Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants and Data
2.3. Surgical Treatment
2.4. Radiation Treatment Planning and Treatment Simulation
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Plan Quality According to Hardware Properties
3.3. Visual Plan Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DVH | Dose volume histogram |
CI | Conformity index |
CTV | Clinical target volume |
CRF-PEEK | Carbon fiber-reinforced PEEK |
ESCC | Epidural Spinal Cord Compression |
HI | Heterogeneity index |
IMRT | Intensity modified radiation therapy |
MMI | Minimum metallic instrumentation |
PEEK | Polyetheretherketone |
PTV | Planning target volume |
SBRT | Stereotactic body radiation therapy |
VBR | Vertebral body replacement |
VMAT | Volumetric modulated arc therapy |
References
- Bilsky, M.H.; Laufer, I.; Fourney, D.R.; Groff, M.; Schmidt, M.H.; Varga, P.P.; Vrionis, F.D.; Yamada, Y.; Gerszten, P.C.; Kuklo, T.R. Reliability analysis of the epidural spinal cord compression scale. J. Neurosurg. Spine 2010, 13, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Giantsoudi, D.; De Man, B.; Verburg, J.; Trofimov, A.; Jin, Y.; Wang, G.; Gjesteby, L.; Paganetti, H. Metal artifacts in computed tomography for radiation therapy planning: Dosimetric effects and impact of metal artifact reduction. Phys. Med. Biol. 2017, 62, R49–R80. [Google Scholar] [CrossRef]
- Kumar, N.; Lopez, K.G.; Ramakrishnan, S.A.; Hallinan, J.T.P.D.; Fuh, J.Y.H.; Pandita, N.; Madhu, S.; Kumar, A.; Benneker, L.M.; Vellayappan, B.A. Evolution of materials for implants in metastatic spine disease till date—Have we found an ideal material? Radiother. Oncol. 2021, 163, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Ringel, F.; Ryang, Y.-M.; Kirschke, J.S.; Müller, B.S.; Wilkens, J.J.; Brodard, J.; Combs, S.E.; Meyer, B. Radiolucent Carbon Fiber–Reinforced Pedicle Screws for Treatment of Spinal Tumors: Advantages for Radiation Planning and Follow-Up Imaging. World Neurosurg. 2017, 105, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Eicker, S.O.; Krajewski, K.; Payer, S.; Krätzig, T.; Dreimann, M. First experience with Carbon/PEEK pedicle screws. J. Neurosurg. Sci. 2017, 61, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.B.; Crimaldi, A.J.; Peindl, R.; Norton, H.J.; Anderson, W.E.; Patt, J.C. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study. Spine 2017, 42, E1–E7. [Google Scholar] [CrossRef]
- Lindtner, R.A.; Schmid, R.; Nydegger, T.; Konschake, M.; Schmoelz, W. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur. Spine J. 2018, 27, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Poel, R.; Belosi, F.; Albertini, F.; Walser, M.; Gisep, A.; Lomax, A.J.; Weber, D.C. Assessing the advantages of CFR-PEEK over titanium spinal stabilization implants in proton therapy—A phantom study. Phys. Med. Biol. 2020, 65, 245031. [Google Scholar] [CrossRef]
- Krätzig, T.; Mende, K.C.; Mohme, M.; Kniep, H.; Dreimann, M.; Stangenberg, M.; Westphal, M.; Gauer, T.; Eicker, S.O. Carbon fiber–reinforced PEEK versus titanium implants: An in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg. Rev. 2021, 44, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Schwendner, M.; Ille, S.; Kirschke, J.S.; Bernhardt, D.; Combs, S.E.; Meyer, B.; Krieg, S.M. Clinical evaluation of vertebral body replacement of carbon fiber–reinforced polyetheretherketone in patients with tumor manifestation of the thoracic and lumbar spine. Acta Neurochir. 2023, 165, 897–904. [Google Scholar] [CrossRef]
