Quality of Single-Cone Obturation Using Different Sizes of Matching Gutta-Percha Points of Two Reciprocating Single-File Systems in Curved and Straight Root Canals
Abstract
1. Introduction
2. Materials and Methods
2.1. General Study Design
2.2. Sample Selection
2.3. Sample Population
2.4. Root Canal Preparation and Obturation
2.5. Evaluation and Statistical Analysis
3. Results
3.1. General Result per ISO Sizes
3.2. Obturation Quality in Different ISO per File-System
3.3. Obturation Quality in Different ISO per Curvacure
3.4. Obturation Quality in Different ISO per Canal Section
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandra, A. Discuss the factors that affect the outcome of endodontic treatment. Aust. Endod. J. 2009, 35, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Muliyar, S.; Shameem, K.A.; Thankachan, R.P.; Francis, P.G.; Jayapalan, C.S.; Hafiz, K.A. Microleakage in endodontics. J. Int. Oral. Health 2014, 6, 99–104. [Google Scholar] [PubMed]
- Drukteinis, S.; Bilvinaite, G.; Tusas, P.; Shemesh, H.; Peciuliene, V. Porosity Distribution in Single Cone Root Canal Fillings Performed by Operators with Different Clinical Experience: A microCT Assessment. J. Clin. Med. 2021, 10, 2569. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Park, J.W.; Jung, I.Y.; Shin, S.J. Comparison of the Percentage of Voids in the Canal Filling of a Calcium Silicate-Based Sealer and Gutta Percha Cones Using Two Obturation Techniques. Materials 2017, 10, 1170. [Google Scholar] [CrossRef] [PubMed]
- Immich, F.; Cotti, E.; Pirani, C.; Rossi-Fedele, G. What is new in the 2023 European Society of Endodontology S3-level clinical practice guidelines? Int. Endod. J. 2024, 57, 1059–1064. [Google Scholar] [CrossRef]
- Gernhardt, C.R.; Kruger, T.; Bekes, K.; Schaller, H.G. Apical sealing ability of 2 epoxy resin-based sealers used with root canal obturation techniques based on warm gutta-percha compared to cold lateral condensation. Quintessence Int. 2007, 38, 229–234. [Google Scholar]
- Clinton, K.; Van Himel, T. Comparison of a warm gutta-percha obturation technique and lateral condensation. J. Endod. 2001, 27, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Walker, M.P.; Kulild, J.; Lee, C. A comparison of three gutta-percha obturation techniques to replicate canal irregularities. J. Endod. 2006, 32, 762–765. [Google Scholar] [CrossRef]
- Bhandi, S.; Mashyakhy, M.; Abumelha, A.S.; Alkahtany, M.F.; Jamal, M.; Chohan, H.; Raj, A.T.; Testarelli, L.; Reda, R.; Patil, S. Complete Obturation-Cold Lateral Condensation vs. Thermoplastic Techniques: A Systematic Review of Micro-CT Studies. Materials 2021, 14, 4013. [Google Scholar] [CrossRef]
- Chhabra, A.; Ramya, K.P.; Prathap, S.; Yadav, P.; Mehra, H.; Parvathy, S.J. Evaluating the Sealing Performance of Endodontic Sealers: Insights Into Achieving Complete Sealing. Cureus 2024, 16, e71967. [Google Scholar] [CrossRef]
- Arvaneh, S.; Haghighat, S.; Schwesig, R.; Gernhardt, C.R. Evaluation of Gutta-Percha-Filled Areas in Curved and Straight Root Canals Using Three Reciprocating Single-File Systems Followed by Matching Single-Cone Obturation. Appl. Sci. 2024, 14, 8661. [Google Scholar] [CrossRef]
