The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components
Abstract
1. Introduction
2. Materials and Methods
- Increased waist circumference, with ethnic-specific waist circumference cut-off points (use European data for Eastern Mediterranean and Middle Eastern populations until more specific data are available; Europid populations: males ≥ 94 cm, females ≥ 80 cm).
- Serum triglycerides ≥ 150 mg/dL or treatment for elevated triglycerides.
- Serum high-density lipoprotein cholesterol (HDL-C) < 40 mg/dL in males or < 50 mg/dL in females, or treatment for low HDL-C.
- Systolic blood pressure ≥ 130 mmHg, diastolic blood pressure ≥ 85 mmHg, or treatment for hypertension (HT).
- Fasting blood glucose (FBG) ≥ 100 mg/dL or previously diagnosed type 2 diabetes.
3. Results
4. Discussion
5. Conclusions
Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, C.; Masumiya, H.; Weisleder, N.; Matsuda, N.; Nishi, M.; Hwang, M.; Ko, J.; Lin, P.; Thornton, A.; Zhao, X.; et al. MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol. 2009, 11, 56–64. [Google Scholar]
- Lee, C.S.; Yi, J.S.; Jung, S.Y.; Kim, B.W.; Lee, N.R.; Choo, H.J.; Jang, S.Y.; Han, J.; Chi, S.G.; Park, M.; et al. Trim72 negatively regulates myogenesis via targeting insulin receptor substrate-1. Cell Death Differ. 2010, 17, 1254–1265. [Google Scholar] [PubMed]
- Wang, X.; Xie, W.; Zhang, Y.; Lin, P.; Han, L.; Han, P.; Wang, Y.; Chen, Z.; Ji, G.; Zheng, M.; et al. Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent mg53-mediated membrane repair. Circ. Res. 2010, 107, 76–83. [Google Scholar] [PubMed]
- Jia, Y.; Chen, K.; Lin, P.; Lieber, G.; Nishi, M.; Yan, R.; Wang, Z.; Yao, Y.; Li, Y.; Whitson, B.A.; et al. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nat. Commun. 2014, 5, 4387. [Google Scholar]
- Duann, P.; Li, H.; Lin, P.; Tan, T.; Wang, Z.; Chen, K.; Zhou, X.; Gumpper, K.; Zhu, H.; Ludwig, T.; et al. Mg53-mediated cell membrane repair protects against acute kidney injury. Sci. Transl. Med. 2015, 7, 279. [Google Scholar]
- Chandler, H.L.; Tan, T.; Yang, C.; Gemensky-Metzler, A.J.; Wehrman, R.F.; Jiang, Q.; Peterson, C.M.W.; Geng, B.; Zhou, X.; Wang, Q.; et al. MG53 promotes corneal wound healing and mitigates fibrotic remodeling in rodents. Commun. Biol. 2019, 2, 71. [Google Scholar]
- Sermersheim, M.; Kenney, A.D.; Lin, P.; McMichael, T.M.; Cai, C.; Gumpper, K.; Adesanya, T.M.A.; Li, H.; Zhou, X.; Park, K.H.; et al. MG53 suppresses interferon- β and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nat. Commun. 2020, 11, 3624. [Google Scholar]
- Shan, D.; Guo, S.; Wu, H.K.; Fengxiang, L.; Jin, L.; Zhang, M.; Xie, P.; Wang, Y.; Song, Y.; Wu, F.; et al. Cardiac Ischemic Preconditioning Promotes MG53 Secretion Through H2O2-Activated Protein Kinase C-δ Signaling. Circulation 2020, 142, 1077–1091. [Google Scholar]
- Benissan-Messan, D.Z.; Zhu, H.; Zhong, W.; Tan, T.; Ma, J.; Lee, P.H.U. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front. Physiol. 2020, 11, 583393. [Google Scholar] [CrossRef]