- Agha, R.A.; Borrelli, M.R.; Farwana, R.; Koshy, K.; Fowler, A.J.; Orgill, D.P.; Zhu, H.; Alsawadi, A.; Noureldin, A.; Rao, A.; et al. The PROCESS 2018 statement: Updating Consensus Preferred Reporting Of CasE Series in Surgery (PROCESS) guidelines. Int. J. Surg. 2018, 60, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
- Laufer, I.; Rubin, D.G.; Lis, E.; Cox, B.W.; Stubblefield, M.D.; Yamada, Y.; Bilsky, M.H. The NOMS framework: Approach to the treatment of spinal metastatic tumors. Oncologist 2013, 18, 744–751. [Google Scholar] [CrossRef]
- Laufer, I.; Iorgulescu, J.B.; Chapman, T.; Lis, E.; Shi, W.; Zhang, Z.; Cox, B.W.; Yamada, Y.; Bilsky, M.H. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: Outcome analysis in 186 patients. J. Neurosurg. Spine 2013, 18, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hunte, S.O.; Clark, C.H.; Zyuzikov, N.; Nisbet, A. Volumetric modulated arc therapy (VMAT): A review of clinical outcomes—What is the clinical evidence for the most effective implementation? Br. J. Radiol. 2022, 95, 20201289. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT); ICRU Report 83; ICRU: Bethesda, MD, USA, 2010; pp. 41–53. [Google Scholar]
- Feuvret, L.; Noël, G.; Mazeron, J.-J.; Bey, P. Conformity index: A review. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.S.; Ryang, Y.; Oechsner, M.; Düsberg, M.; Meyer, B.; Combs, S.E.; Wilkens, J.J. The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: Standard titanium alloy vs. radiolucent carbon-fiber-reinforced PEEK systems. J. Appl. Clin. Med. Phys. 2020, 21, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.H.; Gasbarrini, A.M.; Lui, D.F.; Reynolds, J.; Capua, J.; Boriani, S.M. Integrated Custom Composite Polyetheretherketone/Carbon fiber (PEEK/CF) Vertebral Body Replacement (VBR) in the Treatment of Bone Tumors of the Spine: A Preliminary Report From a Multicenter Study. Spine 2022, 47, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, S.; Albers, C.E.; Elfiky, T.; Deml, M.C.; Milavec, H.; Bigdon, S.F.; Benneker, L.M. First Results of a New Vacuum Plasma Sprayed (VPS) Titanium-Coated Carbon/PEEK Composite Cage for Lumbar Interbody Fusion. J. Funct. Biomater. 2018, 9, 23. [Google Scholar] [CrossRef]
- Milavec, H.; Kellner, C.; Ravikumar, N.; Albers, C.E.; Lerch, T.; Hoppe, S.; Deml, M.C.; Bigdon, S.F.; Kumar, N.; Benneker, L.M. First Clinical Experience with a Carbon Fibre Reinforced PEEK Composite Plating System for Anterior Cervical Discectomy and Fusion. J. Funct. Biomater. 2019, 10, 29. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Bromley, R.M.; Oborn, B.; Booth, J.T. Radiotherapy dose calculations in high-Z materials: Comprehensive comparison between experiment, Monte Carlo, and conventional planning algorithms. Biomed. Phys. Eng. Express 2021, 7, 035012. [Google Scholar] [CrossRef]
- Temple, S.W.P.; Rowbottom, C.G. Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients. J. Appl. Clin. Med. Phys. 2024, 25, e14273. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Sun, G.; Zheng, H.; Yu, S.; Jiang, J. CT-CBCT deformable registration using weakly-supervised artifact-suppression transfer learning network. Phys. Med. Biol. 2023, 68, 165011. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Pua, R.; Lee, C.; Choi, D.; Cho, B.; Lee, S.; Cho, S.; Kwak, J. An additional tilted-scan-based CT metal-artifact-reduction method for radiation therapy planning. J. Appl. Clin. Med. Phys. 2019, 20, 237–249. [Google Scholar] [CrossRef]