- Krug, R.; Krastl, G.; Jahreis, M. Technical quality of a matching-taper single-cone filling technique following rotary instrumentation compared with lateral compaction after manual preparation: A retrospective study. Clin. Oral. Investig. 2017, 21, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Gound, T.G.; Sather, J.P.; Kong, T.S.; Makkawy, H.A.; Marx, D.B. Graduating dental students’ ability to produce quality root canal fillings using single- or multiple-cone obturation techniques. J. Dent. Educ. 2009, 73, 696–705. [Google Scholar] [CrossRef]
- Moinzadeh, A.T.; Zerbst, W.; Boutsioukis, C.; Shemesh, H.; Zaslansky, P. Porosity distribution in root canals filled with gutta percha and calcium silicate cement. Dent. Mater. 2015, 31, 1100–1108. [Google Scholar] [CrossRef]
- Selem, L.C.; Li, G.H.; Niu, L.N.; Bergeron, B.E.; Bortoluzzi, E.A.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Quality of obturation achieved by a non-gutta-percha-based root filling system in single-rooted canals. J. Endod. 2014, 40, 2003–2008. [Google Scholar] [CrossRef]
- Stelzer, R.; Schaller, H.G.; Gernhardt, C.R. Push-out bond strength of RealSeal SE and AH Plus after using different irrigation solutions. J. Endod. 2014, 40, 1654–1657. [Google Scholar] [CrossRef]
- Liu, H.; Zaghwan, A.; Wang, X.; Alexander, A.; Tay, F.; Shen, Y. Efficacy of root filling removal from aged, minimally instrumented mandibular molars using a retreatment system combination. J. Dent. 2025, 152, 105454. [Google Scholar] [CrossRef] [PubMed]
- Perez-Alfayate, R.; Mercade, M.; Algar-Pinilla, J.; Cisneros-Cabello, R.; Foschi, F.; Cohen, S. Root Canal Filling Quality Comparison of a Premixed Calcium Silicate Endodontic Sealer and Different Carrier-Based Obturation Systems. J. Clin. Med. 2021, 10, 1271. [Google Scholar] [CrossRef]
- Jin, H.R.; Jang, Y.E.; Kim, Y. Comparison of Obturation Quality between Calcium Silicate-Based Sealers and Resin-Based Sealers for Endodontic Re-treatment. Materials 2021, 15, 72. [Google Scholar] [CrossRef]
- El Sayed, M. Comparing Sectional and Total Dentin Bond Strengths of Three Endodontic Sealers after Using the Single-cone Obturation Technique: An In Vitro Study. J. Contemp. Dent. Pract. 2024, 25, 976–982. [Google Scholar] [CrossRef]
- Akcay, M.; Arslan, H.; Durmus, N.; Mese, M.; Capar, I.D. Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and guttaflow bioseal root canal sealers after different final irrigation procedures: A confocal microscopic study. Lasers Surg. Med. 2016, 48, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Shantiaee, Y.; Zandi, B.; Hosseini, M.; Davoudi, P.; Farajollahi, M. Quality of Root Canal Filling in Curved Canals Utilizing Warm Vertical Compaction and Two Different Single Cone Techniques: A Three-Dimensional Micro-Computed Tomography Study. J. Dent. 2024, 25, 147–154. [Google Scholar] [CrossRef]
- Holderrieth, S.; Gernhardt, C.R. Maxillary molars with morphologic variations of the palatal root canals: A report of four cases. J. Endod. 2009, 35, 1060–1065. [Google Scholar] [CrossRef]