- Cao, C.M.; Zhang, Y.; Weisleder, N.; Ferrante, C.; Wang, X.; Lv, F.; Zhang, Y.; Song, R.; Hwang, M.; Jin, L.; et al. MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation 2010, 121, 2565–2574. [Google Scholar]
- Zhang, Y.; Lv, F.; Jin, L.; Peng, W.; Song, R.; Ma, J.; Cao, C.M.; Xiao, R.P. MG53 participates in ischaemic postconditioning through the RISK signalling pathway. Cardiovasc. Res. 2011, 91, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xiao, R.P. MG53 and disordered metabolism in striated muscle. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1984–1990. [Google Scholar] [CrossRef]
- Song, R.; Peng, W.; Zhang, Y.; Lv, F.; Wu, H.K.; Guo, J.; Cao, Y.; Pi, Y.; Zhang, X.; Jin, L.; et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 2013, 494, 375–379. [Google Scholar] [CrossRef]
- Yang, X.D.; Xiang, D.X.; Yang, Y.Y. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes. Metab. 2016, 18, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, R.; Feng, Y.; Guo, J.; Chen, Y.; Zhang, Y.; Chen, T.; Wang, Y.; Huang, Y.; Li, C.Y.; et al. Upregulation of MG53 induces diabetic cardiomyopathy through transcriptional activation of peroxisome proliferation-activated receptor α. Circulation 2015, 131, 795–804. [Google Scholar] [CrossRef]
- Wu, H.K.; Zhang, Y.; Cao, C.M.; Hu, X.; Fang, M.; Yao, Y.; Jin, L.; Chen, G.; Jiang, P.; Zhang, S.; et al. Glucose-sensitive myokine/cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation 2019, 139, 901–914. [Google Scholar] [CrossRef]
- Wang, Q.; Bian, Z.; Jiang, Q.; Wang, X.; Zhou, X.; Park, K.H.; Hsueh, W.; Whitson, B.A.; Haggard, E.; Li, H.; et al. MG53 Does Not Manifest the Development of Diabetes in db/db Mice. Diabetes 2020, 69, 1052–1064. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Wang, Q.; Zhou, X.; Tan, T.; Park, K.H.; Kramer, H.F.; McDougal, A.; Laping, N.J.; Kumar, S.; Adesanya, T.M.A.; et al. Sustained elevation of mg53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nat. Commun. 2019, 10, 4659. [Google Scholar] [CrossRef]
- Philouze, C.; Turban, S.; Cremers, B.; Caliez, A.; Lamarche, G.; Bernard, C.; Provost, N.; Delerive, P. Mg53 is not a critical regulator of insulin signaling pathway in skeletal muscle. PLoS ONE 2021, 16, e0245179. [Google Scholar] [CrossRef]
- Andaç, B.; Özgün, E.; Yılmaz-Bülbül, B.; Yanık-Çolak, S.; Okur, M.; Yekdeş, A.C.; Öcal, E.; Tapan, M.E.; Çelik, M. Association of MG53 with presence of type 2 diabetes mellitus, glycemic control, and diabetic complications. PLoS ONE 2023, 18, e0291333. [Google Scholar] [CrossRef]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [PubMed]
- Grundy, S.M. Metabolic syndrome: Connecting and reconciling cardiovascular and diabetes worlds. J. Am. Coll. Cardiol. 2006, 47, 1093–1100. [Google Scholar] [PubMed]
- Dizaji, B.F. The investigations of genetic determinants of the metabolic syndrome. Diyabet Metab. Syndr. 2018, 12, 783–789. [Google Scholar]
- Shulman, G.I.; Rothman, D.L.; Jue, T.; Stein, P.; DeFronzo, R.A.; Shulman, R.G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N. Engl. J. Med. 1990, 322, 223–228. [Google Scholar] [CrossRef]
- Wang, Y.F.; An, Z.Y.; Li, J.W.; Dong, Z.K.; Jin, W.L. MG53/TRIM72: Multi-organ repair protein and beyond. Front. Physiol. 2024, 15, 1377025. [Google Scholar]
