Clinic, Ambulatory and Home Blood Pressure Monitoring for Metabolic Syndrome: Time to Change the Definition?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. BP Measurements
2.3. ASCVD Risk Assessment
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Differences in BP Measurements and ASCVD Parameters Between Those with and Without MetS
3.3. Logistic Regression Analysis for Different BP Parameters and MetS
3.4. Prevalence of BP Phenotypes Among Patients with and Without MetS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MetS | Metabolic syndrome |
BP | Blood pressure |
ASCVD | Atherosclerotic cardiovascular disease |
OBPM | Office blood pressure measurement |
ABPM | Ambulatory blood pressure measurement |
HBPM | Home blood pressure measurement |
PWV | Pulse wave velocity |
EVA | Early vascular aging |
HR | Heart rate |
BMI | Body mass index |
LVH | Left ventricular hypertrophy |
HbA1c | Hemoglobin A1C |
eGFR | Estimated glomerular filtration rate |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
References
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsiki, N.; Doumas, M.; Athyros, V. Metabolic syndrome: Joint diagnostic criteria and links with comorbidities. Hormones 2019, 18, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome--a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.; Daniels, S.R.; Eckel, R.H.; Hayman, L.; Lustig, R.H.; McCrindle, B.; Mietus-Snyder, M.L. Progress and challenges in metabolic syndrome in children and adolescents: A scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009, 119, 628–647. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.A.; McGrath, B.P. White-coat hypertension. Clin. Exp. Pharmacol. Physiol. 2014, 41, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.F.; Yang, W.Y.; Asayama, K.; Zhang, Z.Y.; Thijs, L.; Li, Y.; O’Brien, E.; Staessen, J.A. Ambulatory Blood Pressure Monitoring to Diagnose and Manage Hypertension. Hypertension 2021, 77, 254–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, E.M. When and how to use ambulatory blood pressure monitoring and home blood pressure monitoring for managing hypertension. Clin. Hypertens. 2024, 30, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuffee, Y.L.; Sciamanna, C.; Gerin, W.; Lehman, E.; Cover, L.; Johnson, A.A.; Pool, A.; Yang, C. The Effectiveness of Home Blood Pressure on 24-Hour Blood Pressure Control: A Randomized Controlled Trial. Am. J. Hypertens. 2019, 32, 186–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panagiotakos, D.; Antza, C.; Kotsis, V. Ambulatory and home blood pressure monitoring for cardiovascular disease risk evaluation: A systematic review and meta-analysis of prospective cohort studies. J. Hypertens. 2024, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.E.; Muntner, P.; Kronish, I.M.; Burg, M.M.; Pickering, T.G.; Bigger, J.T.; Shimbo, D. Reliability of Office, Home, and Ambulatory Blood Pressure Measurements and Correlation With Left Ventricular Mass. J. Am. Coll. Cardiol. 2020, 76, 2911–2922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcovecchio, M.L.; Dalton, R.N.; Schwarze, C.P.; Prevost, A.T.; Neil, H.A.; Acerini, C.L.; Barrett, T.; Cooper, J.D.; Edge, J.; Shield, J.; et al. Ambulatory blood pressure measurements are related to albumin excretion and are predictive for risk of microalbuminuria in young people with type 1 diabetes. Diabetologia 2009, 52, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Antza, C.; Doundoulakis, I.; Akrivos, E.; Stabouli, S.; Trakatelli, C.; Doumas, M.; Kotsis, V. Early Vascular Aging Risk Assessment From Ambulatory Blood Pressure Monitoring: The Early Vascular Aging Ambulatory Score. Am. J. Hypertens. 