- Celikten, B.; Uzuntas, C.F.; Orhan, A.I.; Orhan, K.; Tufenkci, P.; Kursun, S.; Demiralp, K.O. Evaluation of root canal sealer filling quality using a single-cone technique in oval shaped canals: An In vitro Micro-CT study. Scanning 2016, 38, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Tanikonda, R.; Nalam, P.N.; Sajjan, G.S.; Lakshmi, B.H.; Varma, K.M.; Satish, R.K. Evaluation of the Quality of Obturation with Obtura at Different Sizes of Apical Preparation Through Microleakage Testing. J. Clin. Diagn. Res. 2016, 10, ZC35–ZC38. [Google Scholar] [CrossRef] [PubMed]
- Alim, B.A.; Garip Berker, Y. Evaluation of different root canal filling techniques in severely curved canals by micro-computed tomography. Saudi Dent. J. 2020, 32, 200–205. [Google Scholar] [CrossRef]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral. Surg. Oral. Med. Oral. Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Saini, H.R.; Tewari, S.; Sangwan, P.; Duhan, J.; Gupta, A. Effect of different apical preparation sizes on outcome of primary endodontic treatment: A randomized controlled trial. J. Endod. 2012, 38, 1309–1315. [Google Scholar] [CrossRef]
- Plotino, G.; Cortese, T.; Grande, N.M.; Leonardi, D.P.; Di Giorgio, G.; Testarelli, L.; Gambarini, G. New Technologies to Improve Root Canal Disinfection. Braz. Dent. J. 2016, 27, 3–8. [Google Scholar] [CrossRef]
- Guinesi, A.S.; Faria, G.; Tanomaru-Filho, M.; Bonetti-Filho, I. Influence of sealer placement technique on the quality of root canal filling by lateral compaction or single cone. Braz. Dent. J. 2014, 25, 117–122. [Google Scholar] [CrossRef]
- Elfarraj, H.; Lizzi, F.; Bitter, K.; Zaslansky, P. Effects of endodontic root canal irrigants on tooth dentin revealed by infrared spectroscopy: A systematic literature review. Dent. Mater. 2024, 40, 1138–1163. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zheng, X.; Liang, Y.; Zhang, C.; Fan, B.; Liang, J.; Ling, J.; Bian, Z.; Yu, Q.; Hou, B.; et al. Expert consensus on irrigation and intracanal medication in root canal therapy. Int. J. Oral. Sci. 2024, 16, 23. [Google Scholar] [CrossRef]
- Drews, D.J.; Nguyen, A.D.; Diederich, A.; Gernhardt, C.R. The Interaction of Two Widely Used Endodontic Irrigants, Chlorhexidine and Sodium Hypochlorite, and Its Impact on the Disinfection Protocol during Root Canal Treatment. Antibiotics 2023, 12, 589. [Google Scholar] [CrossRef]
- Gpv, S.; Ghosh, M.; Chatterjee, R.; Gajpal, A.; Mustafa, M.; Almokhatieb, A.A. Field Emission Scanning Electron Microscope Analysis of the Marginal Adaptation of Various Root Canal Sealers at the Dentin-Sealer and Sealer-Guttapercha Interfaces at Three Root Canal Levels: An In Vitro Study. Cureus 2024, 16, e66156. [Google Scholar] [CrossRef]
- Kaul, S.; Kumar, A.; Badiyani, B.K.; Sukhtankar, L.; Madhumitha, M.; Kumar, A. Comparison of Sealing Ability of Bioceramic Sealer, AH Plus, and GuttaFlow in Conservatively Prepared Curved Root Canals Obturated with Single-Cone Technique: An In vitro Study. J. Pharm. Bioallied Sci. 2021, 13, S857–S860. [Google Scholar] [CrossRef]
- Pawar, A.M.; Pawar, S.; Kfir, A.; Pawar, M.; Kokate, S. Push-out bond strength of root fillings made with C-Point and BC sealer versus gutta-percha and AH Plus after the instrumentation of oval canals with the Self-Adjusting File versus WaveOne. Int. Endod. J. 2016, 49, 374–381. [Google Scholar] [CrossRef]
