Are Inflammatory Markers Important for Assessing the Severity of Diabetic Polyneuropathy?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Desing
2.2. Methods of Data Collection
2.3. Laboratory Samples
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | diabetes mellitus |
DNP | diabetic neuropathy |
EMG | electromyography |
NLR | neutrophil-to-lymphocyte ratio |
GLR | glucose-to-lymphocyte ratio |
THR | triglyceride/HDL ratio |
LMR | lymphocyte-to-monocyte ratio |
SII | systemic immune–inflammation index |
SIRI | systemic inflammatory response index |
PIV | pan-immune inflammation value |
SPSS | Statistical Package for the Social Sciences |
IQR | interquartile range |
TyG index | triglyceride–glucose index |
FFA | fatty acid |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein cholesterol |
GBS | Guillain–Barré syndrome |
References
- Miric, D.J.; Kisic, B.M.; Filipovic-Danic, S.; Grbic, R.; Dragojevic, I.; Miric, M.B.; Puhalo-Sladoje, D. Xanthine Oxidase Activity in Type 2 Diabetes Mellitus Patients with and without Diabetic Peripheral Neuropathy. J. Diabetes Res. 2016, 2016, 4370490. [Google Scholar] [CrossRef] [PubMed]
- Vukojević, Z.; Perić, S.; Kovačević, A.D.; Božović, I.; Grgic, S.; Basta, I.; Lavrnić, D. Neuropathic pain as independent predictor of worse quality of life in patients with diabetic neuropathy. Vojnosanit. Pregled. 2021, 78, 981–986. [Google Scholar] [CrossRef]
- Yıldırım, A.; Avcı, H.K.; Güngen, B.D.; Yağız, O.; Saçak, Ş.; Polat, H. Tip 2 diyabetes mellitus tanılı hastalarda HbA1c seviyesi ile distal simetrik polinöropati şiddeti arasındaki ilişki. Istanb. Med. J. 2014, 15, 175–177. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 42. [Google Scholar] [CrossRef]
- Cernea, S.; Raz, I. Management of diabetic neuropathy. Metabolism 2021, 123, 154867. [Google Scholar] [CrossRef]
- Baum, P.; Toyka, K.V.; Blüher, M.; Kosacka, J.; Nowicki, M. Inflammatory Mechanisms in the Pathophysiology of Diabetic Peripheral Neuropathy (DN)-New Aspects. Int. J. Mol. Sci. 2021, 22, 10835. [Google Scholar] [CrossRef]
- Stino, A.M.; Rumora, A.E.; Kim, B.; Feldman, E.L. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J. Peripher. Nerv. Syst. 2020, 25, 76–84. [Google Scholar] [CrossRef]
- Zhang, Q.; Ji, L.; Zheng, H.; Li, Q.; Xiong, Q.; Sun, W. Low serum phosphate and magnesium levels are associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2018, 146, 1–7. [Google Scholar] [CrossRef]
- Palladino, R.; Tabak, A.G.; Khunti, K.; Valabhji, J.; Majeed, A.; Millett, C.; Vamos, E. Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001061. [Google Scholar] [CrossRef]
- Lee, C.C.; Perkins, B.A.; Kayaniyil, S.; Harris, S.B.; Retnakaran, R.; Gerstein, H.C.; Zinman, B.; Hanley, A.J. Peripheral Neuropathy and Nerve Dysfunction in Individuals at High Risk for Type 2 Diabetes: The PROMISE Cohort. Diabetes Care 2015, 38, 793–800. [Google Scholar] [CrossRef]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Wen, W.X.; Jiang, Z.P.; Du, Z.P.; Ma, Z.H.; Lu, A.L.; Li, H.P.; Yuan, F.; Wu, S.B.; Guo, J.W.; et al. The clinical value of neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) for predicting the occurrence and severity of pneumonia in patients with intracerebral hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar]