2018, 31, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Lempiäinen, P.A.; Ylitalo, A.; Huikuri, H.; Kesäniemi, Y.A.; Ukkola, O.H. Non-dipping blood pressure pattern is associated with cardiovascular events in a 21-year follow-up study. J. Hum. Hypertens. 2024, 38, 444–451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stevens, S.L.; Wood, S.; Koshiaris, C.; Law, K.; Glasziou, P.; Stevens, R.J.; McManus, R.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis. BMJ 2016, 354, i4098. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharman, J.E.; O’Brien, E.; Alpert, B.; Schutte, A.E.; Delles, C.; Hecht Olsen, M.; Asmar, R.; Atkins, N.; Barbosa, E.; Calhoun, D.; et al. Lancet Commission on Hypertension group position statement on the global improvement of accuracy standards for devices that measure blood pressure. J. Hypertens. 2020, 38, 21–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- National Institutes of Health. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. Obes. Res. 1998, 6 (Suppl. 2), 51s–209s. [Google Scholar] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- James, W.P. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32 (Suppl. 7), S120–S126. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.D.; Budoff, M.J.; Ferdinand, K.; Graham, I.M.; Michos, E.D.; Reddy, T.; Shapiro, M.D.; Toth, P.P. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement. Am. J. Prev. Cardiol. 2022, 10, 100335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Introduction and Methodology: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. 1), S1–S4. [CrossRef] [PubMed] [PubMed Central]
- Eichler, K.; Puhan, M.A.; Steurer, J.; Bachmann, L.M. Prediction of first coronary events with the Framingham score: A systematic review. Am. Heart. J. 2007, 153, 722–731.e8. [Google Scholar] [CrossRef] [PubMed]
- Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'Establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [CrossRef] [PubMed] [PubMed Central]
- Van Bortel, L.M.; Duprez, D.; Starmans-Kool, M.J.; Safar, M.E.; Giannattasio, C.; Cockcroft, J.; Kaiser, D.R.; Thuillez, C. Clinical applications of arterial stiffness, Task Force III: Recommendations for user procedures. Am. J. Hypertens. 2002, 15, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, T.; Kikuya, M.; Metoki, H.; Asayama, K.; Obara, T.; Hashimoto, J.; Totsune, K.; Hoshi, H.; Satoh, H.; Imai, Y. Prognosis of “masked” hypertension and “white-coat” hypertension detected by 24-h ambulatory blood pressure monitoring 10-year follow-up from the Ohasama study. J. Am. Coll. Cardiol. 2005, 46, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Kikuya, M.; Ohkubo, T.; Asayama, K.; Metoki, H.; Obara, T.; Saito, S.; Hashimoto, J.; Totsune, K.; Hoshi, H.; Satoh, H.; et al. Ambulatory blood pressure and 10-year risk of cardiovascular and noncardiovascular mortality: The ohasama study. Hypertens. 2005, 45, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Colantonio, L.D.; Anstey, D.E.; Carson, A.P.; Ogedegbe, G.; Abdalla, M.; Sims, M.; Shimbo, D.; Muntner, P. Metabolic syndrome and masked hypertension among African Americans: The Jackson Heart Study. J. Clin. Hypertens. 