- Rekha, R.; Kavitha, R.; Venkitachalam, R.; Prabath, S.V.; Deepthy, S.; Krishnan, V. Comparison of the sealing ability of bioceramic sealer against epoxy resin based sealer: A systematic review & meta-analysis. J. Oral. Biol. Craniofacial Res. 2023, 13, 28–35. [Google Scholar] [CrossRef]
- Patil, P.; Rathore, V.P.; Hotkar, C.; Savgave, S.S.; Raghavendra, K.; Ingale, P. A comparison of apical sealing ability between GuttaFlow and AH plus: An in vitro study. J. Int. Soc. Prev. Community Dent. 2016, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Marques Ferreira, M.; Martinho, J.P.; Duarte, I.; Mendonca, D.; Craveiro, A.C.; Botelho, M.F.; Carrilho, E.; Miguel Marto, C.; Coelho, A.; Paula, A.; et al. Evaluation of the Sealing Ability and Bond Strength of Two Endodontic Root Canal Sealers: An In Vitro Study. Dent. J. 2022, 10, 201. [Google Scholar] [CrossRef]
- Najafzadeh, R.; Fazlyab, M.; Esnaashari, E. Comparison of bioceramic and epoxy resin sealers in terms of marginal adaptation and tubular penetration depth with different obturation techniques in premolar teeth: A scanning electron microscope and confocal laser scanning microscopy study. J. Family Med. Prim. Care 2022, 11, 1794–1797. [Google Scholar] [CrossRef]
- Kangseng, T.; Banomyong, D.; Osiri, S.; Jantarat, J. Outcomes and prognostic factors of endodontically treated teeth filled with calcium silicate- or epoxy resin-based root canal sealers: A retrospective cohort study. Int. Endod. J. 2025, 58, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Cueva-Goig, R.; Forner-Navarro, L.; Llena-Puy, M.C. Microscopic assessment of the sealing ability of three endodontic filling techniques. J. Clin. Exp. Dent. 2016, 8, e27–e31. [Google Scholar] [CrossRef]
- Tashkandi, N.; Alghamdi, F. Effect of Chemical Debridement and Irrigant Activation on Endodontic Treatment Outcomes: An Updated Overview. Cureus 2022, 14, e21525. [Google Scholar] [CrossRef]
- Ali, A.; Bhosale, A.; Pawar, S.; Kakti, A.; Bichpuriya, A.; Agwan, M.A. Current Trends in Root Canal Irrigation. Cureus 2022, 14, e24833. [Google Scholar] [CrossRef]
- Olcay, K.; Ataoglu, H.; Belli, S. Evaluation of Related Factors in the Failure of Endodontically Treated Teeth: A Cross-sectional Study. J. Endod. 2018, 44, 38–45. [Google Scholar] [CrossRef]
- Khademi, A.; Yazdizadeh, M.; Feizianfard, M. Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems. J. Endod. 2006, 32, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Barbero-Navarro, I.; Velazquez-Gonzalez, D.; Irigoyen-Camacho, M.E.; Zepeda-Zepeda, M.A.; Mauricio, P.; Ribas-Perez, D.; Castano-Seiquer, A. Assessment of the Penetration of an Endodontic Sealer into Dentinal Tubules with Three Different Compaction Techniques Using Confocal Laser Scanning Microscopy. J. Funct. Biomater. 2023, 14, 542. [Google Scholar] [CrossRef] [PubMed]
- Vergacas, J.H.N.; de Lima, C.O.; Barbosa, A.F.A.; Vieira, V.T.L.; Dos Santos Antunes, H.; da Silva, E. Marginal gaps and voids of three root-end filling materials: A microcomputed tomographic study. Microsc. Res. Tech. 2022, 85, 617–622. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Liang, Y.H. Presence and distribution of voids after using the single cone obturation technique with different sealer placement methods in canals with an isthmus. J. Dent. Sci. 2025, 20, 286–291. [Google Scholar] [CrossRef]