- Wang, S.; Pan, X.; Jia, B.; Chen, S. Exploring the Correlation Between the Systemic Immune Inflammation Index (SII), Systemic Inflammatory Response Index (SIRI), and Type 2 Diabetic Retinopathy. Diabetes Metab. Syndr. Obes. 2023, 16, 3827–3836. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Lan, Y.; Wang, A.; Yan, Y.; Ge, J. The association between a novel inflammatory biomarker, systemic inflammatory response index and the risk of diabetic cardiovascular complications. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1389–1397. [Google Scholar] [CrossRef]
- Ramasamy, J.; Murugiah, V.; Dhanapalan, A.; Balasubramaniam, G. Diagnostic Utility of Pan-Immune-Inflammation Value (PIV) in Predicting Insulin Resistance: Results from the National Health and Nutrition Examination Survey (NHANES) 2017–2020. EJIFCC 2024, 35, 100–110. [Google Scholar]
- Iqbal, Z.; Bashir, B.; Ferdousi, M.; Kalteniece, A.; Alam, U.; Malik, R.A.; Soran, H. Lipids and peripheral neuropathy. Curr. Opin. Lipidol. 2021, 32, 249–257. [Google Scholar] [CrossRef]
- Kristensen, F.B.; Christensen, D.H.; Callaghan, B.C.; Nielsen, J.S.; Højlund, K.; Andersen, H.; Dekkers, O.M.; Groenwold, R.H.H.; Sørensen, H.T.; Thomsen, R.W. Lipid Levels and Risk of Diabetic Polyneuropathy in 2 Danish Type 2 Diabetes Cohorts. Neurology 2024, 103, e209538. [Google Scholar] [CrossRef]
- Wu, S.; Cao, X.; He, R.; Xiong, K. Detrimental impact of hyperlipidemia on the peripheral nervous system: A novel target of medical epidemiological and fundamental research study. Neural Regen. Res. 2012, 7, 392–399. [Google Scholar]
- Pençe, H.H.; Aktaş, H.Ş. Diyabetik nöropatisi olan kişilerde Monosit/HDL kolesterol oranı ile kardiyovasküler risk arasındaki ilişki. Online Turk. J. Health Sci. 2019, 4, 526–538. [Google Scholar]
- Demirel, E.A.; Karpuz, B.; Açıkgöz, M.; Atasoy, H.T. Diyabetik Polinöropati Şiddeti İle Serum Aterojenite İndeks İlişkisinin Değerlendirilmesi. Türk Diyab Obez. 2020, 3, 224–229. [Google Scholar] [CrossRef]
- Fakı, S.; Tam, A.A.; İnce, N.; Altay, F.P.; Karaahmetli, G.; Housseın, M.; Çakır, B. Relationship Between Triglyceride-Glucose Index and Microvascular Complications in Hospitalized Patients with Type 2 Diabetes Mellitus. Türk Diyab Obez. 2024, 8, 13–18. [Google Scholar] [CrossRef]
