Impact of Preterm Birth on Long-Term Cardiac Function: A Comprehensive Echocardiographic Study in School-Aged Children
Abstract
1. Introduction
2. Methods
2.1. Echocardiographic Evaluation
2.2. Statistical Analysis
3. Results
Comparison of Echocardiographic Data by Groups
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: A systematic analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [PubMed]
- Ueda, P.; Cnattingius, S.; Stephansson, O.; Ingelsson, E.; Ludvigsson, J.F.; Bonamy, A.-K.E. Cerebrovascular and ischemic heart disease in young adults born preterm: A population-based Swedish cohort study. Eur. J. Epidemiol. 2014, 29, 253–260. [Google Scholar] [PubMed]
- Crump, C.; Howell, E.A.; Stroustrup, A.; McLaughlin, M.A.; Sundquist, J.; Sundquist, K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 2019, 173, 736–743. [Google Scholar]
- Telles, F.; McNamara, N.; Nanayakkara, S.; Doyle, M.P.; Williams, M.; Yaeger, L.; Marwick, T.H.; Leeson, P.; Levy, P.T.; Lewandowski, A.J. Changes in the preterm heart from birth to young adulthood: A meta-analysis. Pediatrics 2020, 146, e20200146. [Google Scholar] [PubMed]
- Bensley, J.G.; Stacy, V.K.; De Matteo, R.; Harding, R.; Black, M.J. Cardiac remodelling as a result of pre-term birth: Implications for future cardiovascular disease. Eur. Heart J. 2010, 31, 2058–2066. [Google Scholar]
- Lewandowski, A.J.; Lamata, P.; Francis, J.M.; Piechnik, S.K.; Ferreira, V.M.; Boardman, H.; Neubauer, S.; Singhal, A.; Leeson, P.; Lucas, A. Breast milk consumption in preterm neonates and cardiac shape in adulthood. Pediatrics 2016, 138, e20160050. [Google Scholar] [CrossRef] [PubMed]
- El-Khuffash, A.; Lewandowski, A.J.; Jain, A.; Hamvas, A.; Singh, G.K.; Levy, P.T. Cardiac performance in the first year of age among preterm infants fed maternal breast milk. JAMA Netw. Open 2021, 4, e2121206. [Google Scholar]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Bradlow, W.M.; Augustine, D.; Davis, E.F.; Francis, J.; Singhal, A.; Lucas, A.; Neubauer, S.; McCormick, K.; Leeson, P. Right ventricular systolic dysfunction in young adults born preterm. Circulation 2013, 128, 713–720. [Google Scholar]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 2013, 127, 197–206. [Google Scholar]
- Haque, U.; Stiver, C.; Rivera, B.K.; Richards, B.; Ma, N.; Cua, C.L.; Smith, C.V.; Backes, C.H. Right ventricular performance using myocardial deformation imaging in infants with bronchopulmonary dysplasia. J. Perinatol. 2017, 37, 81–87. [Google Scholar] [PubMed]
- Sehgal, A.; Malikiwi, A.; Paul, E.; Tan, K.; Menahem, S. Right ventricular function in infants with bronchopulmonary dysplasia: Association with respiratory sequelae. Neonatology 2016, 109, 289–296. [Google Scholar] [PubMed]
- Burchert, H.; Lewandowski, A.J. Preterm birth is a novel, independent risk factor for altered cardiac remodeling and early heart failure: Is it time for a new cardiomyopathy? Curr. Treat. Options Cardiovasc. Med. 2019, 21, 8. [Google Scholar]