- Carlson, H.; Montebello, J.; Lee, B.; Rendahl, A.; Goldschmidt, S. Evaluation of the efficacy of the Lentulo spiral filler operated at four different speeds and with two different techniques in cadaveric canine teeth of dogs. Front. Vet. Sci. 2023, 10, 1295306. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, M.H.; Yum, J.; Versluis, A.; Lee, C.J.; Kim, B.M. Potential relationship between design of nickel-titanium rotary instruments and vertical root fracture. J. Endod. 2010, 36, 1195–1199. [Google Scholar] [CrossRef]
- Doganay Yildiz, E.; Fidan, M.E.; Sakarya, R.E.; Dincer, B. The effect of taper and apical preparation size on fracture resistance of roots. Aust. Endod. J. 2021, 47, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, Y.; He, J.; Liu, S.; Tang, J.; Jiao, T.; Sun, H. Comparative assessment of vertical fracture resistance in endodontically treated roots with different obturating systems and techniques: A systematic review and network meta-analysis of in vitro studies. BMC Oral. Health 2024, 24, 1439. [Google Scholar] [CrossRef] [PubMed]
- Gok, T.; Gok, A.; Aciksoz, H.O. Assessment of gap areas of root filling techniques in teeth with 3D-printed different configurations of C-shaped root canals: A micro-computed tomography study. BMC Oral. Health 2025, 25, 237. [Google Scholar] [CrossRef]
- Alshehri, M.; Alamri, H.M.; Alshwaimi, E.; Kujan, O. Micro-computed tomographic assessment of quality of obturation in the apical third with continuous wave vertical compaction and single match taper sized cone obturation techniques. Scanning 2016, 38, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Sabeti, M.A.; Karimpourtalebi, N.; Shahravan, A.; Dianat, O. Clinical and Radiographic Failure of Nonsurgical Endodontic Treatment and Retreatment Using Single-cone Technique With Calcium Silicate-based Sealers: A Systematic Review and Meta-analysis. J. Endod. 2024, 50, 735–746 e731. [Google Scholar] [CrossRef]
- Bardini, G.; Bellido, M.M.; Rossi-Fedele, G.; Casula, L.; Dettori, C.; Ideo, F.; Cotti, E. A 4-year follow-up of root canal obturation using a calcium silicate-based sealer and a zinc oxide-eugenol sealer: A randomized clinical trial. Int. Endod. J. 2025, 58, 193–208. [Google Scholar] [CrossRef]
- Cardinali, F.; Camilleri, J. A critical review of the material properties guiding the clinician’s choice of root canal sealers. Clin. Oral. Investig. 2023, 27, 4147–4155. [Google Scholar] [CrossRef]
ISO | n | Mean | SD | 95% CI | p * | d | |
---|---|---|---|---|---|---|---|
PGFA | 20 | 120 | 81.2 | 13.6 | 78.7–83.6 | <0.001 | 25 vs. 40: 0.74 20 vs. 40: 0.59 |
25 | 120 | 81.3 | 9.32 | 79.6–82.9 | |||
40 | 60 | 87.0 | 6.16 | 85.4–88.6 | |||
45 | 120 | 84.1 | 6.89 | 82.8–85.3 | |||
Total | 420 | 82.9 | 10.0 | 81.9–83.8 | |||
PSFA | 20 | 120 | 17.8 | 12.7 | 15.5–20.2 | 0.001 | 25 vs. 40: 0.73 20 vs. 40: 0.56 |
25 | 120 | 17.9 | 8.69 | 16.3–19.5 | |||
40 | 60 | 12.5 | 6.11 | 10.9–14.1 | |||
45 | 120 | 15.0 | 6.82 | 13.8–16.2 | |||