- Mao, F.; Zhu, X.; Liu, S.; Qiao, X.; Zheng, H.; Lu, B.; Li, Y. Age as an Independent Risk Factor for Diabetic Peripheral Neuropathy in Chinese Patients with Type 2 Diabetes. Aging Dis. 2019, 10, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Suljic, E.; Kulasin, I.; Alibegovic, V. Alibegovic, Assessment of Diabetic Polyneuropathy in Inpatient Care: Fasting Blood Glucose, HbA1c, Electroneuromyography and Diabetes Risk Factors. Acta Inform. Med. 2013, 21, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Singleton, J.R. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J. Diabetes Complicat. 2013, 27, 436–442. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Q.; Sun, L.; Bao, T.; Dai, Z. Atherogenic Index in Type 2 Diabetes and Its Relationship with Chronic Microvascular Complications. Int. J. Endocrinol. 2018, 2018, 1765835. [Google Scholar] [CrossRef]
- Vincent, A.M.; Hinder, L.M.; Pop-Busui, R.; Feldman, E.L. Hyperlipidemia: A new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst. 2009, 14, 257–267. [Google Scholar] [CrossRef]
- Tu, Z.; Du, J.; Ge, X.; Peng, W.; Shen, L.; Xia, L.; Jiang, X.; Hu, F.; Huang, S. Triglyceride Glucose Index for the Detection of Diabetic Kidney Disease and Diabetic Peripheral Neuropathy in Hospitalized Patients with Type 2 Diabetes. Diabetes Ther. 2024, 15, 1799–1810. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef]
- Giovenzana, A.; Carnovale, D.; Phillips, B.; Petrelli, A.; Giannoukakis, N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab. Res. Rev. 2022, 38, e3483. [Google Scholar] [CrossRef]
- Lisanti, C.; Basile, D.; Garattini, S.K.; Parnofiello, A.; Corvaja, C.; Cortiula, F.; Bertoli, E.; Ongaro, E.; Foltran, L.; Casagrande, M.; et al. The SAFFO Study: Sex-Related Prognostic Role and Cut-Off Definition of Monocyte-to-Lymphocyte Ratio (MLR) in Metastatic Colorectal Cancer. Cancers 2022, 15, 175. [Google Scholar] [CrossRef]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R.; et al. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cao, B.; Hou, Y.; Wei, Q.; Ou, R.; Zhao, B.; Shang, H. High neutrophil-to-lymphocyte ratio predicts short survival in multiple system atrophy. NPJ Parkinsons Dis. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gao, J.; Liu, M. The clinical significance of systemic immune-inflammation index and platelet/neutrophil to lymphocyte ratio in Guillain-Barre syndrome. Clin. Neurol. Neurosurg. 2023, 235, 108015. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Jia, W.; Wang, K.; Wang, W.; Diao, W.; Ou, F.; Ma, J.; Yang, Y. Association of the systemic immuno-inflammation index, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio with diabetic microvascular complications. Front. Endocrinol. 2024, 15, 1367376. [Google Scholar] [CrossRef]
- Wan, H.; Wang, Y.; Fang, S.; Chen, Y.; Zhang, W.; Xia, F.; Wang, N.; Lu, Y. Associations between the Neutrophil-to-Lymphocyte Ratio and Diabetic Complications in Adults with Diabetes: A Cross-Sectional Study. J. Diabetes Res. 2020, 2020, 6219545. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Xiong, Y.; Wang, L.; Huang, X.; Sun, T.; Zha, B.; Wu, Y.; Yan, C.; Zang, S.; et al. Increased neutrophil count Is associated with the development of chronic kidney disease in patients with diabetes. J. Diabetes. 2022, 14, 442–454. [Google Scholar] [CrossRef]
