal | 10 (5.43%) | 2 (5.00%) | NA | 3 (7.89%) | NA | 1 (2.85%) | NA | - | |
Hepato-biliary | 21 (11.41%) | 6 (15.00%) | NA | 3 (7.89%) | NA | 4 (11.42%) | NA | - | |
Respiratory | 9 (4.89%) | 4 (10.00%) | NA | 3 (7.89%) | NA | 0 | NA | - | |
ENT | 6 (3.26%) | 1 (2.50%) | NA | 2 (5.26%) | NA | 0 | NA | - | |
Thyroid | 6 (3.26%) | 3 (7.50%) | NA | 0 | NA | 1 (2.85%) | NA | - | |
Previous hospitalization, n (%) | Hospital admission 3 months prior to enrollment | 76 (41.30%) | 30 (75.00%) | 1.36 × 10−6 | 12 (31.57%) | 0.20 | 9 (25.71%) | 0.06 |
Median (IQR) | Severe Infection Cohort n = 184 | Clostridium difficile Severe Infection n = 40 | Respiratory Severe Infection n = 38 | Urinary Severe Infection n = 35 | p-Value 2 | Post-Hoc Tests 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value 1 | p-Value 1 | p-Value 1 | C vs. R | C vs. U | R vs. U | |||||||
Leukocyte count | Total (1000/mm3) | 15.45 (13.05–19.47) | 17.40 (13.72–20.07) | - | 14.20 (7.72–17) | - | 16.20 (13.50–20.45) | - | 0.07 | NA | NA | NA |
Neutrophils, segmented (%) missing values: 1 | 74.00 (67.00–79.00) | 70.50 (65.50–77.5) | - | 73.00 (65.25–8.75) | - | 76.00 (67.00–84.00) | - | 0.28 | NA | NA | NA | |
Monocytes (%) missing values: 1 | 5.00 (4.00–7.00) | 6.00 (4.00–8.00) | - | 6.00 (4.25–7.75) | - | 5.00 (3.00–7.00) | - | 0.54 | NA | NA | NA | |
Lymphocytes (%) missing values: 1 | 10.00 (6.00–15.00) | 11.00 (6.75–18.25) | - | 12.00 (7.00–19.50) | - | 8.00 (5.00–13.00) | - | 0.06 | NA | NA | NA | |
Inflammation | ESR 2 h missing values: 9 | 75.00 (50.00–105.00) | 70.00 (55.00–90.00) | - | 80.50 (42.75–110) | - | 83.50 (52.75–111.50) | - | 0.44 | NA | NA | NA |
Ferritin missing values: 24 | 198.96 (87.63–324.10) | 224.81 (144.02–362.69) | - | 175.07 (74.81–300.00) | - | 166.43 (71.82–263.92) | - | 0.27 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorescu, A.; Dumitrescu, F.; Dorobantu, S.; Dragos, A.; Pirvu, A.; Roskanovic, M.; on behalf of the FUSE study; Streata, I.; Ioana, M.; Netea, M.G.; et al. An Epidemiological Survey of Sepsis in a Tertiary Academic Hospital from Southwestern Romania. Medicina 2025, 61, 596. https://doi.org/10.3390/medicina61040596
Grigorescu A, Dumitrescu F, Dorobantu S, Dragos A, Pirvu A, Roskanovic M, on behalf of the FUSE study, Streata I, Ioana M, Netea MG, et al. An Epidemiological Survey of Sepsis in a Tertiary Academic Hospital from Southwestern Romania. Medicina. 2025; 61(4):596. https://doi.org/10.3390/medicina61040596
Chicago/Turabian StyleGrigorescu, Andra, Florentina Dumitrescu, Stefania Dorobantu, Adina Dragos, Andrei Pirvu, Mihaela Roskanovic, on behalf of the FUSE study, Ioana Streata, Mihai Ioana, Mihai G. Netea, and et al. 2025. "An Epidemiological Survey of Sepsis in a Tertiary Academic Hospital from Southwestern Romania" Medicina 61, no. 4: 596. https://doi.org/10.3390/medicina61040596
APA StyleGrigorescu, A., Dumitrescu, F., Dorobantu, S., Dragos, A., Pirvu, A., Roskanovic, M., on behalf of the FUSE study, Streata, I., Ioana, M., Netea, M. G., & Riza, A.-L. (2025). An Epidemiological Survey of Sepsis in a Tertiary Academic Hospital from Southwestern Romania. Medicina, 61(4), 596. https://doi.org/10.3390/medicina61040596