Total | 420 | 16.3 | 9.53 | 15.4–17.2 | |||
PUA | 20 | 120 | 0.99 | 2.51 | 0.54–1.44 | 0.354 | - |
25 | 120 | 0.85 | 2.22 | 0.45–1.25 | |||
40 | 60 | 0.47 | 1.03 | 0.20–0.74 | |||
45 | 120 | 0.91 | 1.87 | 0.57–1.25 | |||
Total | 420 | 0.85 | 2.09 | 0.65–1.01 |
File-System | Area | ISO | n | Mean | SD | 95% CI | p * | d |
---|---|---|---|---|---|---|---|---|
WaveOne® Gold | PGFA | 20 | 60 | 82.5 | 13.2 | 79.1–85.9 | 0.009 | 25 vs. 45: 0.52 |
25 | 60 | 80.3 | 9.03 | 77.9–82.6 | ||||
45 | 60 | 84.6 | 7.65 | 82.7–86.6 | ||||
Total | 180 | 82.5 | 10.4 | 80.9–84.0 | ||||
PSFA | 20 | 60 | 16.2 | 11.5 | 13.3–19.2 | 0.004 | 25 vs. 45: 0.57 | |
25 | 60 | 18.9 | 8.36 | 16.8–21.1 | ||||
45 | 60 | 14.3 | 7.73 | 12.3–16.2 | ||||
Total | 180 | 16.5 | 9.47 | 15.1–17.9 | ||||
PUA | 20 | 60 | 1.24 | 3.19 | 0.41–2.06 | 0.133 | - | |
25 | 60 | 0.77 | 2.40 | 0.15–1.38 | ||||
45 | 60 | 1.12 | 2.10 | 0.58–1.66 | ||||
Total | 180 | 1.04 | 2.60 | 0.66–1.42 | ||||
Procodile® | PGFA | 20 | 60 | 79.8 | 14.0 | 76.2–83.4 | 0.002 | 20 vs. 40: 0.71 25 vs. 40: 0.61 40 vs. 45: 0.57 |
25 | 60 | 82.2 | 9.57 | 79.8–84.7 | ||||
40 | 60 | 87.0 | 6.16 | 85.4–88.6 | ||||
45 | 60 | 83.5 | 6.05 | 82.8–85.3 | ||||
Total | 240 | 83.1 | 9.79 | 81.9–83.8 | ||||
PSFA | 20 | 60 | 19.5 | 14.0 | 15.5–20.2 | 0.004 | 20 vs. 40: 0.70 | |
25 | 60 | 16.8 | 8.96 | 16.3–19.5 | ||||
40 | 60 | 12.5 | 6.11 | 10.9–14.1 | ||||
45 | 60 | 15.8 | 5.73 | 13.8–16.2 | ||||
Total | 240 | 16.2 | 9.59 | 15.4–17.2 | ||||
PUA | 20 | 60 | 0.74 | 1.55 | 0.34–1.34 | 0.833 | - | |
25 | 60 | 0.94 | 2.05 | 0.41–1.46 | ||||
40 | 60 | 0.47 | 1.03 | 0.20–0.74 | ||||
45 | 60 | 0.71 | 1.61 | 0.29–1.13 | ||||
Total | 240 | 0.71 | 1.60 | 0.51–0.92 |
File-System | Area | ISO | Compared ISO | p * |
---|---|---|---|---|
WaveOne® Gold | PGFA | 20 | 20 × 25 | 0.006 |
20 × 45 | 0.871 | |||
25 | 25 × 45 | 0.010 | ||
PSFA | 20 | 20 × 25 | 0.005 | |
20 × 45 | 0.904 | |||
25 | 25 × 45 | 0.004 | ||
Procodile® | PGFA | 20 | 20 × 25 | 0.497 |
20 × 40 | 0.001 | |||
20 × 45 | 0.407 | |||
25 | 25 × 40 | 0.003 | ||
25 × 45 | 0.946 | |||
40 | 40 × 45 | 0.002 | ||
PSFA | 20 | 20 × 25 | 0.483 | |
20 × 40 | 0.002 | |||
20 × 45 | 0.413 | |||
25 | 25 × 40 | 0.007 | ||
25 × 45 | 0.992 | |||
40 | 40 × 45 | 0.003 |
Configuration | Area | ISO | n | Mean | SD | 95% CI | p * | D |
---|---|---|---|---|---|---|---|---|
Curved | PGFA | 20 | 60 | 78.9 | 14.5 | 75.2–82.7 | 0.002 | 25 vs. 40: 0.88 20 vs. 40: 0.84 40 vs. 45: 0.60 |
25 | 60 | 80.4 | 10.2 | 77.7–83.0 | ||||
40 | 30 | 87.7 | 6.46 | 85.2–90.1 | ||||
45 | 60 | 83.6 | 7.14 | 81.7–85.4 | ||||
Total | 210 | 81.9 | 10.8 | 80.4–83.4 | ||||
PSFA | 20 | 60 | 20.1 | 13.8 | 16.5–23.6 | 0.002 | 20 vs. 40: 0.84 | |
25 | 60 | 18.9 | 9.32 | 16.4–21.3 | ||||
40 | 30 | 11.7 | 6.16 | 9.44–14.0 | ||||
45 | 60 | 15.4 | 6.80 | 13.7–17.2 | ||||
Total | 210 | 17.2 | 10.2 | 15.8–18.6 | ||||
PUA | 20 | 60 | 1.00 | 3.11 | 0.19–1.80 | 0.309 | - | |
25 | 60 | 0.77 | 2.51 | 0.12–1.42 | ||||
40 | 30 | 0.60 | 1.26 | 0.13–1.07 | ||||
45 | 60 | 1.00 | 1.84 | 0.52–1.47 | ||||
Total | 210 | 0.88 | 2.39 | 0.55–1.20 | ||||
Straight | PGFA | 20 | 60 | 83.4 | 12.4 | 80.1–86.6 | 0.087 | 25 vs. 40: 0.58 |