- Fucà, G.; Guarini, V.; Antoniotti, C.; Morano, F.; Moretto, R.; Corallo, S.; Marmorino, F.; Lonardi, S.; Rimassa, L.; Sartore-Bianchi, A.; et al. The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: Results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br. J. Cancer 2020, 123, 403–409. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, C.; Lin, S.; Zhang, Y.; Ding, S.; Song, W. The relationship between the pan-immune-inflammation value and long-term prognoses in patients with hypertension: National Health and Nutrition Examination Study, 1999–2018. Front Cardiovasc. Med. 2023, 10, 1099427. [Google Scholar] [CrossRef]
- Murat, B.; Murat, S.; Ozgeyik, M.; Bilgin, M. Comparison of pan-immune-inflammation value with other inflammation markers of long-term survival after ST-segment elevation myocardial infarction. Eur. J. Clin. Investig. 2023, 53, e13872. [Google Scholar] [CrossRef]
Non-DM | Pre-DM | DM | p | |
---|---|---|---|---|
N (F/M) | 62 (47/15) | 97 (71/26) | 327 (195/132) | 0.007 |
Age | 47.00 (40.00–58.00) a | 57.00 (49.00–65.50) b | 59.00 (51.00–66.00) b | <0.001 |
Platelet (109/L) | 261.50 (212.00–308.00) | 277.00 (221.50–312.00) | 257.00 (215.00–314.00) | 0.469 |
Lymphocyte (109/L) | 1.96 (1.62–2.45) a | 2.01 (1.65–2.52) ab | 2.19 (1.77–2.72) b | 0.016 |
Monocyte (109/L) | 0.50 (0.39–0.61) a | 0.52 (0.42–0.68) ab | 0.54 (0.45–0.69) b | 0.041 |
Neutrophil (109/L) | 3.67 (2.90–4.37) a | 3.85 (3.20–4.81) a | 4.37 (3.48–5.52) c | <0.001 |
LDL (mg/dL) | 107.50 (86.75–132.50) | 120.00 (101.50–141.50) | 115.00 (87.00–142.00) | 0.125 |
TG (mg/dL) | 103.00 (73.00–143.75) a | 126.00 (91.00–181.00) b | 168.00 (113.00–231.00) c | <0.001 |
HDL (mg/dL) | 50.50 (40.00–57.00) ab | 50.00 (44.00–58.50) a | 48.00 (42.00–54.00) b | 0.023 |
Glucose (mg/dL) | 95.00 (87.75–104.00) a | 101.50 (93.00–120.00) a | 156.00 (123.00–228.00) b | <0.001 |
HBA1C | 5.40 (5.20–5.60) a | 6.00 (5.80–6.20) b | 8.20 (7.20–9.90) c | <0.001 |
Mg (mg/dL) | 1.93 (1.82–2.10) a | 1.86 (1.73–2.03) ab | 1.86 (1.70–2.00) b | 0.035 |
NLR | 1.86 (1.56–2.24) | 1.93 (1.43–2.58) | 1.94 (1.54–2.59) | 0.545 |
LMR | 3.76 (3.17–4.95) | 3.88 (2.92–5.00) | 4.00 (3.24–5.20) | 0.433 |
PLR | 135.45 (107.31–163.53) a | 128.14 (101.85–167.63) a | 118.67 (96.68–146.15) b | 0.011 |
GLR | 45.68 (40.58–68.33) a | 52.66 (39.64–67.30) a | 73.30 (53.18–115.56) b | <0.001 |
SII | 491.63 (346.97–640.27) | 521.42 (336.89–692.59) | 495.36 (370.59–716.22) | 0.643 |
SIRI | 0.97 (0.66–1.38) | 0.98 (0.68–1.49) | 1.05 (0.73–1.56) | 0.152 |
PIV | 253.28 (149.16–349.81) | 260.68 (168.17–448.73) | 275.46 (172.63–454.08) | 0.227 |
THR | 2.08 (1.52–3.07) a | 2.70 (1.83–3.60) a | 3.48 (2.24–5.19) b | <0.001 |
TyG Index | 4931.50 (3419.38–7446.00) a | 6403.50 (4680.00–9584.00) a | 13,249.50 (8316.00–21,025.50)b | <0.001 |
TGR | 1.02 (0.73–1.48) ab | 1.26 (0.77–1.64) a | 0.97 (0.59–1.48) b | 0.005 |
Pre-DM | DM | |||
---|---|---|---|---|
Rho | p | Rho | p | |
Age | 0.349 | <0.001 | 0.296 | <0.001 |
Platelet (109/L) | 0.048 | 0.641 | −0.210 | <0.001 |
Lymphocyte (109/L) | −0.089 | 0.388 | −0.109 | 0.050 |