- Skudder-Hill, L.; Ahlsson, F.; Lundgren, M.; Cutfield, W.S.; Derraik, J.G. Preterm birth is associated with increased blood pressure in young adult women. J. Am. Heart Assoc. 2019, 8, e012274. [Google Scholar]
- Cheung, Y.F.; Wong, K.Y.; Lam, B.C.; Tsoi, N.S. Relation of arterial stiffness with gestational age and birth weight. Arch. Dis. Child. 2004, 89, 217–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, J.; Epton, M.J.; Harris, S.L.; Horwood, J.; Kingsford, R.A.; Troughton, R.; Greer, C.; Darlow, B.A. Reduced exercise capacity in adults born at very low birth weight: A population-based cohort study. Am. J. Respir. Crit. Care Med. 2022, 205, 88–98. [Google Scholar] [PubMed]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Rydberg, A.; Halvorsen, C.P.; Liuba, P.; Fellman, V.; Domellöf, M.; Sjöberg, G.; Norman, M. The preterm heart in childhood: Left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births. J. Am. Heart Assoc. 2018, 7, e007742. [Google Scholar]
- Shubert, U.; Müller, M.; Abdul-Khaliq, H.; Norman, M. Preterm birth is associated with altered myocardial function in infancy. J. Am. Soc. Echocardiogr. 2016, 29, 670–678. [Google Scholar]
- Flahault, A.; Altit, G.; Sonea, A.; Gervais, A.-S.; Mian, M.O.R.; Wu, R.; Desbrousses, E.; Mai, L.; Cloutier, A.; Simoneau, J.; et al. Left ventricle structure and function in young adults born very preterm and association with neonatal characteristics. J. Clin. Med. 2021, 10, 1760. [Google Scholar] [CrossRef]
- Mohlkert, L.-A.; Hallberg, J.; Broberg, O.; Sjöberg, G.; Rydberg, A.; Liuba, P.; Fellman, V.; Domellöf, M.; Norman, M.; Halvorsen, C.P. Right Heart Structure, Geometry and Function Assessed by Echocardiography in 6-Year-Old Children Born Extremely Preterm—A Population-Based Cohort Study. J. Clin. Med. 2020, 10, 122. [Google Scholar] [CrossRef]
- Greer, C.; Harris, S.L.; Troughton, R.; Adamson, P.D.; Horwood, J.; Frampton, C.; Darlow, B.A. Right ventricular structure and function in young adults born preterm at very low birth weight. J. Clin. Med. 2021, 10, 4864. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, A.J.; Raman, B.; Bertagnolli, M.; Mohamed, A.; Williamson, W.; Pelado, J.L.; McCance, A.; Lapidaire, W.; Neubauer, S.; Leeson, P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J. Am. Coll. Cardiol. 2021, 78, 683–692. [Google Scholar] [PubMed]
- Schuermans, A.; Den Harink, T.; Raman, B.; Smillie, R.W.; Alsharqi, M.; Mohamed, A.; Lapidaire, W.; van Deutekom, A.W.; Leeson, P.; Lewandowski, A.J. Differing impact of preterm birth on the right and left atria in adulthood. J. Am. Heart Assoc. 2022, 11, e027305. [Google Scholar] [PubMed]
Premature Group (n = 32) Mean ± SD | Control Group (n = 32) Mean ± SD | p | |
---|---|---|---|
Age (months) | 115.25 ± 13.58 | 112.41 ± 15.75 | 0.441 |
Height (cm) | 131.13 ± 11.06 | 135.12 ± 10.03 | 0.135 |
Weight (kg) | 31.03 ± 8.93 kg | 30.68 ± 9.03 | 0.879 |
Gender (F-M) (n-%) | 14–18 (43.8–56.2) | 16–16 (50–50) | 0.802 |
Birth weight (g) | 1479.06 ± 595.58 | 3375.94 ± 156.84 | 0.001 |