25 | 60 | 82.2 | 8.36 | 80.1–84.3 | ||||
40 | 30 | 86.3 | 5.88 | 84.1–88.5 | ||||
45 | 60 | 84.6 | 6.65 | 82.9–88.3 | ||||
Total | 210 | 83.8 | 9.08 | 82.6–85.0 | ||||
PSFA | 20 | 60 | 15.6 | 11.5 | 12.6–18.6 | 0.167 | 25 vs. 40: 0.51 | |
25 | 60 | 16.9 | 7.97 | 11.1–15.6 | ||||
40 | 30 | 13.3 | 6.05 | 12.8–16.4 | ||||
45 | 60 | 14.6 | 6.88 | 12.8–16.4 | ||||
Total | 210 | 15.4 | 8.68 | 14.2–16.6 | ||||
PUA | 20 | 60 | 0.98 | 1.75 | 0.53–1.44 | 0.432 | 20 vs. 40: 0.51 | |
25 | 60 | 0.93 | 1.91 | 0.44–1.42 | ||||
40 | 30 | 0.34 | 0.74 | 0.06–0.61 | ||||
45 | 60 | 0.83 | 1.92 | 0.34–1.33 | ||||
Total | 210 | 0.83 | 1.75 | 0.59–1.07 |
ISO | Area | Configuration | n | Mean | SD | 95% CI | p * | d |
---|---|---|---|---|---|---|---|---|
20 | PGFA | Curved | 60 | 78.9 | 14.5 | 75.2–82.7 | 0.073 | 0.34 |
Straight | 60 | 83.4 | 12.4 | 80.2–86.6 | ||||
Total | 120 | 81.2 | 13.6 | 78.7–83.6 | ||||
PSFA | Curved | 60 | 20.1 | 13.8 | 16.5–23.6 | 0.050 | 0.36 | |
Straight | 60 | 15.6 | 11.5 | 12.6–18.6 | ||||
Total | 120 | 17.8 | 12.9 | 15.5–20.2 | ||||
PUA | Curved | 60 | 1.00 | 3.11 | 0.19–1.80 | 0.253 | 0.01 | |
Straight | 60 | 0.98 | 1.75 | 0.53–1.44 | ||||
Total | 120 | 1.00 | 2.51 | 0.54–1.44 | ||||
25 | PGFA | Curved | 60 | 80.4 | 10.2 | 77.7–83.0 | 0.447 | 0.19 |
Straight | 60 | 82.2 | 8.36 | 80.0–84.3 | ||||
Total | 120 | 81.3 | 9.32 | 79.6–82.9 | ||||
PSFA | Curved | 60 | 18.9 | 9.32 | 16.4–21.3 | 0.311 | 0.23 | |
Straight | 60 | 16.9 | 7.97 | 14.9–19.0 | ||||
Total | 120 | 17.9 | 8.69 | 16.3–19.5 | ||||
PUA | Curved | 60 | 0.77 | 2.51 | 0.12–1.42 | 0.137 | 0.07 | |
Straight | 60 | 0.93 | 1.97 | 0.44–1.42 | ||||
Total | 120 | 0.85 | 2.22 | 0.45–1.25 | ||||
40 | PGFA | Curved | 30 | 87.7 | 6.46 | 85.2–90.1 | 0.359 | 0.23 |
Straight | 30 | 86.3 | 5.88 | 84.1–88.5 | ||||
Total | 60 | 87.0 | 6.16 | 85.4–88.6 | ||||
PSFA | Curved | 30 | 11.7 | 6.16 | 9.44–14.0 | 0.383 | 0.26 | |
Straight | 30 | 13.3 | 6.05 | 11.1–15.6 | ||||
Total | 60 | 12.5 | 6.11 | 10.9–14.1 | ||||
PUA | Curved | 30 | 0.60 | 1.26 | 0.13–1.07 | 0.637 | 0.26 | |
Straight | 30 | 0.34 | 0.74 | 0.06–0.62 | ||||
Total | 60 | 0.47 | 1.03 | 0.20–0.74 | ||||
45 | PGFA | Curved | 60 | 83.6 | 7.14 | 81.7–85.4 | 0.512 | 0.15 |
Straight | 60 | 84.6 | 6.65 | 82.8–85.3 | ||||
Total | 120 | 84.1 | 6.89 | 82.8–85.3 | ||||
PSFA | Curved | 60 | 15.4 | 6.79 | 13.7–17.2 | 0.700 | 0.12 | |
Straight | 60 | 14.6 | 6.88 | 12.8–16.4 | ||||
Total | 120 | 15.0 | 6.81 | 13.8–16.2 | ||||
PUA | Curved | 60 | 1.00 | 1.84 | 0.52–1.47 | 0.612 | 0.09 | |
Straight | 60 | 0.83 | 1.91 | 0.34–1.33 | ||||
Total | 120 | 0.91 | 1.87 | 0.58–1.25 |
Configuration | Area | ISO | n | Mean | SD | 95% CI | p * | d |
---|---|---|---|---|---|---|---|---|
Apical | PGFA | 20 | 40 | 69.7 | 17.1 | 64.2–75.1 | <0.001 | 20 vs. 40: 1.07 20 vs. 25: 0.62 25 vs. 45: 0.60 20 vs. 45: 0.51 25 vs. 40: 0.51 |
25 | 40 | 77.9 | 9.44 | 74.8–80.9 | ||||
40 | 20 | 81.6 | 5.10 | 79.2–84.0 | ||||
45 | 40 | 83.1 | 7.94 | 80.6–85.7 | ||||
Total | 140 | 77.6 | 12.6 | 75.5–79.7 | ||||
PSFA | 20 | 40 | 28.8 | 16.0 | 23.7–33.9 | <0.001 | 20 vs. 45: 1.05 20 vs. 40: 0.86 25 vs. 45: 0.65 25 vs. 40: 0.56 | |
25 | 40 | 21.7 | 8.90 | 18.8–24.5 | ||||