- Xie, H.; Wang, Y.; Zhu, T.; Feng, S.; Yan, Z.; Zhu, Z.; Ni, J.; Ni, J.; Du, R.; Zhu, J.; et al. Serum MG53/TRIM72 Is Associated with the Presence and Severity of Coronary Artery Disease and Acute Myocardial Infarction. Front. Physiol. 2020, 11, 1658. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith Jr, S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Bianchi, C.; Raggi, F.; Rossi, C.; Frontoni, S.; Bonadonna, R.C.; Prato, S.D.; Solini, A. MG53 marks poor beta cell performance and predicts onset of type 2 diabetes in subjects with different degrees of glucose tolerance. Diabetes Metab. 2022, 48, 101292. [Google Scholar]
- Terauchi, Y.; Iwamoto, K.; Tamemoto, H.; Komeda, K.; Ishii, C.; Kanazawa, Y.; Asanuma, N.; Aizawa, T.; Akanuma, Y.; Yasuda, K.; et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J. Clin. Investig. 1997, 99, 861–866. [Google Scholar]
- Tamemoto, H.; Kadowaki, T.; Tobe, K.; Yagi, T.; Sakura, H.; Hayakawa, T.; Terauchi, Y.; Ueki, K.; Kaburagi, Y.; Satoh, S.; et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994, 372, 182–186. [Google Scholar]
- Laustsen, P.G.; Michael, M.D.; Crute, B.E.; Cohen, S.E.; Ueki, K.; Kulkarni, R.N.; Keller, S.R.; Lienhard, G.E.; Kahn, C.R. Lipoatrophic diabetes in Irs1(-/-)/Irs3(-/-) double knockout mice. Genes. Dev. 2002, 16, 3213–3222. [Google Scholar]
- Caruso, M.; Ma, D.; Msallaty, Z.; Lewis, M.; Seyoum, B.; Al-janabi, W.; Diamond, M.; Abou-Samra, A.B.; Højlund, K.; Tagett, R.; et al. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. Diabetes 2014, 63, 1933–1947. [Google Scholar] [PubMed]
- Ma, H.; Liu, J.; Bian, Z.; Cui, Y.; Zhou, X.; Zhou, X.; Zhang, B.; Adesanya, T.M.A.; Yi, F.; Park, K.H.; et al. Effect of metabolic syndrome on mitsugumin 53 expression and function. PLoS ONE 2015, 10, e0124128. [Google Scholar]
- Ma, L.L.; Kong, F.J.; Guo, J.J.; Zhu, J.B.; Shi, H.T.; Li, Y.; Sun, R.H.; Ge, J.B. Hypercholesterolemia abrogates remote ischemic preconditioning-induced cardioprotection: Role of reperfusion injury salvage kinase signals. Shock 2017, 47, 363–369. [Google Scholar]
- Ma, L.L.; Zhang, F.J.; Qian, L.B.; Kong, F.J.; Sun, J.F.; Zhou, C.; Peng, Y.N.; Xu, H.J.; Wang, W.N.; Wen, C.Y.; et al. Hypercholesterolemia blocked sevoflurane-induced cardioprotection against ischemia-reperfusion injury by alteration of the MG53/RISK/GSK3β signaling. Int. J. Cardiol. 2013, 168, 3671–3678. [Google Scholar] [PubMed]
- Xu, Y.; Ma, L.L.; Zhou, C.; Zhang, F.J.; Kong, F.J.; Wang, W.N.; Qian, L.B.; Wang, C.C.; Liu, X.B.; Yan, M.; et al. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection. PLoS ONE 2013, 8, e76652. [Google Scholar]
- Yi, J.S.; Park, J.S.; Ham, Y.M.; Nguyen, N.; Lee, N.R.; Hong, J.; Kim, B.W.; Lee, H.; Lee, C.S.; Jeong, B.C.; et al. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat. Commun. 2013, 4, 2354. [Google Scholar]
- Yuan, H.; Niu, Y.; Liu, X.; Yang, F.; Niu, W.; Fu, L. Proteomic analysis of skeletal muscle in insulin-resistant mice: Response to 6-week aerobic exercise. PLoS ONE 2013, 8, e53887. [Google Scholar]