Monocyte (109/L) | 0.088 | 0.390 | 0.067 | 0.229 |
Neutrophil (109/L) | 0.019 | 0.852 | 0.125 | 0.024 |
LDL (mg/dL) | −0.264 | 0.009 | −0.037 | 0.504 |
TG (mg/dL) | −0.025 | 0.807 | 0.139 | 0.012 |
HDL (mg/dL) | −0.058 | 0.570 | −0.222 | <0.001 |
Glucose (mg/dL) | 0.237 | 0.020 | 0.233 | <0.001 |
HBA1C | 0.164 | 0.108 | 0.232 | <0.001 |
Mg (mg/dL) | −0.044 | 0.666 | −0.037 | 0.511 |
NLR | 0.085 | 0.405 | 0.176 | 0.001 |
LMR | −0.113 | 0.270 | −0.115 | 0.037 |
PLR | 0.154 | 0.132 | −0.041 | 0.456 |
GLR | 0.201 | 0.050 | 0.232 | <0.001 |
SII | 0.048 | 0.640 | 0.034 | 0.545 |
SIRI | 0.061 | 0.552 | 0.155 | 0.005 |
PIV | 0.057 | 0.581 | 0.046 | 0.411 |
THR | −0.015 | 0.886 | 0.194 | <0.001 |
TyG index | 0.113 | 0.274 | 0.230 | <0.001 |
TGR | −0.104 | 0.315 | −0.052 | 0.344 |
EMG | Normal | Hafif PNP | Orta PNP | Ağır PNP | p | |
---|---|---|---|---|---|---|
N (K/E) | Non-DM | 36 (26/10) | 11 (10/1) | 9 (8/1) | 6 (3/3) | 0.189 |
Pre-DM | 50 (40/10) | 22 (16/6) | 14 (11/3) | 11 (4/7) | 0.046 | |
DM | 165 (113/52) | 67 (37/30) | 43 (824/19) | 52 (21/31) | 0.003 | |
Age | Non-DM | 49.00 (39.25–56.75) | 47.00 (39.00–60.00) | 44.00 (39.00–60.00) | 49.00 (43.75–62.50) | 0.809 |
Pre-DM | 53.00 (44.00–59.50) a | 62.50 (55.50–70.50) b | 62.50 (52.50–71.50) b | 61.00 (54.00–68.00) b | 0.003 | |
DM | 56.00 (47.00–63.00) a | 62.00 (56.00–70.00) b | 64.00 (56.00–67.00) b | 64.00 (58.00–69.00) b | <0.001 | |
NLR | Non-DM | 1.78 (1.56–2.17) | 1.82 (1.50–2.47) | 2.02 (1.52–2.53) | 2.10 (1.55–2.28) | 0.860 |
Pre-DM | 1.78 (1.40–2.48) | 2.12 (1.42–2.49) | 1.98 (1.44–3.05) | 2.11 (1.25–2.60) | 0.798 | |
DM | 1.85 (1.49–2.34) a | 2.03 (1.42–2.93) b | 1.98 (1.56–3.04) abc | 2.23 (1.78–2.94) c | 0.009 | |
LMR | Non-DM | 4.08 (3.25–5.06) | 3.74 (2.40–5.33) | 3.35 (2.80–4.14) | 3.20 (2.92–4.15) | 0.294 |
Pre-DM | 4.02 (3.21–5.08) | 3.50 (2.57–4.43) | 4.03 (2.56–5.88) | 3.60 (2.50–4.65) | 0.434 | |
DM | 4.13 (3.35–5.28) | 4.08 (3.31–5.46) | 3.74 (3.00–4.85) | 3.77 (2.49–5.27) | 0.129 | |
PLR | Non-DM | 135.45 (110.33–163.19) | 133.75 (94.53–200.83) | 149.50 (111.33–159.13) | 118.15 (99.05–155.60) | 0.865 |
Pre-DM | 117.51 (101.21–154.86) | 131.51 (107.26–174.64) | 151.29 (94.23–218.89) | 136.11 (93.86–197.33) | 0.411 | |
DM | 119.72 (100.51–144.91) | 117.41 (89.42–134.88) | 111.81 (96.20–152.57) | 121.46 (88.07–148.01) | 0.663 | |
GLR | Non-DM | 43.87 (34.89–56.21) | 61.05 (42.63–78.40) | 53.22 (44.37–91.24) | 69.36 (40.58–77.39) | 0.129 |
Pre-DM | 47.37 (37.83–62.08) | 60.03 (41.18–78.11) | 58.19 (39.38–70.19) | 63.69 (46.53–70.20) | 0.173 | |
DM | 66.67 (48.71–98.13) a | 73.24 (50.63–102.84) a | 77.97 (54.70–156.19) b | 96.20 (77.36–174.18) b | <0.001 | |
SII | Non-DM | 508.23 (364.08–624.96) | 482.00 (321.00–772.73) | 449.77 (304.52–648.48) | 359.24 (302.95–555.65) | 0.661 |
Pre-DM | 480.77 (329.52–685.25) | 547.66 (421.80–603.40) | 616.94 (337.62–1347.62) | 462.78 (257.72–848.53) | 0.446 | |
DM | 495.37 (360.00–678.45) | 457.42 (372.06–763.40) | 549.63 (347.00–744.48) | 497.38 (385.06–796.21) | 0.816 | |