- Wei, J.; Sandison, G.A.; Hsi, W.-C.; Ringor, M.; Lu, X. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies. Phys. Med. Biol. 2006, 51, 5183–5197. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.W.; Spratt, D.E.; Lovelock, M.; Bilsky, M.H.; Lis, E.; Ryu, S.; Sheehan, J.; Gerszten, P.C.; Chang, E.; Gibbs, I.; et al. International Spine Radiosurgery Consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e597–e605. [Google Scholar] [CrossRef]
- Zeng, K.L.; Tseng, C.-L.; Soliman, H.; Weiss, Y.; Sahgal, A.; Myrehaug, S. Stereotactic Body Radiotherapy (SBRT) for Oligometastatic Spine Metastases: An Overview. Front. Oncol. 2019, 9, 337. [Google Scholar] [CrossRef]
- Müther, M.; Lüthge, S.; Gerwing, M.; Stummer, W.; Schwake, M. Management of Spinal Dumbbell Tumors via a Minimally Invasive Posterolateral Approach and Carbon Fiber–Reinforced Polyether Ether Ketone Instrumentation: Technical Note and Surgical Case Series. World Neurosurg. 2021, 151, 277–283.e1. [Google Scholar] [CrossRef]
Patient Number | Age at Surgery | Primary Cancer | Spinal Tumor Location | SINS | ESCC | Frankel Grade | VBR Implant | Dorsal Fixation Implant |
---|---|---|---|---|---|---|---|---|
1 | 59 | Renal Cell Carcinoma | T3 | 10 | 1C | D | PEEK | CRF-PEEK |
2 | 65 | Laryngeal Cancer | T3 | 10 | 2 | C | PEEK | Titanium |
3 | 24 | Malignant Peripheral Nerve Sheath Tumor | T6 | 7 | 2 | E | PEEK | Titanium |
4 | 76 | Breast Cancer | T4 | 10 | 2 | C | Titanium | Titanium |
5 | 60 | Renal Cell Carcinoma | T10 | 8 | 2 | E | Titanium | CRF-PEEK |
6 | 55 | Malignant Mixed Müllerian Tumor | T7 | 8 | 3 | D | Titanium | Titanium |
7 | 50 | NSCLC | T8 | 7 | 2 | E | Titanium | Titanium |
Patient Number | Spinal Tumor Location | VBR Implant | Dorsal Fixation Implant | Dmean | D98% | D2% | HI | CI |
---|---|---|---|---|---|---|---|---|
1 | T3 | PEEK | CRF-PEEK | 30 | 28.9 | 30.8 | 0.95 | 1.07 |
2 | T3 | PEEK | Titanium | 30 | 28.8 | 31.1 | 0.93 | 1.07 |
3 | T6 | PEEK | Titanium | 30 | 28.6 | 31.5 | 0.88 | 1.09 |
M (SD) | 30 (0) | 28.8 (0.12) | 31.1 (0.28) | 0.92 (0.03) | 1.07 (0.01) | |||
5 | T10 | Titanium | CRF-PEEK | 30 | 28.3 | 31.2 | 0.93 | 1.08 |
6 | T7 | Titanium | Titanium | 30 | 28.4 | 31.2 | 0.94 | 1.08 |
7 | T8 | Titanium | Titanium | 30 | 28.6 | 31.3 | 0.88 | 1.08 |
M (SD) | 30 (0) | 28.4 (0.12) | 31.2 (0.05) | 0.92 (0.03) | 1.08 (0) | |||
p-Value (Comparing PEEK and Titanium VBR) | 0.99 | 0.12 | 0.66 | 0.99 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, J.-N.; Fischer, M.; Christiansen, H.; Schwake, M.; Stummer, W.; Ewelt, C.; Pepper, N.B.; Eich, H.T.; Müther, M. Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series. Medicina 2025, 61, 269. https://doi.org/10.3390/medicina61020269
Becker J-N, Fischer M, Christiansen H, Schwake M, Stummer W, Ewelt C, Pepper NB, Eich HT, Müther M. Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series. Medicina. 2025; 61(2):269. https://doi.org/10.3390/medicina61020269
Chicago/Turabian StyleBecker, Jan-Niklas, Mirko Fischer, Hans Christiansen, Michael Schwake, Walter Stummer, Christian Ewelt, Niklas Benedikt Pepper, Hans Theodor Eich, and Michael Müther. 2025. "Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series" Medicina 61, no. 2: 269. https://doi.org/10.3390/medicina61020269
APA StyleBecker, J.-N., Fischer, M., Christiansen, H., Schwake, M., Stummer, W., Ewelt, C., Pepper, N. B., Eich, H. T., & Müther, M. (2025). Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series. Medicina, 61(2), 269. https://doi.org/10.3390/medicina61020269