- Zabielski, P.; Lanza, I.R.; Gopala, S.; Heppelmann, C.J.H.; Bergen3rd, H.R.; Dasari, S.; Nair, K.S. Altered skeletal muscle mitochondrial proteome as the basis of disruption of mitochondrial function in diabetic mice. Diabetes 2016, 65, 561–573. [Google Scholar]
- Bai, J.; Zheng, S.; Jiang, D.; Han, T.; Li, Y.; Zhang, Y.; Liu, W.; Cao, Y.; Hu, Y. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models. Int. J. Clin. Exp. Pathol. 2015, 8, 13193–13200. [Google Scholar] [PubMed]
- Evans, J.L.; Maddux, B.A.; Goldfine, I.D. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal. 2005, 7, 1040–1052. [Google Scholar] [PubMed]
Parameters | Case Group Median (2575 Percentile) | Control Group Median (25–75Percentile) | p | ||
---|---|---|---|---|---|
Age (/year) | 53.50 (45.00–60.00) | 51.00 (41.25–57.00) | 0.107 a | ||
Gender | Male | 25 (39.1%) ** | 27 (42.2%) ** | 0.719 b | |
Female | 39 (60.9%) ** | 37 (57.8%) ** | |||
Height (/cm) | 164.50 (156.00–172.00) | 165.00 (160.00–173.75) | 0.418 a | ||
Weight (/kg) | 92.50 (80.00–104.50) | 66.00 (61.00–75.00) | 0.001 a | ||
BMI (kg/m2) | 33.16 (30.48–36.78) | 24.42 (23.10–26.97) | 0.001 a | ||
WC (/cm) | 113.09 ± 11.26 * | 85.44 ± 10.20* | 0.001 c | ||
Hypertension presence | HT (+) | 44 (68.8%) ** | - | 0.001 b | |
HT (−) | 20 (31.3%) ** | 64 (100%) ** | |||
FBG (mg/dL) | 107.50 (95.50–126.00) | 90.50 (85.00–93.00) | 0.001 a | ||
HbA1c (%) | 6.35 (6.00–7.27) | 5.7 (5.4–6.00) | 0.001 a | ||
Triglyceride (mg/dL) | 174.50 (114.00–262.25) | 100.00 (76.00–148.75) | 0.001 a | ||
T. Chol. (mg/dL) | 189.50 (160.25–227.00) | 193.50 (169.00–221.75) | 0.717 a | ||
LDL-C (mg/dL) | 115.00 (93.00–146.00) | 125.00 (101.25–145.00) | 0.232 a | ||
HDL-C (mg/dL) | 44.00 (37.00–54.00) | 50.50(40.00–62.75) | 0.012 a |
Parameters | Case Group MS n = 47 | Control Group n = 40 | p | |
---|---|---|---|---|
Gender | Male n (%) | 19 (40.4%) | 15 (37.5%) | NS a |
Female n (%) | 28 (59.6%) | 25 (62.5%) | ||
Age (/year) Mean ± SD | 53.6 ± 10.9 | 50.6 ± 10.3 | NS b | |
BMI (kg/m2) Mean ± SD | 33.9 ± 4.8 | 24.6 ± 2.3 | 0.000 b | |
WC (/cm) Mean ± SD | 112.8 ± 10.7 | 84.9 ± 10.4 | 0.000 b | |
FBG (mg/dL) Med (25.–75. Percentile) | 106 (92–126) | 90 (84.25–93) | 0.000 c | |
HbA1c (%) Med (25.–75. Percentile) | 6.3 (6.0–7.1) | - | - | |
Triglyceride (mg/dL) Med (25.–75. Percentile) | 189 (130–271) | 104 (80.5–165.5) | 0.000 c | |
T. Chol. (mg/dL) Mean ± SD | 204.6 ± 55.2 | 201.1 ± 47 | NS b | |
HDL-C (mg/dL) Med (25.–75. Percentile) | 44 (37–51) | 54 (41.25–61.25) | 0.017 c | |
LDL-C (mg/dL) Mean ± SD | 124.3 ± 35.4 | 130.9 ± 40 | NS b | |
HT presence n (%) | 31 (66%) | - | 0.000 a | |
MG53 (0 values excluded) Med (25.–75. Percentile) | 82.86 (31.43–141.43) | 73.57 (30.71–156.07) | 0.969 c |
Parameter | Case Group MG53 | Control Group MG53 | Total Subjects MG53 | |
---|---|---|---|---|
Age (/year) | r p | 0.302 0.039 | 0.071 0.664 | 0.175 0.105 |
Height (/cm) | r p | −0.064 0.670 | −0.054 0.741 | −0.066 0.541 |
Weight (/kg) | r p | −0.108 0.470 | −0.065 0.689 | −0.065 0.553 |
BMI(kg/m2) | r p | −0.115 0.440 | 0.034 0.833 | −0.052 0.632 |