SIRI | Non-DM | 0.97 (0.75–1.33) | 0.76 (0.48–1.80) | 1.15 (0.67–1.40) | 0.85 (0.61–1.34) | 0.985 |
Pre-DM | 0.91 (0.68–1.44) | 1.22 (0.80–1.47) | 1.06 (0.64–2.17) | 0.84 (0.53–2.17) | 0.647 | |
DM | 1.00 (0.74–1.34) a | 1.01 (0.69–1.67) ab | 1.29 (0.70–1.70) ab | 1.27 (0.76–2.01) b | 0.039 | |
PIV | Non-DM | 270.42 (176.24–348.35) | 241.00 (124.68–475.82) | 242.87 (142.04–405.53) | 175.62 (101.14–292.76) | 0.644 |
Pre-DM | 251.98 (160.03–437.88) | 303.95 (205.67–412.90) | 367.27 (162.31–791.25) | 200.13 (112.49–848.53) | 0.437 | |
DM | 275.52 (173.09–405.71) | 237.76 (164.93–469.24) | 322.79 (156.55–517.15) | 274.21 (179.53–499.69) | 0.720 | |
THR | Non-DM | 2.44 (1.68–3.23) | 1.81 (1.45–2.06) | 2.11 (1.50–4.56) | 1.63 (1.00–2.62) | 0.173 |
Pre-DM | 2.71 (1.73–3.90) | 2.62 (1.84–3.35) | 2.88 (1.79–4.12) | 2.04 (1.53–4.57) | 0.909 | |
DM | 3.22 (2.05–4.45) a | 3.47 (2.16–5.24) a | 4.19 (2.84–6.68) b | 3.94 (2.82–5.91) b | 0.003 | |
TyG index | Non-DM | 5233.00 (3632.50–8405.25) | 5407.50 (3149.00–10,248.50) | 4868.50 (3398.75–7651.50) | 3985.00 (2600.75–5050.13) | 0.449 |
Pre-DM | 5998.50 (4520.25–9400.00) | 6248.50 (4801.75–8574.63) | 8254.75 (4941.25–11,116.50) | 6486.00 (5187.00–10,494.00) | 0.642 | |
DM | 11,063.50 (7787.25–18,581.25) a | 14,616.00 (7436.00–21,477.50) a | 18,777.50 (12,096.00–23,707.00) b | 16,657.75 (9416.25–32,392.13) b | <0.001 | |
TGR | Non-DM | 1.20 (0.77–1.75) a | 0.72 (0.57–1.01) b | 1.04 (0.93–1.68) ab | 0.96 (0.51–1.04) ab | 0.027 |
Pre-DM | 1.29 (0.94–1.91) | 1.11 (0.72–1.38) | 1.33 (0.86–1.80) | 0.90 (0.68–1.58) | 0.420 | |
DM | 0.96 (0.63–1.50) | 1.04 (0.57–1.61) | 1.02 (0.59–1.65) | 0.86 (0.54–1.25) | 0.449 |
Model | B | Std. Error Beta | Β (Beta) | t | p | 95% CI for B Lower Bound | 95% CI for B Upper Bound |
---|---|---|---|---|---|---|---|
(Constant) | −0.846 | 0.281 | −3.014 | 0.003 | −1.398 | −0.294 | |
Age | 0.024 | 0.004 | 0.254 | 5.650 | <0.001 | 0.015 | 0.032 |
GLR | 0.002 | 0.001 | 0.127 | 2.216 | 0.027 | 0.000 | 0.004 |
THR | 0.139 | 0.033 | 0.274 | 4.203 | <0.001 | 0.074 | 0.204 |
TGR | −0.266 | 0.112 | −0.172 | −2.380 | 0.018 | −0.485 | −0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uslu, M.F.; Yılmaz, M. Are Inflammatory Markers Important for Assessing the Severity of Diabetic Polyneuropathy? Medicina 2025, 61, 400. https://doi.org/10.3390/medicina61030400
Uslu MF, Yılmaz M. Are Inflammatory Markers Important for Assessing the Severity of Diabetic Polyneuropathy? Medicina. 2025; 61(3):400. https://doi.org/10.3390/medicina61030400
Chicago/Turabian StyleUslu, Muhammed Fuad, and Mustafa Yılmaz. 2025. "Are Inflammatory Markers Important for Assessing the Severity of Diabetic Polyneuropathy?" Medicina 61, no. 3: 400. https://doi.org/10.3390/medicina61030400
APA StyleUslu, M. F., & Yılmaz, M. (2025). Are Inflammatory Markers Important for Assessing the Severity of Diabetic Polyneuropathy? Medicina, 61(3), 400. https://doi.org/10.3390/medicina61030400