Gestational age (weeks) | 30.06 ± 2.80 | 38.41 ± 0.91 | 0.001 |
Systolic blood pressure (mmHg) | 108.10 ± 9.34 | 116.56 ± 6.53 | 0.001 |
Diastolic blood pressure (mmHg) | 65.00 ± 8.05 | 67.19 ± 7.61 | 0.272 |
Heart rate (beats/min) | 90.55 ± 10.65 | 88.91 ± 8.43 | 0.499 |
Echocardiography Data | Premature Group (n = 32) | Control Group (n = 32) | p |
---|---|---|---|
Age (months) | 115 ± 13 | 112 ± 16 | 0.671 |
Height (cm) | 131 ± 11 | 135 ± 10 | 0.317 |
Weight (kg) | 31 ± 9 | 31 ± 9 | 0.751 |
Mitral E (cm/s) | 100.54 ± 17.99 | 86.13 ± 12.80 | 0.001 |
Mitral A (cm/s) | 58.71 ± 12.38 | 51.25 ± 10.06 | 0.010 |
MV deceleration time * (ms) | 127 (67–342) | 146 (60–204) | 0.545 |
Mitral A time (ms) | 140.69 ± 4.91 | 140.72 ± 34.09 | 0.154 |
Mitral lateral E | 19.35 ± 4.91 | 17.42 ± 3.04 | 0.064 |
Mitral lateral A | 7.72 ± 2.55 | 6.79 ± 1.55 | 0.086 |
Mitral lateral S | 10.59 ± 2.04 | 10.34 ± 2.20 | 0.634 |
Septal E | 13.66 ± 2.05 | 12.22 ± 2.08 | 0.007 |
Septal A * | 5.65 (3.45–39.20) | 5.41 (3.80–8.94) | 0.519 |
Septal S * | 7.66 (4.41–9.12) | 7.27 (5.28–8.61) | 0.256 |
IVCT (ms) | 53.31 ± 13.75 | 56.34 ± 12.93 | 0.367 |
Ejection time (ms) | 268.47 ± 19.86 | 258.38 ± 28.07 | 0.102 |
IVRT(ms) | 47.31 ± 11.96 | 57.47 ± 14.43 | 0.003 |
MPI | 0.38 ± 0.07 | 0.45 ± 0.12 | 0.005 |
MAPSE (mm) | 11.31 ± 2.03 | 12.32 ± 1.71 | 0.036 |
Tricuspid E | 70.44 ± 18.81 | 67.30 ± 13.24 | 0.443 |
Tricuspid A | 49.72 ± 18.81 | 43.46 ± 43.46 | 0.021 |
TR velosity | 1.44 ± 0.59 | 1.27 ± 0.44 | 0.210 |
Tricuspid lateral E | 14.47 ± 2.99 | 14.38 ± 2.60 | 0.907 |
Tricuspid lateral A | 9.55 ± 2.98 | 9.20 ± 3.15 | 0.652 |
Tricuspid lateral S | 12.44 ± 1.54 | 11.98 ± 2.69 | 0.272 |
TAPSE (mm) | 16.53 ± 2.73 | 17.37 ± 2.69 | 0.215 |
IVSd * (mm) | 5.97 (4.86–8.32) | 6.65 (4.35–8.80) | 0.096 |
LVEDd (mm) | 37.84 ± 3.92 | 39.27 ± 4.06 | 0.157 |
LVPWd (mm) | 6.41 ± 0.99 | 6.56 ± 0.92 | 0.535 |
LVESd (mm) | 23.22 ± 3.11 | 24.05 ± 3.22 | 0.300 |
LVEF (%) | 69.92 ± 5.60 | 69.29 ± 5.55 | 0.646 |
LVFS * (%) | 37.55 (29.9–49.2) | 38.5 (30–52.20) | 0.809 |
LVEDV (mL) | 63.00 ± 15.05 | 68.30 ± 15.84 | 0.175 |
LVESV (mL) | 18.84 ± 6.40 | 22.59 ± 6.25 | 0.021 |
RVEDA (cm2) | 9.00 ± 2.47 | 8.89 ± 2.36 | 0.858 |
RVESA (cm2) | 5.61 ± 1.51 | 5.25 ± 1.45 | 0.334 |
RVFAC (%) | 0.37 ± 0.10 | 0.39 ± 0.08 | 0.160 |
Echocardiographic Data | Premature Group (n = 32) | Control Group (n = 32) | p |
---|---|---|---|
LV GLS (%) | −21.23 ± 1.88 | −22.70 ± 1.87 | 0.003 |
LV CS (%) | −24.87 ± 3.48 | −24.76 ± 2.95 | 0.896 |
RV FWS (%) | −21.99 ± 7.04 | −30.54 ± 4.86 | 0.001 |
RV4Cs (%) | −19.74 ± 5.61 | −26.12 ± 4.11 | 0.001 |
LA longitudinal strain peak (ms) * | 342.5 (269–524) * | 341 (186–476) * | 0.989 |
LASr ED (%) | 42.34 ± 11.51 | 43.38 ± 9.63 | 0.696 |
LAScd ED (%) | −34.42 ± 9.35 | −33.89 ± 9.49 | 0.821 |
LASct ED (%) | −7.94 ± 6.87 | −9.36 ± 7.13 | 0.422 |
Echocardiographic Data | O2 Requirement | NICU Stay Duration | Surfactant Treatment | Gestational Age |
---|---|---|---|---|
r | r | r | r | |
Mitral E (cm/s) | −0.201 | −0.266 | −0.031 | −0.424 |