40 | 20 | 17.9 | 4.72 | 15.7–20.1 | ||||
45 | 40 | 16.3 | 7.75 | 13.8–18.7 | ||||
Total | 140 | 21.6 | 11.8 | 19.6–23.6 | ||||
PUA | 20 | 40 | 1.54 | 3.84 | 0.31–2.77 | 0.327 | – | |
25 | 40 | 0.50 | 1.79 | −0.07–1.07 | ||||
40 | 20 | 0.52 | 1.19 | −0.04–1.07 | ||||
45 | 40 | 0.60 | 1.62 | 0.08–1.12 | ||||
Total | 140 | 0.83 | 2.48 | 0.41–1.24 | ||||
Middle | PGFA | 20 | 40 | 85.3 | 6.35 | 83.2–87.3 | 0.001 | 25 vs. 40: 1.15 40 vs. 45: 0.65 20 vs. 25: 0.61 20 vs. 40: 0.58 25 vs. 45: 0.53 |
25 | 40 | 80.7 | 8.80 | 77.9–83.6 | ||||
40 | 20 | 88.5 | 4.77 | 86.2–90.7 | ||||
45 | 40 | 84.8 | 6.63 | 82.6–86.9 | ||||
Total | 140 | 84.3 | 7.41 | 83.1–85.5 | ||||
PSFA | 20 | 40 | 14.0 | 6.28 | 12.0–16.0 | 0.001 | 25 vs. 40: 1.14 25 vs. 45: 0.59 20 vs. 25: 0.59 20 vs. 40: 0.52 | |
25 | 40 | 18.1 | 7.55 | 15.7–20.5 | ||||
40 | 20 | 11.2 | 4.59 | 9.07–13.4 | ||||
45 | 40 | 13.9 | 6.65 | 11.4–16.1 | ||||
Total | 140 | 14.8 | 6.91 | 13.6–15.9 | ||||
PUA | 20 | 40 | 0.71 | 1.28 | 0.30–1.12 | 0.380 | – | |
25 | 40 | 1.13 | 2.75 | 0.25–2.01 | ||||
40 | 20 | 0.29 | 0.71 | −0.43–0.62 | ||||
45 | 40 | 1.30 | 2.42 | 0.52–2.07 | ||||
Total | 140 | 0.94 | 2.10 | 0.58–1.29 | ||||
Coronal | PGFA | 20 | 40 | 88.6 | 4.91 | 87.0–90.1 | <0.001 | 40 vs. 45: 1.26 25 vs. 40: 0.89 20 vs. 25: 0.51 |
25 | 40 | 85.2 | 8.37 | 82.5–87.9 | ||||
40 | 20 | 90.9 | 4.45 | 88.8–93.0 | ||||
45 | 40 | 84.3 | 6.04 | 82.3–86.2 | ||||
Total | 140 | 86.7 | 6.72 | 85.6–87.8 | ||||
PSFA | 20 | 40 | 10.7 | 4.44 | 9.29–12.1 | <0.001 | 40 vs. 45: 1.20 25 vs. 40: 0.85 20 vs. 45: 0.81 | |
25 | 40 | 13.9 | 7.95 | 11.3–16.4 | ||||
40 | 20 | 8.49 | 4.81 | 6.24–10.7 | ||||
45 | 40 | 14.9 | 5.89 | 13.0–16.7 | ||||
Total | 140 | 12.5 | 6.44 | 11.4–13.6 | ||||
PUA | 20 | 40 | 0.72 | 1.55 | 0.23–1.22 | 0.874 | – | |
25 | 40 | 0.93 | 2.02 | 0.28–1.58 | ||||
40 | 20 | 0.61 | 1.15 | 0.07–1.15 | ||||
45 | 40 | 0.84 | 1.41 | 0.39–1.29 | ||||
Total | 140 | 0.80 | 1.60 | 0.53–1.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvaneh, S.; Schwesig, R.; Haghighat, S.; Gernhardt, C.R. Quality of Single-Cone Obturation Using Different Sizes of Matching Gutta-Percha Points of Two Reciprocating Single-File Systems in Curved and Straight Root Canals. Medicina 2025, 61, 465. https://doi.org/10.3390/medicina61030465
Arvaneh S, Schwesig R, Haghighat S, Gernhardt CR. Quality of Single-Cone Obturation Using Different Sizes of Matching Gutta-Percha Points of Two Reciprocating Single-File Systems in Curved and Straight Root Canals. Medicina. 2025; 61(3):465. https://doi.org/10.3390/medicina61030465
Chicago/Turabian StyleArvaneh, Shakiba, René Schwesig, Shahpar Haghighat, and Christian Ralf Gernhardt. 2025. "Quality of Single-Cone Obturation Using Different Sizes of Matching Gutta-Percha Points of Two Reciprocating Single-File Systems in Curved and Straight Root Canals" Medicina 61, no. 3: 465. https://doi.org/10.3390/medicina61030465
APA StyleArvaneh, S., Schwesig, R., Haghighat, S., & Gernhardt, C. R. (2025). Quality of Single-Cone Obturation Using Different Sizes of Matching Gutta-Percha Points of Two Reciprocating Single-File Systems in Curved and Straight Root Canals. Medicina, 61(3), 465. https://doi.org/10.3390/medicina61030465