WC (/cm) | r p | −0.075 0.617 | 0.071 0.662 | −0.032 0.766 |
FBG (mg/dL) | r p | −0.030 0.839 | 0.214 0.185 | 0.016 0.880 |
HbA1c (%) | r p | −0.014 0.926 | 0.315 0.103 | 0.026 0.822 |
Triglyceride (mg/dL) | r p | 0.109 0.464 | 0.400 0.011 | 0.192 0.075 |
T. Chol. (mg/dL) | r p | 0.404 0.005 | 0.138 0.394 | 0.290 0.006 |
LDL-C (mg/dL) | r p | 0.282 0.055 | 0.051 0.753 | 0.175 0.105 |
HDL-C (mg/dL) | r p | 0.159 0.287 | −0.206 0.202 | −0.035 0.750 |
MG53 Tertiles | ||||||
---|---|---|---|---|---|---|
Parameters | Low Med (25–75 P.) | Medium Med (25–75 P.) | High Med (25–75 P.) | p | ||
Age (/year) | 51.00 (41.00–58.00) | 52.00 (44.25–55.25) | 56.00 (48.00–60.00) | 0.172 a | ||
Gender | Male | 18 (41.9%) ** | 19 (45.2%) ** | 15 (34.9%) ** | 0.611 b | |
Female | 25 (58.1%) ** | 23 (54.8%) ** | 28 (65.1%) ** | |||
Height (/cm) | 165.00 (160.00–175.00) | 165.00 (157.75–176.00) | 163.00 (156.00–170.00) | 0.420 a | ||
Weight (/kg) | 75.00 (66.00–88.00) | 80.00 (65.75–95.25) | 80.00 (69.00–92.00) | 0.938 a | ||
BMI (kg/m2) | 27.50 (24.00–31.60) | 29.17 (23.97–33.83) | 28.40 (25.00–33.10) | 0.730 a | ||
WC (/cm) | 97.47 ± 17.39 * | 99.86 ± 19.38 * | 100.49 ± 15.96 * | 0.704 c | ||
HT Pres. | HT (+) | 13 (30.2%) ** | 13 (31.0%) ** | 18 (41.9%) ** | 0.446 b | |
HT (−) | 30 (69.8%) ** | 29 (69.0%) ** | 25 (58.1%) ** | |||
DM Pres. | DM (+) | 18 (41.9%) ** | 22 (52.4%) ** | 24 (55.8%) ** | 0.403 b | |
DM (−) | 25 (58.1%) ** | 20 (47.6%) ** | 19 (44.2%) ** | |||
FBG (mg/dL) | 95.00 (89.00–108.00) | 92.50 (87.75–112.50) | 93.00 (89.00–107.00) | 0.881 a | ||
HbA1c (%) | 5.85 (5.55–6.52) | 6.10 (5.60–6.85) | 6.00 (5.72–6.37) | 0.577 a | ||
Triglyceride (mg/dL) | 99.00 (85.00–168.00) | 117.00 (89.25–195.50) | 167.00 (102.00–251.00) | 0.006 a | ||
T. Chol. (mg/dL) | 187.00 (166.00–210.00) | 183.50 (162.75–216.50) | 208.00 (182.00–242.00) | 0.017 a | ||
LDL-C (mg/dL) | 114.00 (93.00–139.00) | 117.00 (99.25–143.00) | 131.00 (103.00–153.00) | 0.194 a | ||
HDL-C (mg/dL) | 49.00 (39.00–63.00) | 44.00 (38.75–58.00) | 47.00 (37.00–57.00) | 0.835 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanık Çolak, S.; Andaç, B.; Özgün, E.; Yılmaz Bülbül, B.; Okur, M.; Yekdeş, A.C.; Yıldız, Ç.; Çelik, M. The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components. Medicina 2025, 61, 582. https://doi.org/10.3390/medicina61040582
Yanık Çolak S, Andaç B, Özgün E, Yılmaz Bülbül B, Okur M, Yekdeş AC, Yıldız Ç, Çelik M. The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components. Medicina. 2025; 61(4):582. https://doi.org/10.3390/medicina61040582
Chicago/Turabian StyleYanık Çolak, Serpil, Burak Andaç, Eray Özgün, Buket Yılmaz Bülbül, Mine Okur, Ali Cem Yekdeş, Çağla Yıldız, and Mehmet Çelik. 2025. "The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components" Medicina 61, no. 4: 582. https://doi.org/10.3390/medicina61040582
APA StyleYanık Çolak, S., Andaç, B., Özgün, E., Yılmaz Bülbül, B., Okur, M., Yekdeş, A. C., Yıldız, Ç., & Çelik, M. (2025). The Relationship Between Serum MG53 Levels and the Presence of Metabolic Syndrome and Its Components. Medicina, 61(4), 582. https://doi.org/10.3390/medicina61040582