2017, 19, 592–600. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sega, R.; Trocino, G.; Lanzarotti, A.; Carugo, S.; Cesana, G.; Schiavina, R.; Valagussa, F.; Bombelli, M.; Giannattasio, C.; Zanchetti, A.; et al. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension: Data from the general population (Pressione Arteriose Monitorate E Loro Associazioni [PAMELA] Study). Circulation 2001, 104, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, M.; Toso, E.; Peronio, M.; Fodri, D.; Volpe, M.; Brambilla, G.; Facchetti, R.; Sega, R.; Grassi, G.; Mancia, G. The Pamela study: Main findings and perspectives. Curr. Hypertens. Rep. 2013, 15, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.C.; Chayán, L.; Ayala, D.E.; Mojón, A.; Fontao, M.J.; Fernández, J.R. Relationship between metabolic syndrome, circadian treatment time, and blood pressure non-dipping profile in essential hypertension. Chronobiol. Int. 2011, 28, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Tartan, Z.; Uyarel, H.; Kasikcioglu, H.; Alper, A.T.; Ozay, B.; Bilsel, T.; Gul, M.; Ozturk, R.; Cam, N. Metabolic syndrome as a predictor of non-dipping hypertension. Tohoku. J. Exp. Med. 2006, 210, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, M.; Anyfanti, P.; Nikolaidou, B.; Lazaridis, A.; Gavriilaki, E.; Douma, S.; Gkaliagkousi, E. Nighttime dipping status and risk of cardiovascular events in patients with untreated hypertension: A systematic review and meta-analysis. J. Clin. Hypertens. 2020, 22, 1951–1959. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guembe, M.J.; Fernandez-Lazaro, C.I.; Sayon-Orea, C.; Toledo, E.; Moreno-Iribas, C. Risk for cardiovascular disease associated with metabolic syndrome and its components: A 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020, 19, 195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katsiki, N.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, D.P. Characteristics other than the diagnostic criteria associated with metabolic syndrome: An overview. Curr. Vasc. Pharmacol. 2014, 12, 627–641. [Google Scholar] [CrossRef] [PubMed]
Mean | Standard Deviation | |
---|---|---|
Age (years) | 56.9 | 15.8 |
BMI (kg/m2) | 30.4 | 5.8 |
HbA1c (%) | 6.3 | 1.3 |
Total Cholesterol (mg/dL) | 199 | 42 |
Triglycerides (mg/dL) | 134 | 64 |
HDL cholesterol (mg/dL) | 48 | 13 |
LDL cholesterol (mg/dL) | 123 | 36 |
Uric Acid (mg/dL) | 5.4 | 1.4 |
eGFR (mL/min/1.73 m2) | 83.9 | 21.8 |
Waist (cm) | 77 | 47 |
Hip (cm) | 81 | 50 |
Percentage, % (n) | ||
Sex (men) | 39.9 (112) | |
Type 2 diabetes | 17.5 (49) | |
Current smoker | 24.3 (67) | |
LV hypertrophy | 43.7 (123) | |
Hyperlipidemia | 43.3 (122) | |
BMI_WHO (categories) | Underweight: 0.4 (1) Normal: 15.2 (42) Overweight: 38.7 (109) Obese: 45.7 (130) | |
EVA (early vascular aging) | 54.8 (154) | |
Metabolic syndrome | 60.8 (171) | |
Dipping status | Extreme dipping: 12.3 (35) Dipping: 27.0 (76) Non-dipping: 54.4 (154) Reverse: 6.3 (17) | |
Blood pressure phenotype | Normotension: 40.1 (113) White-coat: 13.6 (38) Masked: 9.1 (26) Hypertension: 37.2 (105) |
Mean | Standard Deviation | |
---|---|---|
Mean SBP 24 h (mmHg) | 129 | 15 |
Mean DBP 24 h (mmHg) | 77 | 11 |
Mean SBP day (mmHg) | 132 | 15 |
Mean DBP day (mmHg) | 79 | 11 |
Mean SBP night (mmHg) | 122 | 16 |
Mean DBP night (mmHg) | 71 | 11 |
Home SBP (mmHg) | 141 | 16 |
Home DBP (mmHg) | 86 | 12 |