Mitral A (cm/s) | −0.133 | −0.229 | 0.127 | −0.332 |
MV deceleration time (ms) | −0.127 | −0.223 | 0.172 | 0.045 |
Mitral A time (ms) | −0.191 | −0.237 | 0.165 | −0.075 |
Mitral lateral E | −0.002 | 0.082 | −0.368 | −0.217 |
Mitral lateral A | −0.270 | −0.240 | −0.033 | −0.092 |
Mitral lateral S | −0.295 | −0.277 | −0.146 | 0.030 |
Septal E | −0.163 | −0.110 | 0.180 | −0.263 |
Septal A | −0.288 | −0.270 | 0.298 | −0.108 |
Septal S | −0.229 | −0.171 | 0.003 | −0.076 |
IVCT (ms) | 0.105 | 0.021 | −0.088 | −0.103 |
Sistol (ms) | −0.078 | −0.231 | 0.074 | −0.182 |
IVRT(ms) | 0.044 | −0.138 | −0.074 | 0.381 |
MPI | 0.145 | 0.022 | −0.147 | 0.344 |
MAPSE (mm) | −0.291 | −0.291 | 0.069 | 0.373 |
Tricuspid E | −0.133 | −0.196 | −0.019 | −0.040 |
Tricuspid A | −0.163 | 0.066 | 0.130 | −0.249 |
TR velosity | 0.055 | −0.049 | 0.062 | −0.111 |
Tricuspid lateral E | 0.156 | 0.140 | 0.211 | 0.003 |
Tricuspid lateral A | −0.199 | −0.52 | −0.130 | −0.101 |
Tricuspid lateral S | 0.030 | 0.165 | −0.022 | −0.127 |
TAPSE (mm) | −0.009 | −0.118 | 0.196 | 0.144 |
IVSd (mm) | −0.288 | −0.308 | 0.073 | 0.303 |
LVEDd (mm) | −0.407 | −0.552 | −0.056 | 0.280 |
LVPWd (mm) | −0.300 | −0.272 | −0.261 | 0.128 |
LVESd (mm) | −0.430 | −0.491 | −0.062 | 0.226 |
LVEF (%) | 0.133 | 0.054 | −0.003 | −0.061 |
LVFS (%) | 0.071 | 0.173 | −0.097 | −0.046 |
LVEDV (mL) | −0.330 | −0.505 | −0.189 | 0.236 |
LVESV (mL) | −0.390 | −0.439 | −0.076 | −0.350 |
RVEDA (cm2) | −0.139 | −0.185 | 0.217 | 0.091 |
RVESA (cm2) | −0.197 | −0.229 | 0.146 | 0.012 |
RVFAC (%) | 0.111 | 0.083 | 0.082 | 0.215 |
LV GLS (%) | 0.173 | 0.184 | −0.081 | 0.389 |
LV CS (%) | 0.057 | 0.106 | −0.155 | 0.039 |
RV FWS (%) | −0.075 | 0.063 | 0.073 | 0.464 |
RV4Cs (%) | −0.079 | −0.027 | −0.026 | −0.428 |
LA longitudinal strain peak (ms) | −0.008 | −0.092 | −0.120 | 0.096 |
LASr ED (%) | 0.128 | 0.077 | −0.220 | 0.048 |
LAScd ED (%) | −0.113 | −0.080 | 0.280 | 0.010 |
LASct ED (%) | −0.060 | −0.020 | −0.023 | −0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalokay, N.; Sulu, A.; Kosger, P.; Kaya, T.B.; Ucar, B. Impact of Preterm Birth on Long-Term Cardiac Function: A Comprehensive Echocardiographic Study in School-Aged Children. Medicina 2025, 61, 573. https://doi.org/10.3390/medicina61040573
Dalokay N, Sulu A, Kosger P, Kaya TB, Ucar B. Impact of Preterm Birth on Long-Term Cardiac Function: A Comprehensive Echocardiographic Study in School-Aged Children. Medicina. 2025; 61(4):573. https://doi.org/10.3390/medicina61040573
Chicago/Turabian StyleDalokay, Nidai, Ayse Sulu, Pelin Kosger, Tugba Barsan Kaya, and Birsen Ucar. 2025. "Impact of Preterm Birth on Long-Term Cardiac Function: A Comprehensive Echocardiographic Study in School-Aged Children" Medicina 61, no. 4: 573. https://doi.org/10.3390/medicina61040573
APA StyleDalokay, N., Sulu, A., Kosger, P., Kaya, T. B., & Ucar, B. (2025). Impact of Preterm Birth on Long-Term Cardiac Function: A Comprehensive Echocardiographic Study in School-Aged Children. Medicina, 61(4), 573. https://doi.org/10.3390/medicina61040573