Home SBP morning(mmHg) | 139 | 16 |
Home DBP morning(mmHg) | 84 | 12 |
Home SBP evening (mmHg) | 139 | 18 |
Home DBP evening (mmHg) | 83 | 12 |
Office SBP (mmHg) | 140 | 17 |
Office DBP (mmHg) | 84 | 12 |
Metabolic Syndrome | No Metabolic Syndrome | p | |
---|---|---|---|
Mean SBP 24 h | 130 (19) | 117 (10) | 0.004 |
Mean DBP 24 h | 71 (16) | 74 (7) | 0.669 |
Mean SBP day | 132 (24) | 120 (4) | 0.008 |
Mean DBP day | 73 (18) | 76 (10) | 0.587 |
Mean SBP night | 119 (16) | 111 (25) | 0.007 |
Mean DBP night | 67 (16) | 71 (10) | 0.934 |
Home SBP | 140 (19) | 131 (15) | 0.046 |
Home DBP | 85 (14) | 76 (16) | 0.843 |
Home SBP morning | 138 (33) | 135 (21) | 0.003 |
Home DBP morning | 79 (19) | 82 (15) | 0.992 |
Home SBP evening | 135 (29) | 134 (13) | 0.036 |
Home DBP evening | 78 (20) | 82 (12) | 0.298 |
Office SBP | 143 (24) | 129 (26) | 0.001 |
Office DBP | 84 (18) | 76 (16) | 0.170 |
Metabolic Syndrome | No Metabolic Syndrome | p | |
---|---|---|---|
Age (years) | 60 (12) | 56 (16) | 0.05 |
Sex (men) | 67.6% | 32.4% | 0.131 |
ASCVD 10-year risk score, mean (SD) | 22 (13) | 12 (10) | 0.043 |
Framingham 10-year risk score, mean (SD) | 11.8 (9) | 6.9 (6) | 0.017 |
LVH | 49.2% | 22.7% | 0.005 |
EVA | 54.8% | 27.4% | 0.004 |
OR | 95%CI | p Value | |
---|---|---|---|
Mean SBP 24 h | 1.05 | 1.02–1.06 | 0.04 |
Mean DBP 24 h | 0.82 | 0.80–1.38 | 0.606 |
Mean SBP day | 1.04 | 1.04–1.05 | 0.019 |
Mean DBP day | 0.75 | 0.70–1.01 | 0.534 |
Mean SBP night | 1.05 | 1.01–1.06 | 0.018 |
Mean DBP night | 0.89 | 0.85–1.25 | 0.906 |
Home SBP | 1.02 | 0.99–1.03 | 0.171 |
Home DBP | 1.01 | 0.83–1.25 | 0.843 |
Home SBP morning | 1.04 | 1.03–1.05 | 0.005 |
Home DBP morning | 1.01 | 1.00–1.08 | 0.872 |
Home SBP evening | 0.96 | 0.90–1.10 | 0.123 |
Home DBP evening | 0.93 | 0.89–1.12 | 0.241 |
Office SBP | 1.03 | 1.02–1.05 | 0.001 |
Office DBP | 0.95 | 0.92–1.10 | 0.432 |
Different Blood Pressure Phenotypes | ||||
---|---|---|---|---|
During 24h measurement | ||||
In patients with metabolic syndrome | Normotension | White-coat | Masked | Sustained hypertension |
22.8% | 11.5% | 15.2% | 50.5% | |
During Home Measurements | ||||
Normotension | White-coat | Masked | Sustained hypertension | |
22% | 19.3% | 13.6% | 45.1% | |
Dipping status during night | ||||
Extreme dipping | Dipping | Non-dipping | Reverse | |
10% | 27% | 56.4% | 6.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antza, C.; Sitmalidou, M.; Belančić, A.; Katsiki, N.; Kotsis, V. Clinic, Ambulatory and Home Blood Pressure Monitoring for Metabolic Syndrome: Time to Change the Definition? Medicina 2025, 61, 434. https://doi.org/10.3390/medicina61030434
Antza C, Sitmalidou M, Belančić A, Katsiki N, Kotsis V. Clinic, Ambulatory and Home Blood Pressure Monitoring for Metabolic Syndrome: Time to Change the Definition? Medicina. 2025; 61(3):434. https://doi.org/10.3390/medicina61030434
Chicago/Turabian StyleAntza, Christina, Maria Sitmalidou, Andrej Belančić, Niki Katsiki, and Vasilios Kotsis. 2025. "Clinic, Ambulatory and Home Blood Pressure Monitoring for Metabolic Syndrome: Time to Change the Definition?" Medicina 61, no. 3: 434. https://doi.org/10.3390/medicina61030434
APA StyleAntza, C., Sitmalidou, M., Belančić, A., Katsiki, N., & Kotsis, V. (2025). Clinic, Ambulatory and Home Blood Pressure Monitoring for Metabolic Syndrome: Time to Change the Definition? Medicina, 61(3), 434. https://doi.org/10.3390/medicina61030434